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Abstract— We present a distributed control strategy for a
team of agents to autonomously achieve a desired planar forma-
tion. Our control strategy is based on combining the barycentric
coordinate-based (BCB) and the distance-based (DB) approach.
In the BCB approach, the almost global convergence of the
agents to the desired formation shape is guaranteed, however,
the formation scale cannot be controlled. In the DB method,
the scale of the achieved formation is controlled, however, the
convergence is local and in general stable undesired equilibria
exist. By combining these methods via imposing a timescale
separation between their respective dynamics, our proposed
control strategy retains the advantages of each approach and
avoids their shortcomings. We analyze the stability properties
of the proposed control and prove that the desired formation is
an almost globally stable equilibrium. We provide simulations
to typify the theoretical results and compare our method with
a leader-follower BCB (LF-BCB) approach that can be used to
control the formation scale in the BCB strategy. In particular,
we demonstrate that unlike the LF-BCB approach, our method
is far more robust to measurement inaccuracies.

Index Terms— Multi-agent systems, distributed formation
control, agent-based systems.

SUPPLEMENTARY MATERIAL

Video of paper summary and simulations is available
at https://youtu.be/cYQ6ALUF83s. Simulations code can be
download from https://goo.gl/QH5qhw.

I. INTRODUCTION

A formation of agents is a fundamental building block
in applications such as the search and rescue missions
[1], environmental mapping/monitoring [2], and cooperative
object manipulation [3]. There exists a large body of work
on formation control of autonomous agents [4]. While many
methods rely on a centralized motion planning scheme
or a global positioning/communication paradigm [5]–[8],
fully distributed formation control strategies, such as the
distance-based (DB) [9]–[11], bearing-based (BB) [12]–[15],
and barycentric coordinate-based (BCB) [16]–[25] approach
only require local relative measurements. Compared to the
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centralized methods, these distributed strategies have better
scalability, naturally parallelized computation, and resiliency
to global positioning signal jamming or loss.

In this work, we combine the BCB and the DB approach
to derive a novel control strategy that has the advantages of
both methods and avoids their shortcomings. A characteristic
of the BCB approach is that the convergence of agents
to the desired formation shape is guaranteed for almost
all initial conditions. However, in the BCB (and the BB)
approach, the scale of the formation cannot be controlled.
In the existing DB approach, on the other hand, the scale
of the formation is controllable, however, the convergence is
not global and agents may attain an undesired shape. To
control the scale of the formation in the BCB approach,
the control can be modified to take a leader-follower (LF)
form [16], in which by controlling the distance between a
subset of agents (leaders) the scale of the remaining agents
(followers) is controlled. However, as we will demonstrate
by a simulation example, the LF-BCB approach can be
very sensitive to inaccuracies and noise in the position
measurements. Compared to the aforementioned methods, in
our proposed approach the formation scale can be controlled,
convergence is almost global, and the control is more robust
to disturbances and inaccuracies in the measurements.

The main contribution of this work is the rigorous stability
analysis of the proposed control, based on the mathematical
machinery of slow-fast systems with timescale separation,
which shows the almost global convergence of agents to
the desired formation. The fast and slow dynamics in our
proposed control correspond to the BCB and DB controls,
respectively. To this day, no DB control strategy (for arbitrary
numbers of agents and all feasible sensing graphs) with
global or almost global convergence property is known in
literature due to the existence of undesired stable equilibria
discussed in [26]–[28]. Hence, this paper can be considered
as the first result toward showing the existence of augmented
DB controls with almost global convergence1.

The paper is organized as follows. The notation and
assumptions are introduced in Section II. In Section III, the
BCB, DB, and LF-BCB control strategies are introduced and
their properties are discussed. The proposed control strategy
is presented in Sections IV, followed by the simulations in
Section V. Additional remarks and future work are discussed
in Section VI.

