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Abstract

This article examines the functional significance of Ca2q-dependent synaptic plasticity in relation to compromised memory function
during aging. Research characterizing an age-related decline in memory for tasks that require proper hippocampal function is summarized.
It is concluded that aged animals possess the mechanisms necessary for memory formation, and memory deficits, including rapid
forgetting, result from more subtle changes in memory processes for memory storage or maintenance. A review of experimental studies
concerning changes in hippocampal neural plasticity over the course of aging indicates that, during aging, there is a shift in mechanisms
that regulate the thresholds for synaptic modification, including Ca2q channel function and subsequent Ca2q-dependent processes. The
results, combined with theoretical considerations concerning synaptic modification thresholds, provide the basis for a model of age-related
changes in hippocampal synaptic function. The model is employed as a foundation for interpretation of studies examining therapeutic
intervention in age-related memory decline. The possible role of altered synaptic plasticity thresholds in learning and memory deficits
suggests that treatments that modify synaptic plasticity may prove fruitful for the development of early therapeutic interventions in
age-related neurodegenerative diseases. q 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

Impairments in cognitive function have been well-docu-
w xmented in elderly humans 92 . It has been more than three

decades since the term ‘‘benign senescent forgetfulness’’
was first proposed to differentiate individuals with age-re-
lated decline in memory, from those with impaired mem-

w xory attributable to neurological damage or disease 96 .
More recently, a National Institute of Mental Health
Ž .NIMH work group proposed the term ‘‘age-associated
memory impairment’’ based on diagnostic evidence for

w xmemory loss in the absence of dementia 39 . It is clear
that memory impairment with advanced age is a selective
deficit rather than a generalized decline in all cognitive
operations. Indeed, the ability to learn new skills or ex-
press memory in an implicit manner remains relatively
intact in older humans. The term chosen by NIMH refers
instead to older, but otherwise healthy, individuals who
exhibit impaired memory on tasks involving the recall of

w xrecently acquired facts 32,44,77,79,87,141,151,188,197 .
Memory capabilities that depend on proper hippocampal
function appear to be of particular vulnerability to the

w xaging process 79,123,133 . For example, memory for
novel spatial information, which is compromised by hip-

w xpocampal damage, is extremely sensitive to aging 92 .
While qualitatively, age-related cognitive deficits point

to hippocampal involvement, several important distinctions
remain between consequential hippocampal damage and
aging. In particular, the degree of impairment observed
during aging is less severe than that observed for patients

w xwith disease-related damage to the hippocampus 132 .
Enhanced forgetting becomes apparent in normal aged
individuals as the retention interval is increased beyond 24

w xh 87,127,152 . Brain-damaged individuals or Alzheimer
patients, in contrast, exhibit extremely rapid forgetting

w xwithin minutes 82,126,132,150 . Because of these differ-
ences, it is likely that age-related memory deficits are the
result of more limited and subtle changes in the hippocam-
pus.

One primary difficulty in determining the mechanisms
for cognitive decline in humans is related to the invasive
nature of experiments that can determine cause and effect
relationships. As a consequence, researchers have had to
rely largely on correlational studies, or they have turned to

w xanimal models of brain aging 74 . The biological theories
to emerge seem to polarize around models concerning the

loss of neural components, which comprise the hippocam-
pal system, and models related to divergence in physio-
logical or biochemical aspects of hippocampal function
w x73 . These theories are not necessarily mutually exclusive;
i.e., changes in physiology are likely to precede the elimi-

w xnation of synapses or neuronal death 101,180 . Further-
more, the loss of neural components will have profound

w xinfluences on physiology 11,13,15,63,70 .

2. Animal models of age-related memory impairments

Animal models have been developed to explore the
connection between age-related memory deficits and
changes in anatomy and physiology of the hippocampus.
To establish an animal model for the investigation of the
neurobiology of the aging hippocampus, one of the first
steps has been to investigate whether aging is associated
with a decline in performance on tasks which are sensitive
to hippocampal damage. Some of the more commonly
used tasks include delay-dependent matchingrnon-match-

w xing to sample operant tasks 58,59 , trace eye blink condi-
w x w xtioning 55,175 , passiverinhibitory avoidance 120 , and

w xspatial mazes 76 . In the case of aging rats, it is clear that
these animals can learn and retain information over short
intervals. However, in comparison to younger rats, aged
animals exhibit slower learning and rapid forgetting
w x10,37,58,59,63,78,116,119,142,146,175,194,199 .

In rodents, spatial memory is particularly vulnerable to
decline with advanced age. In recent years, researchers
have focused on water-escape tasks to identify aged rats
and mice with spatial memory deficits. However, care is
required when using such tasks since, relative to young
adults, aged animals are more sensitive to the parameters
of the experimental paradigm which act on secondary
processes, including stress and fatigue. As such, obvious
age-related differences in acquisition can be observed un-

Žder highly stressful conditions e.g., colder water tempera-
. w xtures 47,113,116 . When properly employed, the water-

escape task provides a means of differentiating cognitive
w xdeterioration from sensory–motor deficits 74,111,118 ,

and the ability of this task in identifying animals with
wmemory deficits is a consistent finding 25,34,37,63,69,

x70,72,111,112,116,142 . Under conditions designed to
minimize stress, aged animals demonstrate a decrease in
escape latency for the second of a pair of training trials

