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Bruce L. McNaughton

Department of Psychology, University of Arizona, Tucson, Arizona 85749

When this stimulation of the hippocampal gyrus was carried out, the hippocampal formation
and amygdaloid nucleus were still intact. But the rest of the anterior half of the temporal
lobe had been removed. The fact that stimulation could still produce a flash-back of former
experience would support the suggestion that comes from other evidence (Milner and Penfield,
1958) that the hippocampus of the two sides is, in fact, the repository of the ganglionic patterns
that preserve the record of the stream of consciousness. If not the repository, then each
hippocampus plays an important role in the mechanism of reactivation of that record (Penfield
and Roberts, 1959, Speech and brain mechanisms. Princeton, NJ: Princeton University Press).

INTRODUCTION

Reminiscence can be defined subjectively as the process of “calling into mind”
a previous event or episode. This seems to occur mainly during periods when
the brain is not otherwise fully preoccupied with the processing of external
inputs. Some basic questions in the neurosciences concern the objective de-
scription of what goes on in the brain during reminiscence, what mechanisms
support this form of retrieval, and what is its biological function. A reasonable,
although unproven, starting assumption is that during reminiscence, in some
part or parts of the brain, patterns of neuronal activity resembling those which
occurred during the corresponding experience are reactivated (e.g., Farah,
1995). Some form of reminiscence, or memory trace reactivation during “off-
line” periods such as sleep, has been thought to play an important role in
the process of memory consolidation, through which episodic information is
incorporated into the brain’s knowledge base (Marr, 1971; McClelland & Mc-
Naughton, 1995; Buzsaki, 1989). Among the earliest neurophysiological evi-
dence of such off-line reactivation of previously experienced patterns of neural
activity was the observation by Pavlides and Winson (1989) that hippocampal
place cells which had been robustly active during a period of waking behavior
were selectively more active during a subsequent episode of sleep. Because
only single neurons were recorded in these studies, however, it was not possible
to conclude that the actual patterns of activity were necessarily being recapitu-
lated, and hence one could not be sure that mnemonic representations of the
experience were being reinstated. In 1994, Wilson and McNaughton reported
that when groups of hippocampal CA1 pyramidal neurons were simultaneously
recorded from, those cells which tended to fire together during behavior, as a
consequence of the overlap of their place fields, had an enhanced tendency to
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fire together during subsequent slow wave sleep (SWS). By studying the tempo-
ral asymmetries of pairwise cross-correlation functions of simultaneously re-
corded cells, Skaggs and McNaughton (1996) found that some information
about the sequences of activation within the recorded hippocampal neural
ensemble during behavior was also preserved during sleep. More recently, Qin
et al. (1997) have reported that the reinstatement, in sleep, of patterns of
neuronal discharge correlation during behavior also occurs in both neocortical —
neocortical cell pairs and hippocampal—neocortical pairs. Thus, it appears that
some form of coherent reactivation of memory traces and trace sequences
occurs over much of the brain during SWS. These results as a whole provide
neurophysiological evidence for both of Hebb’s (1949) central constructs, the
“cell assembly” and the “phase sequence.” Thus far, multiple single-neuron
recording studies have used as the dependent variable correlations over time
in the activities of pairs of cells (Abeles & Goldstein, 1977; Aertsen et al.,
1989; Gerstein et al., 1985; Palm et al., 1988). This approach has been greatly
facilitated by the ability to record from many (up to 150) cells at once, because
the number of pairs available for correlation analysis increases in proportion
to the square of the number of cells recorded [N(N-1)/2]; however, the pairwise
activity correlation approach only indirectly assesses the variable of interest,
which is the patterns themselves, and as discussed below has several severe
limitations. Thus, more refined approaches need to be explored.

Beginning with Hebb (1949) and leading up to modern theories of “attractor”
dynamics in neural networks (Amit, 1989; Hopfield, 1982), much has been
written about the possible synaptic mechanisms and network architectures
that could lead to memory reactivation. Less has been said, however, about
how we might detect and quantify this process experimentally or of the possible
complexities inherent in this effort. This article explores, in the light of the
meager body of available data, some of the conceptual issues involved in the
study of memory reactivation at the neurophysiological level, in particular the
use of spike train correlation techniques and the possible inferences that can
be drawn from them, and the population or state vector approach. The goal of
this exercise is not to achieve any mathematically rigorous conclusions, but to
outline the scope of the problem and to point out some possible solutions.

