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Memory Function and Brain Glucose Metabolism

S. Hoyer

Memory formation and memory retrieval are subject to complex
cellular and molecular processes. Increasing evidence exists that
neuronal glucose metabolism and its control by the insulin signal
transduction cascade are the main players in such processes. Acet-
ylcholine synthesis depends on the availability of acetyl CoA,
provided from glucose breakdown, and insulin, which controls the
activity of acetylcholine transferase. ATP is necessary for both sy-
naptic activity and plasticity. This is also true for APPs, the secreted
derivative of APP. Trafficking of the latter protein is controlled by

insulin and insulin receptor function also acting on activity-regula-
ted cytoskeleton-associated gene expression, which induces bio-
chemical stimuli involved in synaptic activity and plasticity. Any
damage in neuronal glucose metabolism and its control may, there-
fore, cause disturbances in memory function - as is found for ex-
ample in sporadic Alzheimer’s disease. Mimicking these metabolic
and behavioral abnormalities in experimental animals, it was found
that EGb 761°® (definition see editorial) shows beneficial effects
both on brain glucose and energy metabolism and on behavior.

Introduction

Numerous studies have provided clear evidence that memory
function is highly dependent on the cholinergic system’s func-
tionality [9]. The degeneration of forebrain cholinergic projec-
tions has been demonstrated to be one of the most salient neu-
robiological and/or neuropathological features of both normal
aging and sporadic Alzheimer’s disease [6,7,14,63], although
alterations in other neurotransmitter systems may also con-
tribute to memory function [45,49,57]. Besides its effect on
memory function, acetylcholine, together with norepinephrine,
acts on the regulation of cerebral microvessel diameter in a
concerted action in maintaining the supply of substrates, such
as oxygen and glucose, to the brain [1,59,60]. In the brain,
acetylcholine is formed from the energy-rich compound
acetyl-CoA, which is generated by oxidation of pyruvate, the
glycolytic end product [13]. The activity of the acetylcholine
formation catalyzing enzyme, acetylcholine transferase, is con-
trolled by insulin [34]. In this article, it is especially focused on
the role of cerebral glucose metabolism and the function of
insulin in the brain regarding memory capacity under normal
and pathological conditions.

Insulin, Insulin Receptor and Glucose and Energy Metabolism
in Normal Brain

The central significance of glucose as the major nutrient of the
brain, its metabolism and control, have been well documented
[24,26,27]. The derivative acetyl-CoA is used for acetylcholine
formation (see above) for intracellular formation of cholesterol,
which is the main sterol in membranes, and mainly for further
oxidation to ATP that maintains most cellular and molecular
functionalities. Therefore, the work of the endoplasmic reticu-
lum and Golgi apparatus is highly dependent on a pH maintained
at 6, which is ensured by an ATP-driven H*-pump [53,61].

There is increasing evidence that neuronal glucose metabolism is
antagonistically controlled by insulin and cortisol. Insulin in the
brain originates from the pancreatic p-cells, but is also partially
formed in pyramidal neurons such as those in the hippocampus,
prefrontal cortex, entorhinal cortex and the olfactory bulb, but
not in glial cells. Insulin receptors are widely distributed in the
brain, with the highest densities in the olfactory bulb, hypothala-
mus, cerebral cortex and hippocampus (for details, see [21]). Insu-
lin stimulates neuronal insulin receptor function [20,29]. In con-

Affiliation

Dept. of Pathochemistry and General Neurochemistry, Institute of Pathology of the University,

Heidelberg, Germany

Correspondence

Dr. med. Siegfried Hoyer - Dept. of Pathochemistry and General Neurochemistry -
Institute of Pathology of the University - Im Neuenheimer Feld 220/221 - 69120 Heidelberg - Germany

Bibliography

Pharmacopsychiatry 2003; 36 Suppl 1: S62-S67 - © Georg Thieme Verlag Stuttgart - New York - ISSN 0936-9589



trast, both glucocorticoids and catecholamines have been reported
to cause insulin receptor desensitization [15,18]; the former have
been shown to have drastic effects on glucose metabolism [47].