1The global convergence in [29] is attained via inter-agent communica-
tion, which is not an assumption of this work or other DB literature.
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II. NOTATION AND ASSUMPTIONS

We consider a team of n ∈ N agents with the inter-
agent sensing topology described by an undirected graph
G = (V, E), where V = Nn := {1, 2, . . . , n} is the set
of vertices, and E ⊂ V × V is the set of edges. Each
vertex of the graph represents an agent. An edge from
vertex i ∈ V to j ∈ V indicates that agents i and j can
measure the relative position of each other in their local
coordinate frames. In such a case, agents i and j are called
neighbors. The set of neighbors of agent i is denoted by
Ni := {j ∈ V | (i, j) ∈ E}.

Throughout this paper, we assume that the desired for-
mation and the sensing topology are such that achieving the
formation is physically feasible. In particular, we assume that
the sensing topology is undirected and universally rigid. This
assumption is both necessary and sufficient [17], [30] for
guaranteeing the existence of control gains that lead to the
desired formation.

III. PRELIMINARIES

In this section, we review the BCB, DB, and LF-BCB
formation control strategies for agents with the single-
integrator dynamics. The motion of agents with single-
integrator dynamics can be expressed as

q̇i = ui, (1)

where qi := [xi, yi]
> ∈ R2 represents the coordinates of

agent i ∈ Nn in a global coordinate frame (unknown to the
agent), and ui ∈ R2 is the control law that is specified for
agents by each strategy to achieve a desired formation. The
control strategies discussed in this section are a cornerstone
for our proposed control strategy that is discussed in the
subsequent section.

A. The Barycentric Coordinate-Based Control Strategy

The BCB control strategy introduced by Lin et al. [16] is
defined as

ui :=
∑
j∈Ni

Aij (qj − qi), (2)

where qj − qi represent the relative position of agent j with
respect to agent i, and Aij ∈ R2×2 are constant control gain
matrices that are designed and provided to agents before the
mission and have the form

Aij :=

[
aij bij
−bij aij

]
, aij , bij ∈ R. (3)

Note that the diagonal elements of Aij are identical, and
off-diagonal elements only differ in sign. From the commu-
tativity property of Aij matrices (which holds due to their
special structure) it follows that the closed-loop dynamics is
invariant to expressing the coordinates in the global or local
frames2. The geometric intuition behind the algebraic for-

2Replacing global coordinates qglobali with local coordinates qlocali =

Rqglobali + T in (1) and (2) with R, T representing the relative rotation
and translation between the local and global frames does not affect the
dynamics since R, T are canceled.
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Fig. 1. Example of three agents with agents 2 and 3 neighbors of agent 1.

mulation of control strategy (2) is explained in the following
example.

Example 1. Consider three agents in Fig. 1, and assume
that agents 2 and 3 are neighbors of agent 1. That is, agent
1 can measure the position of agents 2 and 3 in its local
coordinate frame. Denote by q2 = [2, 3]> and q3 = [3, 1]>

the positions of the neighbors in agent 1’s local coordinate
frame, which itself is located at q1 = [0, 0]>. Assume that
control gain matrices

A12 =

[
2 −1
1 2

]
, A13 =

[
−1 3
−3 −1

]
, (4)

are provided to agent 1 before the mission. From (2), the
control vector for agent 1 in the current instance of time is
computed as

u1 = A12 (q2 − q1) +A13 (q3 − q1) =

[
1
−2

]
, (5)

which is plotted in the figure. From the single-integrator
dynamics (1) it follows that agent 1 moves along the vector
u1 with a speed equal to its magnitude. Matrices A12, A13

can be interpreted as scaled rotation matrices that rotate
and scale vectors that connect agent 1 to its neighbors.
One can see that these actions are independent of the local
coordinate frame’s position and orientation in the global
frame. Hence, q2 and q3 can be represented in either global
or local coordinate frames.

By substituting (2) in (1), the closed-loop dynamics of the
agents can be collectively expressed as

q̇ = Aq, (6)

where q := [q>1 , q
>
2 , . . . , q

>
n ]> ∈ R2n denote the aggregate

position vector, and A ∈ R2n×2n is the aggregate gain matrix
given by

A =


−
∑
j 6=1A1j A12 · · · A1n

A21 −
∑
j 6=2A2j · · · A2n

...
. . .