WHAT IS MEMORY REACTIVATION?

What is implied by the concept of memory reactivation? It is generally as-
sumed that the internal representation of an instantaneous experience is based
on a unique distribution (mathematically, a vector) of neural spiking activity
within the CNS and that the memory of this experience results from the
reinstatement of some facsimile of the original pattern, in the absence of the
corresponding input. Similarly, the experience of and memory for a sequence
of events are based on the establishment and reactivation of a unique sequence
of activity vectors, what Hebb (1949) referred to as a phase sequence. A vector
of spike rates estimated over some small interval is not the only possible
definition of a perceptual event or even necessarily the best definition. Indeed,
there are examples of differences in auditory perception resulting from tempo-
ral differences in inputs that are shorter than the duration of a single spike.
It is also possible that the smallest unit of mnemonic representation is not an
instantaneous pattern of spiking activity, but rather a short phase sequence.
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Nevertheless, spike rate vectors are a useful way to start, and to apply them,
it is necessary select some “appropriate” time window (At) over which to inte-
grate the spike activity. In a noisy system, there is always a tradeoff between
temporal resolution and accuracy in the estimate of firing rate, particularly
in systems like the hippocampus, in which information is represented by sparse
activity patterns (Marr, 1971; McNaughton and Morris, 1987). For example
when reconstructing a rat’s spatial location from the place cell population code,
there tends to be a U-shaped function for error versus At with a minimum
around 0.5 s (Wilson & McNaughton, 1994; Zhang et al., 1997). One definition
of an appropriate time scale is one which minimizes the mean difference be-
tween adjacent vectors; however, even this might be problematic. For example,
phase sequences in the hippocampus are oscillatory at the time scale of the
theta rhythm (O’Keefe & Recce, 1993; Skaggs & McNaughton, 1995). In other
words, within each theta cycle, the internal representation of position begins
at the rat’s current location and then moves, through a short sequence of
locations, to a point some distance ahead (typically about 10—20 cm) of the
rat. At the end of each theta cycle, the state vector jumps back to some point
along the trajectory during the previous theta cycle corresponding to the new
current location (Samsonovich & McNaughton, 1997; Tsodyks et al., 1996).
Thus, the states change relatively quickly at time scales finer than the theta
period and more slowly at longer time scales; moreover, integration even over
a single theta cycle seriously smears the location vectors.

Temporal integration time is not the only issue. It should be clear that even
with the best of current methods, only a very small proportion of the total
population of neurons is sampled. In general, the accuracy in the estimate of
the similarity of two patterns will be proportional to the square root of the
number of recorded neurons. An x-fold increase in accuracy requires an x?-
fold increase in sample size. This was verified approximately by Wilson and
McNaughton (1993) for position reconstruction from place cell populations.
The upshot is that the appropriate integration time will depend on the question
at hand, on parameters of the system, in particular, the rate at which cells
fire and the rate at which the states of activity in the network change with
time, and on the numbers of cells that can be simultaneously recorded.