Ž .when the intertrial interval is relatively short e.g., 1 min



( )T.C. FosterrBrain Research ReÕiews 30 1999 236–249238

w x71,163 , implying that aged rats can learn something
about the task. However, performance deficits on the
second trial are readily apparent as the intertrial interval is

w xextended over hours 112,113,116 . Similarly, aged ani-
mals exhibit only a mild impairment in the acquisition of

Ž .spatial discriminations i.e., slower rate of acquisition
when short intertrial intervals are used, and training is

w xmassed into a single day 63,116,142 . However, marked
performance differences emerge when training is con-

w xducted over several days 74 . Indeed, aged rats exhibit a
characteristic ‘‘saw-toothed’’ pattern of behavior across

w xdays of training 51,71,163 . This pattern appears as an
improved performance for training trials within a day, and
a marked decrement in performance on the first trial of the
next day. In contrast, young adult rats exhibit little or no
evidence for a relapse in performance across days. Finally,
with extended training, aged animals can acquire spatial
discrimination behavior, which is stable across a longer
Ž . w xe.g., 24 h time period 163 . The results indicate that
aged animals can learn tasks that require an intact hip-
pocampus; however, there maybe be deficits in the rate of
learning. More pronounced age-related deficits involve
impaired retention of previously acquired information. De-
lay-dependent effects in aged animals are a consistent

wfinding across a number of different tasks 58,59,76,78,
x119,146,175,194,199 and point to rapid forgetting as a

behavioral characteristic of animal models of aging. The
results indicate that aged animals possess the mechanisms
necessary for memory formation, and memory deficits
probably result from more subtle changes in memory
processes such as storage or maintenance mechanisms.

3. Age-related changes in hippocampal synaptic func-
tion

Behavioral analyses alone may not be able to determine
the processes which underlie memory and forgetting.
Rather, one must determine whether the biological changes,
which are thought to represent stored information, materi-
alize and fade differentially over time in accord with

w xbehavioral measures 177 . While this view may be overly
simplistic, it provides a starting place for examining neuro-
biological models of memory by describing relationships
between neurological markers of aging and cognitive func-
tion. The fact, that tasks that depend on proper hippocam-
pal function are primarily sensitive to aging, indicates that
changes in memory involve the hippocampus, its afferents,
or efferents. The general hypothesis that, age-related mem-
ory deficits will be associated with changes in the hip-
pocampus, has been widely confirmed. A number of these
studies have addressed neurological measures that are rele-
vant to synaptic function. Indeed, altered hippocampal
synaptic function provides one of the primary electrophysi-

Žological markers for memory deficits during aging for
w x.reviews, see Refs. 11,66,76,98 .

( )3.1. Induction of long-term potentiation LTP

Several forms of plasticity, either increasing or decreas-
ing synaptic transmission, have now been described in the
mammalian central nervous system. In nearly all cases,
induction of synaptic plasticity involves a rise in intra-

2q Žw 2qx .cellular Ca Ca . The best-characterized example isi

a long-lasting enhancement of excitatory synaptic trans-
mission termed LTP. LTP can be observed at hippocampal
synapses following patterned synaptic activation, usually

Ž .involving high frequency 25–200 Hz stimulation of af-
ferent fibers. Several forms of LTP have been identified
based on the necessity for Ca2q influx through post-

Ž .synaptic N-methyl-D-aspartate receptor NMDAR activa-
tion. At hippocampal CA3–CA1 synapses, two forms of
LTP have been described which differ in terms of their

Ž .dependence on activation of NMDARs NMDAR-LTP or
2q Ž . w xvoltage-dependent Ca channels VDCC-LTP 28,81 .

w xFrom the initial discovery 24 , LTP has been proposed as
a candidate neural model for memory storage. Evidence to
support the LTP model of memory storage includes studies
in which pharmacological or genetic manipulations that
impair LTP induction also impair acquisition of hippocam-

w xpal-dependent behavior 26,29,131 . Furthermore, in-
creased hippocampal synaptic transmission is associated
with differential experience, and the experience-dependent
growth in synaptic transmission has been linked to LTP

w xinduction and expression mechanisms 64,65,159,193 .
Considering the prominence of LTP as a model of

memory storage, it is not surprising that a number of
studies have examined changes in LTP induction and
expression during aging. In general, no age-related differ-
ences are observed in the magnitude of LTP
w x10,47,50,52,102,130,143,171 . However, an increased
threshold for LTP induction has been reported such that

Ž .stronger e.g., higher frequency stimulation is required to
induce LTP. In addition, more induction sessions are re-
quired to saturate LTP mechanisms in aged animals. The
results indicate that, although the fundamental mechanisms
for LTP are present in aged animals, there are differences
in LTP threshold, which adjusts the relationship between
the strength of LTP-inducing stimulation and the magni-
tude of synaptic growth, resulting in altered susceptibility
to LTP induction.