Effects of Insulin and Insulin Receptor on Amyloid Precursor
Protein (APP) Metabolism and Tau Phosphorylation

Full-length APP normally undergoes processing by as yet undetect-
ed enzymatic activity known as ‘o-secretase,” which cleaves the
holoprotein precluding the formation of fA40 and pA42, the amy-
loidogenic derivatives. More detailed recent studies have given rise
to the assumption that APP trafficking in the endoplasmic reticu-
lum and Golgi apparatus is controlled by insulin and insulin recep-
tor tyrosine kinase [12,56]. Insulin increased extracellular levels of
the secreted form of APP (APPs) and the contrations of both BA40
and BA42 dose-dependently, and reduced the intracellular concen-
trations of these three derivatives. The insulin-mediated reduction
of intracellular fA40 and BA42 was found to be the result of an in-
creasing egress from the Golgi apparatus and the trans-Golgi net-
work. Interestingly, the insulin receptor tyrosine kinase activity
appeared to be essential for the effect of insulin on A trafficking
- that is, reduction of both intracellular fA40 and $A42. Inhibition
of the insulin receptor function resulted in adverse effects - reten-
tion of APPs, BA40 and BA42 within the cell, and reduction in the
extracellular milieu. Interestingly, recent evidence was provided
that accumulation of intracellular BA42 may play a direct pathoge-
netic role in sporadic Alzheimer’s disease [16,62].

Insulin has been shown to regulate the phosphorylation state of
tau protein by regulating the activity of phosphorylating en-
zymes. Insulin concentration deficit increased the activity of gly-
cogen synthase-3 kinase [22], which was found to cause tau-hy-
perphosphorylation [38]. ATP acts in a similar way; reduction of
ATP activates both protein kinases erk36 and erk40 [51], which in
turn causes tau-hyperphosphorylation [5].

Interrelationship between Memory and Brain Glucose
Metabolism (Table 1)

A. Normal condition
As mentioned above, synthesis of the memory enhancing and
memory stabilizing neurotransmitter, acetylcholine, from the

glucose metabolism compounds acetyl-CoA and choline is con-
trolled by insulin [34]. The binding of acetylcholine to its mus-
carinergic m1 and m3 receptors stimulates the formation of
APPs, the amyloid precursor protein in its secreted form [43],
which exerts multifold effects. APPs modulates synaptic plastici-
ty in the hippocampus [31] and promotes dendritic outgrowth
[39]. Together with the increase in synaptic density, the morpho-
logic basis is formed to enhance memory capacity [41,50]. Be-
sides acetylcholine, insulin enhances the extracellular levels of
APPs as a consequence of its increasing egress from the Golgi ap-
paratus and the trans Golgi-network in a dose-dependent fash-
ion [12,56]. It is not yet clear whether or not the secretion of
APPs from the cell mediated by acetylcholine and insulin occurs
independently or in a concerted action. The energy-rich phos-
phate, ATP, strengthens synaptic transmission [30], and is itself
a very rapid-acting extracellular neurotransmitter [4].

Functionally, synaptic plasticity forms the most important site of
neuronal plasticity. Recent evidence exists that both synaptic ac-
tivity and plasticity depend on biochemical stimuli that were
found to be induced by the expression of the activity-regulated
cytoskeleton-associated gene regulated by the insulin and insu-
lin receptor signal transduction cascade [17,33,44,58,64].

B. Pathological condition

The most frequent pathologic condition associated with memory
disturbances, dementia, is sporadic Alzheimer’s disease. Early
and severe abnormalities were found in the cerebral glucose me-
tabolism, which worsened in parallel with dementia symptoms
(for review, see [24]). As a consequence, the synthesis of acetyl-
choline in the presynaptic neuron is markedly diminished [55],
and a fall of ATP production from glucose by around 50% in the
beginning of sporadic Alzheimer's disease occurs, declining
thereafter throughout the course of the disease [23]. The abnor-
mality in neuronal glucose metabolism is assumed to be caused
by a disturbance in the control of this metabolic pathways at the
level of the insulin signal transduction [11,25]. Both the deficit in
ATP availability and the abnormality in the insulin signal trans-
duction cascade may have a severe impact on APP trafficking
[12,61] causing a reduction in extracellular APPs concentration
[12,56], thereby reducing synaptic activity and morphologically
reducing neuronal activity (for review [52]). In all probability,
the disturbance in the insulin signal transduction cascade reduc-
es the expression of the activity-regulated cytoskeleton-asso-