ORGANIZATION OF DATA

Suppose one records simultaneously from N neurons, over T time intervals.
One then has an N by T data matrix (Q in Fig. 1) in which the row vectors
represent the time series of rates for each neuron and the column vectors
represent the distribution of “instantaneous” firing rates in the ensemble. The
rows can thus be called temporal vectors and the columns can be called state
vectors. The state vector defines a location in the N-dimensional space of possi-
ble firing rate distributions among the N-neurons and thus corresponds to the
notion of an activity pattern. The simple correlation between any two temporal
vectors represents the correlation of firing between two cells over the time
interval in question and is a function of the trajectory of the system during
that interval, whereas the correlation between any two state vectors reflects
the similarity of the global state of the system at the corresponding times. Let
us call the interrow correlations temporal correlations and the intercolumn
correlations state correlations. It should be clear that, in considering the pro-
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FIG. 1. Data structures for ensemble recording study of mnemonic processes. The raw spike
rate data consist of an N X T matrix [Q] containing N rows of spike trains (temporal vectors),
corresponding to the N recorded neurons, binned in intervals of At, and T columns of state vectors
(a.k.a., “population” vectors). The matrix R is the matrix of all pairwise correlations among spike
rates. The matrix S contains all pairwise correlations among state vectors. R and S are diagonally
symmetric. If the rows of Q are subdivided into sets (e.g., C, H) because cells of different types
or from different anatomical regions (e.g., cortex and hippocampus) are included in the sample,
then R is subdivided into different submatrices of within- and between-class temporal correlations.
Similarly if the columns of Q are subdivided into different epochs (e.g., a period of sleep, S1, a
period of behavior on a maze, M, and another period of sleep S2), then S is subdivided into different
submatrices of within- and between-epoch state correlations. The off-diagonal submatrices of
S are of particular interest in the question of memory reactivation. Also, one may generate different
R matrices for each temporal epoch in Q (e.g., Rs1, Rwm, Rs2), and different S matrices for each
cell class in Q (e.g., Sy, Sm, Sn). The similarities of the different R matrices have been used to
make inferences about memory reactivation. Finally, one may consider time-lagged temporal cross-
correlations (a.k.a., the cross-correllogram) and the mean time-lagged state vector correlation. The
former generates an additional R matrix for each At [e.g., Ri(At)] and the latter generates a vector
containing the average correlation between state vectors as a function of the interval between
them.

cess of memory reactivation, we are really interested in state correlations and
not temporal correlations; yet, as we shall see, it is sometimes possible to draw
useful inferences from the latter about the former. Two other useful constructs
can be defined, the N X N matrix of all temporal correlations, which we shall
call the temporal correlation matrix over the interval 1-T (R in Fig. 1), and
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the T X T matrix of all state correlations, or state correlation matrix for the
set of N cells over the same interval (S in Fig. 1). Both of these matrices are
diagonally symmetric, with values of 1.0 by definition along the diagonal.
The size of the state correlation matrix is proportional to 1/At? For a typical
recording session it can become very large if At is small.

In general, because the assignment of identification numbers to cells in a
sample is typically arbitrary, we do not expect to see any particular structure
in the temporal correlation matrix (unless we encounter effects of anatomical
topography); however, at least under some conditions, we do expect to see
structure in the state correlation matrix. For example, suppose that we are
considering hippocampal place cells in a rat performing a rather slow walk
along a linear track, without changing direction. We expect the values of the
of the state correlation matrix elements to be uniformly rather high near the
diagonal and typically to decline with distance from the diagonal. If the rat
runs more quickly, the correlations between state vectors will also decline
more quickly as a function of the interval between them (Fig. 2). It is also
possible that intrinsic dynamics may lead to abrupt changes in the state vector
(for example, at the transition between two orthogonal attractor states). In
general, we can define an instantaneous state vector velocity as the distance
(or angle) between two state vectors divided by the time. We can also define
the average velocity as the average of the instantaneous values. If the velocity
is constant, or at least stationary, and the trajectory is random, the mean
cosine of the angle between two vectors will tend toward zero exponentially
as a function of interval, and hence one can define a state vector time-constant
(McNaughton & Skaggs, 1997). Interestingly, the time constant determined
in this manner is substantially smaller during SWS than during the awake
theta state (AWO) or REM sleep. This presents some complexities in the analy-
sis that will be discussed below. Of course, if the rat’s trajectory in space is
periodic, then the hippocampal state correlation matrix for this epoch will have
periodic stripes of high values, parallel to the diagonal, at periods correspond-
ing to trajectory cycles (Fig. 3); similarly, if motor behavior or sensory inputs
are periodic, there may be periodicities in the state correlation matrix of areas
which exhibit neural activity that is correlated with these variables. More
generally, if the rat's brain occupies any region of its state space more than
once, then some off-diagonal elements will have unexpectedly large values. If
large state correlations occur between instants of waking behavior and instants
of subsequent sleep, and if these states do not occur before the behavior, one
may reasonably conclude that memories are being reactivated (Fig. 4).