3.2. Maintenance of LTP

One defining characteristic of LTP, which makes it a
good model of memory, is its extended duration. Depend-
ing on the experimental preparation and induction proto-

w xcol, LTP can last from hours to weeks 13,14,162,165 .
The variability in the duration of LTP may represent
differential recruitment of mechanisms for the consolida-
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w xtion of increased synaptic strength 3,85 , or a shift in the
form of LTP expressed, with each form having a different

w xdecay constant 162,171 . Interestingly, enhanced synaptic
transmission due to experience or induction of LTP decays

wmore rapidly in aged animals 10,14,47,48,100,102,
x130,171 . It is particularly intriguing that LTP decay rates

are correlated with the rate of forgetting of spatial informa-
w xtion 14 . Taken together, the results suggest that the

processes that define the decay of LTP may provide a
model of forgetting.

There are several possible explanations for the in-
creased LTP decay rate observed in aged animals. One
possibility is that the form or type of LTP in the hippocam-
pus changes with aging. Recent evidence indicates that, in
region CA1, there is a shift in the mechanisms for induc-
tion of LTP such that VDCC-LTP contributes more to the
expression synaptic enhancement of aged rats following

w xstimulation to saturate LTP mechanisms 171 . Further-
more, NMDAR-LTP was found to decay more rapidly in
aged animals. Therefore, in cases where a rapid LTP decay
is observed, it is possible that LTP expression is mainly of
the NMDAR-dependent form. However, it is still unclear
why LTP should decay more rapidly with aging.

( )3.3. Induction of long-term synaptic depression LTD

The rapid decay of LTP in aged animals may relate to a
reduced threshold for activity-dependent LTD. In contrast
to LTP, LTD is characterized by a reduction in synaptic

Žefficacy induced by low-frequency stimulation for re-
w x.views, see Refs. 19,66,110 . LTD, like LTP, depends on

Ca2q influx, and induction is blocked or impaired by
wtreatments that block NMDARs or VDCCs 33,56,

x138,143,144 . In contrast to LTP, LTD induction is thought
w 2qx w xto require only a modest rise in Ca 114 . The keyi

evidence linking LTD to limitations in LTP maintenance is
the finding that stimulation parameters for LTD induction
act to decrease or reverse LTP, a process referred to as

w xLTP reversal or depotentiation 107,143 . In this regard, it
may be significant that stimulation-induced LTD and LTP
reversal are among the few forms of neural plasticity that

w xincrease with aging 66,143 . The adjustment in synaptic
modifiability for aged animals results from a reduction in
the threshold for LTD, such that robust LTD is observed

Ž .for lower frequency stimulation patterns i.e., 1 Hz . Simi-
larly, more extensive LTP reversal is observed for brief

Ž .bursts of stimulation e.g., 30 pulses , suggesting a reduc-
tion in the threshold for depotentiation. These results sug-
gest that the threshold for synaptic depression, LTD and
depotentiation, is reduced during aging such that less
neural activity is required to initiate processes which re-
duce synaptic strength. Together, the increased threshold
for LTP induction and decreased threshold for induction of
synaptic depression could underlie the reduction in synap-
tic strength which is characteristic of CA3–CA1 synapses
of older animals.

4. Mechanism for age-related changes in synaptic plas-
ticity

4.1. Altered thresholds for synaptic modification

A popular model for the regulation of synaptic modifi-
cation thresholds proposes that the direction of altered
synaptic efficacy is determined by the level of the post-

w 2qx w xsynaptic Ca during neural activity 6,23,66,67,170 .i

The thresholds for induction of synaptic modification, as
defined by afferent activity, are thought to reflect activity-

w 2qxdependent changes in the level of Ca , which, in turn,i

activate Ca2q-dependent enzymes localized to the synapse
w x114 . These enzymes control the phosphorylation state and
function of other proteins, including glutamate receptors
w x17,21,109,191,192 . The plasticity threshold can be de-
fined according to the frequency–response function for

Žinduction of synaptic modification e.g., see Refs.
w x.56,66,121 . Fig. 1 provides an example of a theoretical
frequency–response function for CA1 hippocampal
synapses of region CA1 in young adults. The function
illustrates two synaptic plasticity thresholds. As neural
activity increases, the threshold for LTD is observed first.
A further increase in neural activity leads to a smooth
transition from net LTD to induction of LTP. The cross-
over point, representing the second threshold, is the LTP

w xthreshold 6,23 .
A basic assumption of these models is that the second

threshold, the cross-over point for synaptic modification,
can ‘‘slide’’, or is modifiable. A shift in the frequency–re-
sponse function to the left would favor LTP induction and
a shift to the right would promote synaptic depression by
expanding the range of frequencies that induce LTD. Thus,

ŽFig. 1. Hypothetical frequency–response functions for young adult solid
. Ž .line and aged dashed line animals. The cross-over point from a net

LTD to net LTP is indicated by the line u. The function for adults is
based on models of synaptic modifiability, which suggest a smooth
transition from LTD to LTP as neural activity increases. The function for
aged rats is based on experimental evidence that indicates a lower
threshold for LTD in aged animals, resulting in an expanded range over
which LTD can be induced. In addition, older animals exhibit a higher
threshold for LTP induction and require more intense stimulation or more
induction sessions in order to achieve saturation of LTP mechanisms.
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plotting changes in synaptic strength as a result of different
conditioning stimulation frequencies can identify changes
in the thresholds for synaptic modifiability. Previous work
indicates that, for young animals, the cross-over threshold
from LTD to LTP is observed within a range of intermedi-

Ž . w xate stimulation frequencies 5–10 Hz 38,57,66,121 . As
discussed above, aged animals appear to exhibit an in-
creased threshold for LTP induction. However, the change
in LTP threshold is not due to a rightward shift in the
entire frequency–response function. Rather than a single
cross-over point, representing a smooth transition between
net LTD and LTP, the frequency–response function for
older animals appears to include a pronounced plateau
region in which no change in synaptic strength occurs for

Ž .intermediate stimulation frequencies Fig. 1 . In addition,
the fact, that more intense stimulation is required to achieve
the same level of LTP, indicates that the rate of rise for the
function is reduced for older animals.