...
An1 An2 · · · −

∑
j 6=nAnj

 ,
(7)

in which for j /∈ Ni (i.e., when agents are not neighbors) the
Aij blocks are defined as zeros. Note that the 2×2 diagonal
blocks of A are the negative sum of the rest of the blocks
on the same row. Hence, A has a block Laplacian structure,



Fig. 2. Trajectories of 4 agents with a unit square desired formation under
the BCB control. The desired formation shape is achieved, but the formation
scale cannot be controlled.

from which it follows that vectors

1 := [1, 0, 1, 0, . . . , 1, 0]> ∈ R2n

1̄ := [0, 1, 0, 1, . . . , 0, 1]> ∈ R2n
(8)

are in the kernel3 of A.
Consider an embedding of the desired formation shape at

an arbitrary location and orientation in the global coordinate
frame. Let q∗i ∈ R2 denote the coordinates of agent i at
this embedding, and further denote by q̄∗i ∈ R2 coordinates
rotated 90 degrees about the origin4. Let

q∗ := [q∗1
>, q∗2

>, . . . , q∗n
>]> ∈ R2n

q̄∗ := [q̄∗>1 , q̄∗>2 , . . . , q̄∗>n ]> ∈ R2n
(9)

denote the aggregate coordinate vectors for all agents. The
following theorem states the conditions that gain matrices
must satisfy to ensure that the desired formation emerges
from the interaction of all agents.

Theorem 1. Consider agents with dynamics (1) and control
(2). Assume Aij are such that in (7)

(i) vectors 1, 1̄, q∗, q̄∗ form a basis for ker(A),
(ii) all nonzero eigenvalues of A have negative real parts,

then, agents almost globally converge to the desired forma-
tion shape (up to a rotation and a translation).

A formal proof for the case where A is symmetric is given
in the Appendix. By noting that the closed-loop system (6)
is a linear system, it is straightforward to see that under
the conditions of Theorem 1 each trajectory converges to a
point in ker(A), which consists of all rotations, translations,
and scale factors of the desired formation coordinates. To
give a geometric intuition, consider the unit square desired
formation for 4 agents with a complete sensing graph. The
trajectories of the agents under the BCB control (2) starting
from two randomly generated initial conditions are shown
in Fig. 2. As can be seen, the desired formation shape is
achieved in both cases, however, the scale of the formation
differs for each case.

Remark 1. The null vectors 1, 1̄ correspond to the case
where all agents coincide. It can be shown that the set of
initial conditions that converge to this coinciding equilibrium

3The kernel or null space of a matrix A ∈ Rn×n is defined as
ker(A) := {v ∈ Rn |Av = 0}.

4That is, if q∗i = [xi, yi]
>, then q̄∗i := [−yi, xi]>.

Fig. 3. Trajectories of 4 agents with a unit square desired formation under
the DB control. (Left) Agents achieve the desired formation. (Right) Agents
converge to an undesired stable equilibrium.

is measure zero. Hence, the convergence results in Theorem 1
is “almost” global. In practice, the trajectory of agents can-
not remain on a measure zero set (due to noise, disturbances,
etc.), and such cases are not of practical concern.

Remark 2. For the existence of Aij that satisfy the condi-
tions of Theorem 1, it is both necessary and sufficient that
the sensing graph among agents is 2-rooted. In addition,
for matrix A in (7) to be symmetric the sensing graph must
be undirected and universally rigid. These conditions have
been derived in [18, Thm. 3.2], and we assume they hold
throughout this paper5.

We emphasize that the strength of the BCB approach is
the almost global convergence of the agent to the desired for-
mation shape, while the downside is that the formation scale
cannot be controlled and depends on the initial positions of
the agents. Lastly, gain matrices for which A is symmetric
and conditions of Theorem 1 are satisfied can be computed
by solving a semidefinite program (SDP) that is presented in
our previous work [31], [32].

B. The Distance-Based Control Strategy

An alternative approach to achieve the desired formation
is the DB strategy defined by

ui :=
∑
j∈Ni

(dij − d∗ij) (qj − qi), (10)

where dij := ‖qj − qi‖ denotes the distance between
agents i and j, and d∗ij ∈ R denotes its corresponding
value in the desired formation. Intuitively, the role of each
(dij − d∗ij) (qj − qi) term in (10) is to pull agent i toward
its neighbor j when the distance dij between them is larger
than the desired distance d∗ij , and vice versa.