A theoretical (or perhaps semantic) caveat to the foregoing statement is that
some states may result from patterns of synaptic connections that are not learned
during the behavioral episode in question, but are either programmed genetically
or learned early in development. For example, there is a system of neurons that
signal relative head direction (Taube et al., 1990). This system has a limited set
of observable state vectors and a limited set of possible transitions among states.
This set defines a preconfigured, one-dimensional closed manifold (a ring) in the
space of theoretically possible states (Skaggs et al., 1994). Similarly, the relative
positions of place fields of subicular cells appear to be independent of which
environment the animal is in and hence appear to define a two-dimensional
manifold that may be predetermined in the synaptic matrix (Sharp, 1997); Samso-
novich and McNaughton (1997) have proposed that the synaptic matrix of CA3
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X Y

FIG. 2. (A) Two hypothetical trajectories (X, Y) through the same path in network state space.
The plus signs indicate successive time intervals. Even though the sequences of states are highly
similar, the speed of trajectory Y is about four times faster than that of X. The point p represents the
sort of error that would arise in estimating trajectory Y if the integration time At was comparable to
the plotted interval markers. (B) Hypothetical state vector correlation matrix for the common region
of the two trajectories X and Y (demarcated by lines in A). The magnitude scale of the state vector
correlations is represented by grayscale shading. When the vector speed is slow, the diagonal band of
high correlation is broad. When the speed is high, the diagonal band is narrow. The change in speed
between X and Y is represented by the slope of the diagonals of the off-diagonal submatrices.
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FIG. 3. State vector correlation matrices from a set of hippocampal neurons recorded simulta-
neously while the rat ran successive laps around a closed rectangular track over a period of 400

s. Note the diagonal stripes of high correlation which reflect the similarities of the state vectors
at each location on the track.

may be preconfigured to define a large set of such 2-D manifolds, although this
remains to be confirmed. Similarly, it is to be expected that the state space
occupancy of motor cortex may be constrained to relatively simple manifolds, such
as the sphere that defines the population codes for reaching (Georgopoulos et al.,
1988), and it is well established that the state space occupancy of the superior
colliculus is inherently two-dimensional (Sparks & Mays 1990). It has been shown
that, given the appropriate synaptic matrix, such predefined states can, in princi-

FIG. 5. (A) S matrix for three equal segments (500 s each) of data from the experiment from
which Fig. 3 was constructed, in which the rat first slept (S1), ran on a rectangular track (M),
and then slept again. (The T axes are in units of 5 s, and only every fifth bin is plotted due to
memory limitations). The central diagonal submatrix is essentially the same data as shown en-
larged in Fig. 3. Note that there appear to be more high values in the M—S2 submatrix than in
the S1-M submatrix. This is confirmed in the histograms in (B) which reflect the distributions
of state correlation values for the S1-M (red) and M—S2 (blue) submatrices. There were signifi-
cantly (p < .0001, x® more higher values in the latter, indicating that the states in S2 were more
similar to those of M than were the states of S1.
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ple, be selectively reactivated without recourse to the associative synaptic modifi-
cation normally thought to underlie memory (Shen & McNaughton, 1994). In
some circumstances (i.e., sparse coding), a simple selective bias on the firing
probabilities of the cells involved in one of the preconfigured states is sufficient
to obtain activation of that state. Thus, the increased probability of occurrence of
a state vector following its appearance during a behavioral episode may reflect
either the development of new cell assemblies through associative synaptic modi-
fication or the selective reactivation of cell assemblies that were already defined
in the synaptic matrix before the behavioral episode in question. In either case
there is some form of memory at play, but the expression of this memory per se
does not necessarily indicate any particular encoding mechanism.

TEMPORAL CORRELATIONS OF SPIKE TRAINS

Let us now consider some properties of the temporal correlation matrix.
Suppose as described above, we allow the rat to take a long walk without
changing directions (i.e., the states never repeat) and then allow him to sleep.
If the rat's dream perfectly reconstructs his trajectory, then obviously the
temporal correlation matrices for these epochs will be identical (assuming error
free recording); however, if the hippocampus represents each location uniquely
(and if all states with the normal sparsity level are equally probable), then, as
the length of the trajectory increases, the mean and variance of the correlation
distributions will tend to zero. Given some noise in the recording, this result
suggests that it will become increasingly difficult to detect reminiscence using
temporal correlations as the length of the sequence (i.e., number of states
occupied) increases (note that this problem is alleviated if the same set of
states is visited repeatedly). It also reveals that the absolute magnitudes of
the correlations are theoretically irrelevant. It is the relative magnitudes
within the R matrix that are of interest.