Compared to young adult rats, the frequency–response
function in aged animals exhibits an expanded range over
which LTD can be induced. Again, the change in synaptic
modifiability for aged animals is not due to a rightward
shift in the cross-over point or an expansion of the upper
threshold for LTD induction. Rather, the increased suscep-
tibility to LTD induction results from a leftward shift in
the lower threshold for LTD such that robust LTD is

Žobserved for lower frequency stimulation patterns i.e., 1
. w xHz 66,143 . Thus, changes in synaptic plasticity during

aging can be characterized by a shift in the thresholds for
synaptic modifiability with a reduced threshold for induc-
tion of LTD and an increased threshold for LTP induction.

4.2. Ca2 q homeostatic changes shift synaptic plasticity
thresholds

As noted above, the threshold for synaptic modification
w 2qxappears to depend on the level of the postsynaptic Ca i

during neural activity. Thus, Ca2q regulation would be
expected to play a significant role in determining synaptic
function. The role of Ca2q regulation has long been a
focus of research on age-related neurodegenerative mecha-
nisms and development of potential treatments for demen-

w x w 2qxtia in humans 93,180 . Altered homeostasis of Ca isi

believed to underlie changes in hippocampal pyramidal
w xcells function during aging 54,66,67,94,99,139,180,189 .

w 2qxThe regulation of Ca could be modified by changes ini

a number of mechanisms for handling Ca2q, including
intracellular buffering, extrusion, andror influx of Ca2q.

One version of the Ca2q hypothesis of aging states that
a postsynaptic increase in Ca2q influx through VDCCs
and reduced Ca2q influx through NMDARs modifies the
threshold for induction of Ca2q-dependent synaptic plastic-

w xity, favoring induction of LTD 66,67,144 . In support of
this idea, an antagonist to the L-type VDCC, nifedipine,
blocks induction of synaptic depression, and lowers the

w xthreshold for induction of LTP in aged animals 144 . The

results suggest a pivotal role of L-channels in regulating
synaptic modifiability during aging. While inhibition of
LTD via blockade of Ca2q entry may not be too surpris-
ing, the fact, that Ca2q channel blockade facilitates LTP
induction, is paradoxical, in that LTP induction depends on

w 2qxa substantial rise in Ca . The link between synaptici

potentiation and VDCCs may be mediated by an age-de-
pendent increase in Ca2q-dependent, Kq-mediated hyper-

Ž .polarization including the afterhyperpolarization AHP
w x99,134,144 . Because the duration of the hyperpolariza-
tion, which follows cell discharge activity, can encompass
several hundred milliseconds, it can have profound effects
on voltage-dependent events that occur within this tempo-
ral window. For example, the AHP amplitude can influ-
ence the frequency and pattern of cell discharge activity
w x135 . A large AHP could reduce the frequency of afferent
activity, altering synaptic plasticity and information pro-
cessing, particularly for processes that require high fre-

Ž .quency neural activity e.g., LTP induction .
In addition to altering the pattern of cell discharge

activity, large amplitude AHPs can shunt subsequent depo-
larizing synaptic events, impairing NMDAR-mediated pro-

w xcesses, including LTP induction 166 . In this way, preced-
ing stimuli influence later synaptic events. The extent of
this influence depends on the location of the shunt within
neuronal processes, the interval between the initial afferent
activation or cell discharge, and subsequent afferent activ-

Ž .ity i.e., the frequency of patterned stimulation . Impor-
tantly, the amplitude and duration of the AHP are consis-
tently increased in aged hippocampal pyramidal cells, with

wa peak ;200 ms after the action potential 27,134,
x158,179 . The time course of the AHP would be expected

to influence cell discharge activity and the integration of
synaptic events as the rate of afferent stimulation increases
towards the threshold for induction of synaptic modifica-

Ž .tion e.g., beyond 1–2 Hz . Evidence that an increase in
Kq channel activation during aging regulates the threshold
for NMDAR-dependant LTP induction comes from a study
in which apamin was used to directly block the Ca2q-

q w xactivated K channel 144 . Under these conditions, the
threshold for NMDAR-LTP was reduced in aged rats
without blocking the induction of LTD. The authors sug-
gest that the enhanced AHP of older animals, which is
mediated by increased Ca2q influx through VDCCs, acts
to limit the activation of NMDARs. Thus, a short-circuit-
ing of the synaptic potential response by dendritic Kq

channels or a large AHP may explain the reduced effec-
tiveness of brief stimulation bursts on LTP induction in
aged animals. The results point to changes in Ca2q regula-
tion and the subsequent AHP in mediating the shift in
synaptic plasticity thresholds during aging.