Table1 Effects of glucose on memory

Acetylcholine synthesis ATP formation APP trafficking
. . Synaptic APPs .
Acetylcholine function acitivity BA4 function

Activity-regulated cytoskeleton- associated gene expression
Synaptic activity and plasticity

Acetyl-CoA is generated from glycolytic glucose breakdown [13]. Acetyl-CoA and choline form acetylcholine under insulin control [34]. Acetylcholine stimulates the formation of the secreted
form of the amyloid precursor protein [APPs] after binding to acetylcholinergic muscarinergic m1- and m3-receptors [43]. APPs has been found to promote dendritic outgrowth [39] and to
increase synaptic density, thus enhancing memory capacity [50].

In the normal brain, ATP is formed from glucose only [23]. In the present context, ATP has two important functions - first, it acts as a rapid extracellular neurotransmitter [4] and second, it
maintains synaptic transmission [30].

Full-length APP normally undergoes processing by an enzymatic activity known as a-secretase (for review, see [54]). However, recent findings give rise to the assumption that APP trafficking is
controlled by insulin and the tyrosine kinase insulin receptor. Insulin increases the extracellular levels of APPs, BA40 and fA42, dose-dependently, and reduces the intracellular concentrations
of all three APP derivatives [12,56]. Besides the beneficial effects of APPs (see text), the APP derivative BA40 has been found to promote cell proliferation and tyrosine phosphorylation in
nanomolar concentration [37].

The insulin and insulin receptor signal transduction cascade has been found to induce the expression of the activity-regulated cytoskeleton-associated gene, which in turn mediates biochem-
ical stimuli necessary for both synaptic activity and plasticity for memory formation and for memory function [17,33, 44, 58, 64].
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ciated gene, which mediates biochemical stimuli necessary for
both synaptic activity and plasticity for memory formation and
for memory function [17,33,44,58,64].

Thus, the brain glucose/energy metabolism and its control by the
regulatory insulin signal transduction cascade participate great-
ly in diverse memory processes. Disturbances in this central me-
tabolism may be most important mechanisms in the develop-
ment of dementia.

In vivo experimental approach

To test the relationship between neuronal glucose metabolism
and its control on the one hand, and behavior on the other, an in
vivo animal model was established in which the neuronal insulin
signal transduction cascade was damaged by intracerebroventri-
cular application of the diabetogenic substance streptozotocin
(STZ). STZ is known to inhibit the phosphorylation of tyrosine ki-
nase of the insulin receptor [32]. At the neuronal receptor level,
upregulation was observed in the hippocampus [36]. Regional
glucose consumption was found to be reduced in 17 out of 35
brain structures, with the parietotemporal cortex, the entorhinal
cortex and hippocampal subfields being most markedly affected
[10]. The activities of glycolytic key enzymes were clearly dimin-
ished in cerebral parietotemporal cortex and in hippocampus
[46]. The reduction in both glucose consumption and glycolytic
flux caused a drop in the cellular energy pool after short-term
and long-term effects of STZ slightly but permanently deteriorat-
ing over time [35,42] (Fig.1). In addition to the glucose and ener-
gy metabolism, a cholinergic deafferentiation along with a re-
duced activity of acetylcholine transferase have been observed
[19,48]. These abnormalities in the cerebral glucose and energy
metabolism and related metabolism were found to be accompa-
nied by disturbances in learning, memory and cognitive ability
[2,3,40,48]. In long-term studies, the abnormalities in learning,
memory and cognitive ability deteriorated progressively [35]
(Fig. 2).

Ginkgo biloba extract (EGb 761®) exerts beneficial effects on
neurons after hypoxic damage [8]. Studies performed on strep-
tozotocin-damaged rats clearly showed a return to almost com-
pletely normal values of cerebral energy metabolism (Table 2),
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Fig.1 Significant percent changes of energy rich phosphates after a
triplicate intracerebroventricular injection of streptozotocin (STZ) 90
days after the first treatment. ATP, adenosine triphosphate; CrP, crea-
tine phosphate; ADP, adenosine diphosphate; ~P, sum of available
phosphate; p < 0.05.
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Fig.2 Effects of intracerebroventricular streptozotocin (STZ) on re-
tention passive avoidance behavior in rats. STZ was administered first
18 days before training. STZ did not affect the step through latency (R
17). Foot shock was applied at day R 18. Retention tests were conduct-
ed at days R 19, R 40 and R 80. White columns represent controls. *p <
0.05.