Now suppose that during the reminiscence period, the temporal order of
events is completely scrambled. Because the temporal order of data pairs does
not enter into the formula for the correlation coefficient, scrambling the events
has no effect at all. The temporal correlation matrix depends only on the state—

A Y =.023 +.099 * X; RA2 = .028 | B Y =.014 +.234 * X; RA2 = 203

FIG. 4. A typical example of the comparison of the distributions of R in sleep before (S1) and
after (S2) a period of behavior on a track maze (M). Each point represents the zero-lag correlation
of spike rates (100-ms bins) for two cells. The effect of M accounts for only about 3% of the variance
of correlations in S1, but about 20% of the variance in S2.



THE NEUROPHYSIOLOGY OF REMINISCENCE 261

space occupancy distribution, i.e., the relative amount of time spent by the
system in each region of its state space. Thus, the similarity of two temporal
correlation matrices is independent of event order. A corollary is that the
temporal correlation matrix is independent of the state vector velocity profiles,
so long as the occupancy distributions are the same and so long as the smearing
effect of the integration time is not large (i.e., an “appropriate” integration
time is used). These two properties almost certainly account for why it is
possible at all to detect memory reactivation using temporal correlation meth-
ods. In contrast, if the state—space occupancy distribution is changed, for
example, if some state vectors are reinstated more or less frequently than they
occurred during the behavior, then there will be a corresponding change in
the temporal correlation matrix. One problem this raises is that the temporal
correlation method cannot distinguish between the case in which the reminis-
cence consists of noiseless recall of a mixture of states, some of which occurred
during the target behavioral session and some of which occurred during some
other period for which there were no data recorded, and the case in which only
target vectors are recalled, but the recall itself is noisy. Thus, for a given
experience, temporal correlations cannot distinguish between a noisy memory
trace that is reinstated frequently and a robust trace that is reinstated infre-
quently. In addition, it should be clear that, even if recall for each individual
vector was noiseless, if the data segments were of unequal lengths, then the
temporal correlation matrices would be dissimilar because the state occupancy
distributions would be dissimilar. The latter problem might be overcome, how-
ever, if the memory replay occurred at high speed, as appears to be the case
in both hippocampus and neocortex during SWS (Qin et al., 1997; Skaggs &
McNaughton, 1997) but not during REM sleep (Skaggs & McNaughton, 1997).
This might permit the state—space occupancy distributions to be similar for
two epochs of different durations.

Another intrinsic difficulty in the use of temporal correlations to compare
the state-space occupancy distributions in two epochs is the existence of differ-
ences in extrinsic or intrinsic modulatory influences on firing probabilities.
Modulation can be defined as activation of inputs that affect all of the principal
cells in essentially the same way at any given instant. Such effects lead to
nonstationarity or periodicity of firing rates in the population (i.e., in the length
of the state vectors) and induce temporal correlations which may have nothing
to do with the memory recall per se. In general terms, modulation may change
the state—space occupancy distribution by changing the lengths of vectors, the
angles of vectors, or both, depending on the nature of the modulator. Whatever
the effect, modulation will tend to increase the values of the temporal correla-
tions of all cell pairs and distort the temporal correlation matrix. Nevertheless,
in many circumstances, it may be possible to compare two data sets which
have been subject to different modulatory effects. What one is comparing is
the similarity of the temporal correlation matrices, which can be measured by
the coefficient of variation (r?) of their elements. Ideally, if the form of the
modulation function is known exactly, and if no information has been lost,
then the inverse function could be applied to the data.