Together, the combination of theoretical approaches
w 2qxconcerning activity-dependent changes in the level Ca i

for synaptic modification with experimental studies pro-
vides the basis for a model describing changes in the
threshold for synaptic plasticity during aging. Fig. 2 sum-
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Fig. 2. Theoretical model relating age-associated changes in Ca2q home-
ostasis and subsequent Ca2q-dependent processes to altered thresholds for
Ca2q-dependent synaptic modifications. During low-frequency activity
Ž . 2q;1–3 Hz , the influx of Ca through VDCCs is increased in the aged,

w 2q xrelative to adult animals, resulting in a moderate rise in Ca . Thei

enhanced Ca2q influx acts to lower the threshold for induction of LTD,
thus increasing the susceptibility to LTD induction. As neural activity

Ž .increases ;5–25 Hz , synaptic activation begins to overlap the large
AHP of aged animals, generated by the preceding stimuli. The larger
amplitude and extended duration of the AHP limit the voltage-dependent
activation of NMDARs, restricting Ca2q influx from this source. The
interaction of synaptic activity with the AHP results in a flattening of the

Ž .curve near the LTD–LTP cross-over point see Fig. 1 . The limitations
imposed on Ca2q influx by the larger AHP increases the threshold for

Ž .LTP induction. During high-frequency activity 100 Hz , the increased
w 2q xrate of activation overcomes the limits imposed by the AHP, and Ca i

is raised to levels needed for LTP induction.

marizes the points of the model which indicate that an
age-related shift in the state of L-channel activation can
lower the threshold for LTD induction by increasing Ca2q

influx during low-frequency neural activity. Normally, an
increase influx of Ca2q would be expected to facilitate
induction of LTP as the neural activity increases. How-
ever, the increased Ca2q through VDCCs acts to augment
the amplitude and duration of the AHP, which, in turn,
raises the threshold for LTP induction. The net result
would be a propensity for induction of synaptic depression,
through activation of Ca2q-dependent enzymes. In this
way, two primary electrophysiological correlates of aging,
the decrease in synaptic strength and an increase in the
AHP, may be causally linked.

4.3. Ca2 q-dependent enzymes regulating synaptic plastic-
ity thresholds

Evidence collected from several laboratories supports
the involvement of Ca2q-activated protein phosphatase and

wkinase cascades in LTD and LTP 60,84,115,117,136–
x138,145,181,190,196 . According to a model proposed by

w x w 2qxLisman 114 , a modest rise in Ca interacts withi

calmodulin to activate the protein phosphatase calcineurin

Ž .to regulate the activity of protein phosphatase 1 PP1 . PP1
is abundant at the synapse, and can inhibit the activity of

Ž 2q .enzymes e.g., Ca calmodulin kinase II; CaM-KII
w x w 2qxthought to influence synaptic strength 114,121 . As Ca i

increases to higher levels, Ca2q-dependent kinases, such as
CaM-KII, are activated to enhance synaptic transmission,
possibly through phosphorylation of glutamate receptors
which, in turn, may increase receptor affinity or conduc-

w xtance 17,21,65 . If the age-related decrease in synaptic
strength is due to alterations in the threshold for synaptic
modification as proposed by the model illustrated in Fig. 2,
then the balance of serinerthreonine protein kinase and
phosphatase activities should also be shifted to favor pro-
tein phosphatase activity. Direct evidence for an age-re-
lated decline in synaptic transmission attributable to a shift
in the balance of enzyme activity came from a study in
which the application of protein phosphatase inhibitors
selectively increased the synaptic response for aged ani-

w xmals 145 . In addition, these researchers demonstrated that
inhibition of protein kinases selectively decreased synaptic

w xtransmission in young adults 145 . This initial discovery,
that a naturally occurring decrease in synaptic strength
with aging is mediated through the same enzyme pathways
that mediate LTP and LTD, establishes the plausibility of
Ca2q-dependent protein phosphorylation as a mechanism
for regulating endogenous changes in synaptic strength.
Furthermore, the results suggest that a shift in the thresh-
old for synaptic modification has relevance for neuronal
function.

A shift in the balance of protein phosphataserkinase
activity as a result of processes proposed in the model
could explain a number of physiological changes which
are characteristic of aged neurons. For example, the char-
acteristic decrease in synaptic strength for aged animals
w x15,47,104,145 could result from a decrease in the phos-

wphorylation state of glutamate receptors 17,21,109,145,
x191,192 which, in turn, reduces the postsynaptic respon-

w xsiveness to transmitter 15 . In addition, the function of
VDCCs is thought to be regulated by phosphorylation state
w x83 and an increase in VDCC activity and subsequent rise

w 2qxin Ca may occur as a result of increased phosphatasei
w x w xactivity 174 or a reduction in kinase activity 61 . More-

over, the other major electrophysiological marker of aging,
an increase in the AHP, could also result from increased

w xphosphatase activity 155,164 or a decrease in kinase
w xactivity 1 .