whereas deficits in learning, memory and cognitive ability
were partly compensated [28] (Fig.3). Additionally, EGb 761®
shifted STZ-induced abnormalities in glucose transporters and

insulin binding to its receptor to normal ranges [36]
(Fig.4,5,6).
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Fig.3 Passive avoidance behavior after a triplicate intracerebroventri-
cular STZ application and under treatment with EGb 761®. Initially, no
differences were found between the experimental groups (R 17).
EGb 761® improved latency significantly after icv STZ damage as com-
pared to icv STZ (see also Fig. 2). PA 1, passive avoidance test at day R
19; PA 2, at day 40; PA 3, at day 80; a, p <0.05 between CSFand STZ; b,
p < 0.05 between STZ and STZ + EGb 761%; ¢, p < 0.06 between R 19
and R 40/80.

Hoyer S. Memory Function and... Pharmacopsychiatry 2003; 36 Suppl 1: S62-5S67



Table2 Energy-rich compounds in cerebral cortex

ATP ADP ATP/ADP crP GTP P
CSF 248 £+ 0.33 0.42 + 0.07 6.05 + 1.17 5.76 + 0.99 0.62 + 0.08 1.31+0.20
STZ 1.90 + 0.29* 0.77 £0.217 2.69 + 0.89% 4.85+0.62° 0.47 + 0.06° 1.07 £ 0.14°
CSF +EGb 761® 2.20 + 0.26° 0.49+0.16 4.88 + 1.47* 5.17 + 0.85 0.56 + 0.04° 1.17 +£0.16
STZ + EGb 761® 2.13£0.39*° 0.68 + 0.24° 3.52 £ 1.48° 5.36 + 0.94° 0.51 + 0.09° 1.19 + 0.20°

Mean values and standard deviations of energy rich phosphates in parietotemporal cerebral cortex of rats after icv STZ and treatment with EGb 761%; 2 p < 0.05 vs CSF; ® p < 0.05 between STZ

and STZ + EGb 761.
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Fig.4 Quantitation of autoradiography of [*H]cytochalasin-B binding to
total glucose transporter in hippocampal brain sections from good per-
forming (GP) rats. Data are expressed as percentage change over control
values and represent the mean + SEM obtained from five animals. STZ,
streptotozotocin-treated rats; EGb671, rats treated with EGb 761®; STZ-
EGb761®, STZ-damaged rats treated with EGb 761® (see also Table 1). *p
<0.05 vs. control; §p < 0.05 vs. STZ-treated group, two-tailed Student’s t-
test (from [36]; with permission of Springer Publ. Vienna).
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Fig.5 Quantitation of autoradiography of [*H]cytochalasin-B binding
to total glucose transporter in hippocampal brain sections from poor
performing (PP) rats. Data given are expressed as percentage change
over control values and represent the means + SEM obtained from
five animals. STZ, streptozotocin-treated rats; EGb 761°®, EGb 761°
Ginkgo biloba extract; STZ-EGb 761®, STZ-damaged rats treated with
EGb 761% (see also Table 1). *p < 0.05 vs. control; §p < 0.05 vs. STZ-
treated group, two-failed Student’s t-test (from [36]; with permission
of Springer Publ. Vienna).

These results from this pathophysiological model of both behav-
ior and oxidative brain metabolism underscore the beneficial ef-
fect of EGb 761°® on these abnormalities, which represent the de-
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Fig.6 Quantitation of autoradiography of ['?*]Insulin receptor binding
in hippocampal brain sections from good performing (GP) rats. Data are
expressed as percentage change over control values and represent the
mean + SEM obtained from five animals. STZ, streptotozotocin-treated
rats; EGb 761®, rats treated EGb 761® Ginkgo biloba extract; STZ-
EGb 761%®, STZ-damaged rats treated with EGb 761% (see also Table 1).
*p < 0.05 vs. control; §p < 0.05 vs. STZ-treated group, two-tailed Stu-
dent’s t-test (from [36]; by permission of Springer Publ. Vienna).

fective sites in dementia. Our tentative conclusion is that
EGDb 761® may act in a regulatory manner on the function of the
neuronal insulin receptor.
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