A typical experimental protocol used in the author’s laboratory involves a
period of sleep (S1) followed by a period of waking behavior, typically maze
running of some sort (M), followed by a second period of sleep. The question
addressed is how much of the variance in the temporal correlation matrix for
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S2 can be accounted for by the variance in M, after removing any effects of
S1. In other words, is the temporal correlation matrix for S2 more similar to
that of M than the matrix for S1 which preceded the experience (Fig. 4)? If
the partial correlation is significant, then it is highly probable that the state-
space occupancy distribution of S2 is more similar to that of M than is the
distribution for S1 and hence that there has been storage and reactivation of
mnemonic traces. A similar approach would be to ask, “Given the correlation
distribution of S1, how much more information about the correlation distribu-
tion of M is added by knowing the distribution in S2?”

CORRELATION OF STATE VECTORS

Let us now consider what might be accomplished with the same data using
state vectors. Suppose we construct the state vector correlation matrix for the
entire S1, M, S2 sequence just described. This partition of the time series leads
to six unique submatrices (Fig. 1) of which we are principally interested in the
S1-M submatrix and the M—-S2 submatrix (Fig. 5A). Without considering
temporal order, we can ask the simple question: Is the average of the elements
of the latter significantly larger than that for the former? If so, then the state-
space occupancies are more similar and memory is being expressed during S2.
The problem is in detecting the difference statistically. In general, the broader
the distribution in state-space of the vectors in M, the harder will be the
detection problem. If the K state vectors in M are all substantially different
from one another, then we expect at best K “hits” and K(K-1) “misses.” If K is
large, the means will not differ significantly even if there is perfect reminis-
cence. The statistics will likely need to be based on the shapes of the two
distributions (Fig. 5B). The odds of detection improve considerably if only a
relatively few states are sampled repeatedly. If the states are well correlated
with externally observable events which occur repeatedly, such as the animal’s
location or motor patterns, then one may construct average state vectors for
the events and use these as templates to match with the off-line vectors. This
would reduce the number of target vectors and thus simplify the analysis.

REPLAY OF SEQUENCES

As suggested above, memory recall is likely to involve not just instantaneous
vectors, but trajectories of the system through its state space (i.e., temporally
extended events). How might the retraversal of a route through state space
be detected and quantified? In general, we are interested in the question of
state vector sequence homology in two epochs, T1 and T2.

One approach is to make use of the correlations between temporally shifted
(*lagged”) spike trains. Shifting one spike train relative to the other by +At
gives a new correlation, and the sequence of these correlations for successive
lags of =At is called the cross-correlation function. For each lag there is an-
other N X N temporal correlation matrix. In other words, there isan N X N
X K array of correlations, where K is the number of positive, negative, and
zero lags. The array has a symmetry about the zero lag because the correlation
between cells i and j at lag n is equal to that of cells j and i at lag —n. Thus,
one need consider only those elements in which i = j. For each i,j, the cross-
correlation function is dependent on the exact state trajectory. If the trajectory
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itself is quasi-periodic, then there will be peaks in the cross-correlation oc-
curring at multiples of the basic period and most cross-correlograms will be
asymmetric about the origin. Illustrative cross-corellograms for two parietal
cortical cells during sleep and waking are shown in Fig. 4. In general, unless
the trajectory is perfectly periodic, the peaks will decline as a function of
lag. Skaggs and McNaughton (1996) defined “bias” as a simple measure of
asymmetry in two cross-correlations. Bias is defined as the sum of all bins
from zero to —t, minus the sum of all bins from zero to —t. For N cells, this
leads to an N X N bias matrix from the cross-correlation array. The similarities
of the bias matrices for two epochs can be compared, and Skaggs and McNaugh-
ton (1995) found that there was a significant correspondence in the bias matrix
for a period of SWS with that of the preceding behavior. In contrast, the bias
matrix for the preceding sleep was not related to that of the behavioral epoch.
Thus, they concluded that there must be significant replay of sequences during
SWS. The bias analysis, although relatively crude, involves few a priori as-
sumptions and is reasonably robust. It depends, however, on selecting an ap-
propriate time window for analysis. Another approach investigated by Skaggs
and McNaughton (1997) is the analysis of the lag latency of the first peak in
the (smoothed) cross-correlation. It was found that peak latencies in behavior
and SWS were significantly correlated, but the distribution during SWS was
highly compressed (Fig. 6) and slope of the regression line for peak latencies
between the two states was about 40, suggesting a large increase in state
vector velocities in SWS compared to behavior.