The implication, illustrated in Fig. 3, is that altered
Ca2q homeostasis during aging may involve a substitution

w 2qxof sources for Ca . Enhanced phosphatase activityi

results in enhanced L-channel function, leading to a further
influx of Ca2q through these channels. In addition, the
influx of Ca2q through NMDARs is decreased due to

w xdephosphorylation of NMDARs 109,191,192 and mecha-
nisms that limit postsynaptic depolarization needed for
NMDAR activation, including augmentation of the AHP
and reduced cell excitability. In turn, changes in Ca2q
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Fig. 3. A shift in the source of Ca2q may underlie age-related changes in
Ca2q homeostasis. The increase in phosphatase activity in aged animals
results in enhanced L-channel function, leading to increased influx of
Ca2q through these channels and an increase in the amplitude of the
AHP. In addition, phosphatase activity acts to dephosphorylate glutamate
receptors including NMDARs. The decrease in glutamate receptor func-
tion and increase in the AHP restrict Ca2q influx through NMDAR
activation.

influx act to maintain the enhanced phosphatase activity.
Under this scenario, the electrophysiological markers of
aging, decreased synaptic strength and an increase in the
AHP, are expressions of postsynaptic Ca2q dysregulation.
In addition, the electrophysiological changes contribute to
the maintenance of dysregulation. Interestingly, recent work

w 2qxsuggests that reducing Ca can differentially increasei
w xsynaptic strength in aged animals 143,144,149 .

Alternatively, age-related neurodegeneration is thought
w 2qxto involve excess Ca due to overstimulation of NM-i

w xDARs 122 . Thus, physiological changes that limit depo-
larization of CA1 cells, including a decrease in synaptic
strength and an increase in the AHP, may reflect neuropro-

w 2qxtective mechanisms that limit the rise in Ca by re-i

stricting NMDAR activation. In this regard, changes in
biological markers of aging may represent compensatory
mechanisms that attempt to limit the extent of Ca2q

w xdysregulation associated with the aging processes 11,63 .

5. Role of altered Ca2H-dependent synaptic plasticity in
age-related cognitive decline

5.1. Correlational studies

Provided that studies of synaptic plasticity promote
insight into memory mechanisms, the model concerning
age-related changes in the threshold for hippocampal
synaptic modification may explain, in part, certain aspects
of cognitive decline observed for hippocampal-dependent
tasks. For example, it can be concluded that because aged
animals can acquire hippocampal-dependent tasks, the fun-

damental mechanisms that underlie information storage
may not differ greatly across age groups. Rather, the
slower rate of learning and increased rate of forgetting
indicate a more subtle change in memory processes such
as storage or maintenance mechanisms. Correlational anal-
ysis has been employed as an initial method for exploring
the biological mechanisms for age-related changes in cog-
nitive function. A number of these studies address neuro-
logical measures that are relevant to the proposed models
of synaptic plasticity in memory. For example, age-related
memory deficits are correlated with impaired induction of

w xsynaptic potentiation 48,98 , impaired duration of LTP
w x w x9,10 , impaired PKC translocation 37,62,154 , and re-

w xduced synaptic strength 16 . The model in Fig. 2 describes
mechanisms for increasing the threshold for induction of
synaptic enhancement through an enhancement of the AHP.
In fact, the magnitude of the AHP is inversely related to

w xlearning during aging 55 . In this regard, it is also impor-
tant to note that learning is associated with neurological
changes that are opposite that observed in aged memory-
impaired animals such that learning is associated with an

w xincrease in synaptic strength 64,65,80,159 and a reduc-
w xtion in the AHP 53,185 . Thus, if the mechanisms that

regulate experience-dependent neural plasticity are com-
promised, then behavioral training may actually enhance
the correlation between age-related changes in neurologi-

Ž w x.cal measures and memory function e.g., see Ref. 75 .
The shift in mechanisms regulating synaptic modifiabil-

ity with aging could limit experience-dependent neuronal
plasticity necessitating additional training sessions for aged
animals to acquire hippocampal-dependent tasks. Further-
more, a reduced threshold for induction of LTD and LTP
reversal could act to reverse or erase experience-dependent
changes. Indeed, experience-dependent growth in the
synaptic response decays more rapidly in aged animals
w x172 ; rapid forgetting in aged animals is associated with a

w xrapid decay of LTP 14 and increased susceptibility to
Ž .LTD induction unpublished observations . Furthermore,

an increase in L-channel function, which is thought to
w xunderlie the shift in the threshold for LTD 66,67,144 , is

correlated with and age-related impairment on the Morris
w xwater maze 179 . Together, the results suggest that mem-

ory function and neurological correlates of age-related
memory impairment may be manifestations of the same
neural plasticity processes activated by experience, and
age-related memory deficits may be due to an inability to
initiate or maintain these neural plasticity processes.

5.2. Impaired LTP induction is associated with learning
deficits

The mechanisms hypothesized to regulate the threshold
for synaptic plasticity can be altered by pharmacological
treatments. A more convincing argument for the model of
age-related changes in synaptic plasticity threshold as a
mechanism underlying memory deficits requires experi-
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mental tests of specific predictions set out in the model. A
major prediction of the model is that treatments that
facilitate LTP induction or lower the threshold for LTP
induction will improve learning in aged animals. As noted
above, pharmacological or genetic manipulations that im-
pair LTP induction impair acquisition of hippocampal-de-
pendent behavior. The impairment is thought to result from
blockade of the mechanisms that underlie experience-de-

w xpendent synaptic plasticity 26,64,131 . A major point for
regulation of synaptic plasticity is Ca2q entry through the
NMDAR. Pharmacological manipulations of the glycine
site of the NMDAR act to modulate channel function and

w xinfluence the susceptibility to LTP induction 147 . Fur-
thermore, agonists of this site have been successfully
employed to improve learning in young and aged animals
w x7,18,88,183,184 . Together, these studies support the pre-
diction that altered susceptibility to LTP induction will
shift learning ability.

One of the central elements of the plasticity threshold
model is that the age-related increase in the magnitude and
duration of the Ca2q-dependent, Kq-mediated AHP is
responsible for impaired LTP. The hypothesis is that the
large hyperpolarizing response will limit the ability to
activate NMDARs, particularly for stimulation patterns
that are near the threshold for LTP induction. Confirmation
of a link between the amplitude of these Kq currents and
age-related changes in susceptibility to LTP comes from
studies using Kq channel blockers. Apamin, a toxin from
bee venom, directly blocks the Ca2q-activated, Kq chan-
nel, reduces the AHP in hippocampal neurons from aged

w xrats, and lowers the threshold for induction of LTP 144 .
In accord with predictions from the model, that facilitation
of LTP will facilitate learning, apamin treatment increases

w xthe rate of acquisition in adults 45,46 and improves
w xmemory 20 . Currently, it is unknown whether apamin can

improve performance in aged animals.

5.3. Increased susceptibility to LTD induction is associated
with memory deficits

A second prediction of the plasticity threshold model is
that increased susceptibility to LTD leads to impaired
retention, such that treatments that block the rapid decay of
LTP or block LTP reversal will facilitate retention. NM-
DAR blockers can inhibit induction of LTD and LTP

w xreversal 143 , and antagonism of the NMDAR, after in-
w xduction of LTP, inhibits the decay of LTP 12 . The fact,

that NMDA antagonists block activity-dependent LTP re-
versal and the decay of LTP, suggests that the decay of
LTP may be due to an active mechanism. Interestingly,
several studies have observed that, following training,
treatment with NMDAR antagonists can slow forgetting
w x129,142,160 . Using the water-escape task, young adult
and aged rats can be trained in 1 day to discriminate the
spatial location of a hidden platform. However, in contrast
to young adults, aged animals exhibit rapid forgetting of

w xthe spatial location over a 24-h period 63,116,142 . How-
ever, in aged rats, injection of the non-competitive NM-

Ž .DAR antagonist, MK-801 0.05 mgrkg , immediately fol-
lowing training for spatial discrimination, improved reten-

w xtion tested 24 h later 142 . Normally, NMDAR blockade
is associated with blockade of LTP and impaired learning.
Therefore, it is possible that the MK-801 blocked retroac-
tive interference of memory, due to subsequent learning
over the 24-h period. However, improved retention was
not observed following a posttraining injection of scopo-
lamine, another compound known to inhibit learning. The
results suggest that improved retention was specific to
NMDAR function and not due to blockade of retroactive
interference of memory. The authors hypothesized that
amelioration of rapid forgetting in the aged animal follow-
ing NMDAR blockade are due to inhibition of LTD-like
processes, which are enhanced during aging.

Importantly, the memory-enhancing effects are ob-
served for lower doses of NMDAR antagonists, suggesting
that the effects are due to a reduction in receptor activity

w xrather than complete receptor blockade 128 . The require-
ment for limiting NMDAR activity may explain why adult
animals treated with the low-affinity non-competitive NM-
DAR antagonist, memantine, exhibit improved perfor-

w xmance on the spatial version of the water-escape task 12 .
In this regard, it is important to note that, unlike other
NMDAR antagonists, memantine treatment does not block
LTP induction, and acts to increase the durability of LTP
w x12,30 . The benefits of memantine appear to be due to the
fact, that memantine is a strongly voltage-dependent, low-
affinity NMDAR antagonist and, as such, has properties
similar to Mg2q, reducing rather than blocking NMDAR

w x 2qactivity 153 . Interestingly, increasing the level of Mg
in the plasma also improves cognitive function in aged rats
w x 2q103 . Furthermore, a shift in the Mg level can alter

w xsynaptic function in an age-dependent manner 104 , in-
cluding amelioration of differences in susceptibility to

w xLTD induction 143 . The data are consistent with the idea
that activity-dependent processes underlie forgetting. How-
ever, the corollary prediction remains to be tested, whether
enhanced NMDAR function, following training, can in-
crease forgetting. Thus, the model of altered synaptic
plasticity thresholds may contribute to our understanding
of the qualitative features of memory improvement or
impairment following pharmacological treatments.

5.4. Altered synaptic plasticity thresholds underlie deficits
in learning and memory

Physiological studies indicate that, for aged animals,
L-channel function is fundamental in regulating neuronal

w xexcitability 27,135,179,182 and adjusting synaptic plas-
w xticity thresholds 144 . Blockade of the L-channel in aged

rats ameliorates the increased susceptibility to LTD and
lowers the threshold for NMDA-dependent LTP. There-
fore, according to the model of altered synaptic plasticity
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thresholds in mediating age-related memory deficits, L-
channel blockade should improve both learning and reten-
tion. In aged animals, pretraining treatment with L-channel
antagonists has been shown to improve learning on hip-
pocampal-dependent tasks including eye blink condition-

w x w x w xing 49 , maze learning 97 , spatial-reversal learning 124 ,
w xand working memory 106,169 . L-channel antagonists,

such as nimodipine, also improve retention when treatment
w xis delivered after training 161,175 . While anatomical

evidence suggests that chronic treatment with L-channel
antagonists may be beneficial for synaptic transmission
w x43,125 , no study has demonstrated that L-channel antago-
nists increase basal synaptic strength in aged animals.