It is possible that a more comprehensive approach using the cross-correla-
tions could involve the comparison of the rate correlation matrices at different
lags. Suppose we have two sequences M and S2 as in Fig. 1. If we compute the
similarity of the temporal correlation matrices of M and S2 at each temporal lag
in M with every lag in S2, we obtain what could be called the cross-correlation
similarity matrix. If the two sequences are similar, there will be high values
along the diagonal. If the two sequences are similar but the time-scale has
been compressed in one of them, then there will still be a stripe of high values,
but the slope of the stripe will differ from 45°. It should be possible to estimate
the degree of compression from the change in this slope.

What alternative strategies can be devised from the state vectors? In consider-
ing the replay of sequences, one is comparing two different subsets of Q, for
example, S2 and M in Fig. 1. The question is whether segments of S2 correspond
to segments of M. One approach would be to use an analogy to the methods used
in molecular biology to study DNA sequence homology. In this case we can con-
sider every subsequence of S2 of length L and compute its fit to the every size L
subsequence in M. The fit measure in this case is simply the mean correlation of
the individual vectors in the two sequences. The maximum fit is then taken as
the measure of sequence homology, and the average over all subsequences gives
a measure of the overall homology at that characteristic length.

A possibly more powerful, but related, approach would be to take each L by L
diagonal submatrix of S and convolve it with the corresponding L by T submatrix
of S (i.e., slide the L X L submatrix laterally along S, taking the dot product at
each point). This will result in (T — L)? values whose distribution can be compared
to the expected distribution based on random shuffles of the columns of Q.

Such procedures might be successful for examining sequence replay during
REM sleep, for which there is evidence that the assumption of equal state
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FIG. 6. Representative cross-correllograms for a pair of parietal cortical neurons in S1, M,
and S2. Note that the cross-correllogram is flat in S1, has a broad asymmetric peak in M, and
has a narrow peak with proportional asymmetry in S2. (Reproduced from Y.-L. Qin, B. L. Mc-
Naughton, W. Skaggs, & C. E. Barnes, 1998, Memory reprocessing in corticortical and hippocampo-
cortical neuronal ensembles, Philosophical Transactions of the Royal Society of London B, 352,
1525-1533, Fig. 2. Reprinted with the kind permission of the Royal Society.)

vector velocities is approximately valid. It may or may not work for compari-
sons between SWS and waking behavior where, as just discussed, the playback
velocities may be as much as 40-fold faster. In this case a more refined approach
would be necessary.

The first problem in comparing the homology of state-space trajectories in
two epochs when the velocities are not equal has to do with the choice of
integration times. Take the case of comparing SWS to waking behavior as an
illustration. It is known that most of the mnemonic reactivation that occurs
during SWS occurs during sharp waves, whose duration is on the order of 100
ms. Suppose one uses 100 ms as the integration time. If the velocity of replay
is actually 40 times faster in SWS, this means that the SWS vectors represent
the average of 40 AWO vectors (i.e., 4 s). Available data suggest that during
typical maze running behavior, two hippocampal vectors separated by 4 s are
virtually orthogonal. Thus, even if an exact trajectory was replayed in SWS,
the apparent trajectory would be seriously distorted.



THE NEUROPHYSIOLOGY OF REMINISCENCE 265

Assuming that At has been selected according to the appropriate definition
given above, another strategy for sequence detection in the face of possibly
varying playback speeds is to consider only the closest proximity of each vector
in the reminiscence phase to any vector in the encoding phase and quantify
the relative temporal order of these values. Suppose X = [x] (i = 1, t;) and Y
= [yj] ( = 1, t;) are two spike rate matrices from the same set of N cells
recorded during the encoding and reminiscence periods, respectively (the low-
ercase letters refer to the constituent state vectors). Let r; = corr (x;, y;) be
the correlation between two state vectors in X and Y and let d; = max r;; be
the maximum correlation of state vector j in Y with any state vector i in X.
Let a; = i be the index of X corresponding to the maximum correlation d; and
T; = aj — aj_1 be the time lag in X corresponding best to the trajectory element
(Yj-1, ¥p) in Y. If 1., the mean value of 7, is significantly greater than zero, then
one can conclude that there is significant replay in Y of trajectory segments
of X, and the value of u. reflects the mean relative playback speed. The shape
and spread of the distribution of = will provide information about the consis-
tency of playback speed.

Suppose we plot d; vs j. If the data contain some repeated sequences sepa-
rated by regions of nonrepeats (for example if Y contains sequences that do
not appear in X but are reflections of some other memories), then in general
d will not be distributed randomly about its mean value. There will be runs of
high values interspersed with runs of low values and there will be a significant
correlation between d;_; and d;

INTER-REGION INTERACTIONS AND THE PROCESS
OF MEMORY CONSOLIDATION

Let us finally consider the possible dynamics of regional interactions during
memory reactivation. One model for memory consolidation is that, during be-
havior, patterns that occur in the neocortex become associated with patterns
that occur in the hippocampus, in such a way that subsequent reactivation of
the hippocampal pattern may cause reactivation of the corresponding neocorti-
cal pattern (Marr, 1971; McClelland, McNaughton, & O'Reilly, 1995; Squire,
1982; Squire, Cohen, & Nadel, 1984). This might occur, for example, through
modifiable bidirectional connections at each successive stage of information
processing in the cortical hierarchy from primary sensory areas such as V1 up
to the hippocampus (see Felleman & van Essen, 1991). Let us consider for
example, the possible relationship between some rather low-level cortical area
(C) and the hippocampal area CA3 (H), which has traditionally been assumed
to be where autoassociation takes place, by virtue of attractors formed by
modification of the abundant intrinsic connections there (Marr, 1971; Mc-
Naughton & Morris, 1987; Treves & Rolls, 1991). Suppose that these areas
are separated by several levels in the synaptic hierarchy, such that there is a
substantial delay before a pattern in one area affects the pattern in the other.
Depending on connectivity, the delay in the forward (C — H) direction may be
different from the delay in the backward (H — C) direction. If, during behavior,
pattern C imposes patterns on H, whereas during SWS, memories are sponta-
neously recalled in H and reimposed on C, then the relationship between
temporal patterns in the two structures will be different in the two states.
Suppose one records simultaneously cells in both C and H during behavior
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and during subsequent sleep. Then one again has vertical and horizontal parti-
tions of the spike rate matrix as illustrated in Fig. 1 (e.g., M®, M", and S2°,
S2H). Consider first the temporal correlation matrices for the two epochs S2
and S2. Assuming accurate recall, they will be highly similar, both within
the diagonal partitions (within-area correlations) and within the off-diagonal
partitions (between-area correlations), because, as stated above, the simple
correlations depend only on the state space occupancy distributions and not on
temporal order. Such similarity between sleep and waking of the off-diagonal
partition of the temporal correlation matrix was observed by Qin et al. (1997),
in a study of hippocampal—parietal interactions. Interestingly, although the
bias matrices for the cross-correlations were also similar within the diagonal
(within-area) submatrices, no significant similarity was observed for the off-
diagonal matrices. This lack of similarity is at least consistent with the hypo-
thetical reversal in the direction of information flow.

One possible approach to verifying the information flow reversal hypothesis
would involve time-shifting the C and H submatrices of S2. If the hypothesis is
correct, then there should be an optimum time shift that maximizes both the
similarities of the bias matrices and the integral of the M—S2 submatrix of S.

CONCLUSIONS

Clearly, the study of the neurophysiology of reminiscence is in its infancy.
This is largely a reflection of the fact that, although progress seems to be
accelerating, methods for simultaneously monitoring multiple single neurons
are in their infancy. The refinement of these methods is crucial for this field,
and the lack of suitable data sets, i.e., sets containing large numbers of cells,
for analysis has led to a corresponding lack of effort to develop suitable analysis
methods to address the problem and a general lack of appreciation for some
of the possible complexities. It is hopefully clear from the foregoing, however,
that the temporal correlation method is limited in its scope and that unraveling
the details of the process of memory retrieval at the neurophysiological level
will require the elaboration of the state vector approach.
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