Research on treatments that promote L-channel activity
supports the idea that changes in L-channels underlie both
the shift in synaptic plasticity and the decline in hippocam-
pal-dependent memory. Increased L-channel function due
to L-channel activators, stress, or glucocorticoids, increase
the AHP amplitude, reduce the susceptibility to LTP induc-
tion, facilitate induction of LTD, and impair learning on

Ž w x.spatial discrimination tasks for a review, see Refs. 66,95 .
Interestingly, proteins related to b-amyloid, a protein asso-
ciated with Alzheimer’s disease, also increase Ca2q chan-

w x 2qnel activity 5,68,108 . The change in Ca channel activ-
ity may explain the ability of b-amyloid to influence LTP

w xinduction 41,140,195 , alter the frequency–response func-
w x w xtion 89 , and decrease synaptic strength 40 . Finally,

injections of b-amyloid into the brain impair memory
function, in a manner unrelated to neurodegeneration and

w xcell loss 4,31,176,178 . Together, the results support the
idea that age-related memory impairments are due to al-
tered Ca2q homeostasis and changes in Ca2q-dependent
processes involved in regulating synaptic modifiability.

6. Relationship of synaptic plasticity threshold to other
hypotheses of brain aging

Cognitive deficits and brain aging likely are not due to
a single factor. Indeed, because of the multiple steps
within the model, from Ca2q entry to synaptic plasticity, it
is likely that other neurological markers of brain aging will
interact with these processes. Thus, a shift in synaptic
plasticity thresholds may underlie neural anatomical corre-

Ž w x.lates of brain aging e.g., see Refs. 75,76 . Differences in
specific neurotransmitter systems have been long regarded

w xas indications for age-related memory decline 42,168 .
Changes usually involve a loss of a marker for specific
neurons that release the transmitter of interest or a loss of
postsynaptic responsiveness to the transmitter. The AHP
can be modulated by a number of extraneous factors and is
a key target for several neurotransmitters including acetyl-
choline, serotonin, dopamine, norepinephrine, and gluta-

w xmate metabotropic receptor activation 2,105,156,187,198 .
Moreover, these transmitters can influence the susceptibil-
ity to synaptic modification possibly through regulation of

w xthe AHP 35,36,86,90,91,148,186 . In some cases, the
reduction in the AHP may be a secondary outcome to

w xtransmitter-mediated inhibition of L-channel function 35
or altered activity of protein kinases and protein phos-

w xphatases 156,157,167,187 . Nevertheless, the ubiquitous
nature of AHP regulation implies the importance of this
Ca2q-dependent process. Barring dysfunction of the under-
lying Kq channel, the redundancy of pathways for regulat-
ing the AHP would seem to suggest that surviving neuro-
transmitter systems may compensate for a change in any
single transmitter system. However, reports appear to indi-
cate that aging is associated with a decrease in hippocam-

w xpal responsiveness to multiple neurotransmitters 8,22,173 ,
signaling an overall reduction in the capacity to regulate
the AHP and perhaps ultimately, synaptic plasticity.

Finally, many of the age-related changes observed in
the hippocampus would be expected to act in concert to
decrease transmission through this structure. A loss of
neural substrate, a decrease in synaptic strength, an in-
crease in the AHP with commensurate changes in the
activity and pattern of cell firing, combined with a loss of
neural modulators, would limit the ability to transfer infor-
mation through the hippocampus. A decrease in informa-
tion transfer would, in turn, reduce the influence of the

w xhippocampus on cognitive processes such as memory 70 .

7. Conclusions

Aging is associated with a decline in hippocampal-de-
pendent memory, and the general hypothesis, that age-re-
lated memory deficits are associated with changes in the
hippocampus, has been widely confirmed. A challenge for
the Ca2q hypothesis of brain aging is to determine the key
elements which relate altered Ca2q homeostasis with
memory impairment. This review lays out a framework for
linking age-related changes in Ca2q regulation to cognitive
decline through altered thresholds for synaptic modifiabil-
ity. The relationship between synaptic plasticity and mem-
ory function is far from clear; however, the available data
suggest that aged memory-impaired animals exhibit
changes in hippocampal morphology, biochemistry and
physiology that are linked to synaptic plasticity. In some
cases, the age-associated changes may manifest as a direct
result of altered synaptic plasticity processes. For example,
the characteristic decrease in synaptic strength may be due
to increased phosphatase activity through an LTD-like
process.

In other cases, changes may involve a reorganization of
mechanisms involved in regulating synaptic modifiability,
such as the loss of neurotransmitter, increased L-channel
activity or growth of the AHP and associated reduction in
neural excitability. Research indicates that during aging,
there is a shift in the mechanisms that regulate the induc-
tion or maintenance of Ca2q-dependent synaptic modifica-
tion rather than the loss of mechanisms for expression of
synaptic plasticity. Thus, experiments directed at manipu-
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lating the regulatory mechanism for synaptic plasticity are
expected to reveal the nature of the interaction between
synaptic plasticity and memory.
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