Proposition 1. Consider agents with dynamics (1) and con-
trol (10). If the desired formation is infinitesimally rigid [33],
then the desired formation is a locally stable equilibrium (up
to a rotation and a translation).

The proof of Proposition 1 is given in [10, Thm. 13]. Note
that unlike the BCB approach, in the DB control strategy
convergence to the desired formation is only guaranteed
locally since in general undesired stable equilibria are present

5These results are for general formation shapes. For some special shapes,
the gains may exist even if the rigidity conditions are not satisfied.



[26]–[28]. As an example, consider the unit square desired
formation for 4 agents with a complete sensing graph. The
trajectories of agents under the DB control (10) are shown
in Fig. 3, where the initial positions of the agents are chosen
the same as in Fig. 2. As can be seen, the desired formation
is achieved only in the left figure, and the agents converge
to an undesired equilibrium from their initial positions in the
right figure.

C. The Leader-Follower BCB Formulation

The LF-BCB formulation has been proposed in [16] to
fix the formation scale in the BCB approach. The main idea
consists of fixing the distance between two leader agents and
hence forcing the remaining agents (followers) to converge to
the formation with the desired scale. Let us assume, without
loss of generality, that agents 1 and 2 are the leaders. The
corresponding LF-BCB control is given by

u1 := (d12 − d∗12)(q1 − q2),

u2 := (d12 − d∗12)(q2 − q1),

ui :=
∑
j∈Ni

Aij (qj − qi), i ≥ 3.
(11)

Similar to the DB strategy, the role of u1 (or u2) is to bring
the distance d12 between the leaders to its desired value d∗12.
The control for the remaining follower agents ui, i ≥ 3 is
the same as the BCB strategy (2).

Substituting (11) in (1) gives the aggregate closed-loop
dynamics

q̇ = Aq +

[
g(q1, q2)

0

]
, (12)

where g : R2×R2 → R4 maps the coordinates of the leaders
to control vectors u1, u2 according to (11), and the first 4
rows of A associated to the leader agents are zeros. Note
that in (12), matrix A is not symmetric (in contrast to our
proposed approach).

Proposition 2. Consider agents with dynamics (1) and
control (11). If A in (12) satisfies the conditions of Theo-
rem 1, then, agents almost globally converge to the desired
formation (up to a rotation and a translation).

Proof of Proposition 2 is given in [16, Thm. 4.4] and
hence is omitted here. As we will illustrate by an example
in Section V, additive disturbances in the leader positions,
which model measurement inaccuracies that exist in practice,
can propagate and get amplified by the follower agents,
hence, severely affecting the formation. Therefore, ideally,
all agents should participate in controlling the distance to
their neighbors and the LF-BCB approach should be avoided.

IV. THE PROPOSED CONTROL STRATEGY

We now present the main results of this paper. To achieve
the desired formation shape with the desired scale, we
combine the BCB (2) and the DB (10) control strategies
according to

ui =
∑
j∈Ni

Aij (qj − qi) + εf(dij − d∗ij) (qj − qi), (13)

Fig. 4. Graph of function f(x).

where ε > 0 is a real scalar, and the bounded smooth map
f : R → R is chosen such that x f(x) > 0 for x 6= 0,
f(0) = 0, and f ′(0) > 0, as illustrated in Fig. 4. Possible
choices for f are f : x 7→ arctan(x) or f : x 7→ tanh(x).
The role of f in (13) is to bound the magnitude of the DB
control strategy.

The intuition behind the control strategy (13) is as follows.
By choosing ε small, the BCB control drives the agents to the
desired formation shape (fast dynamics). Once the agents are
in a small neighborhood of the desired shape, the DB control
contracts/expands the formation to achieve the desired scale
(slow dynamics).

Theorem 2. Consider agents with dynamics (1) and control
(13). Assume Aij matrices are such A in (7) is symmetric
and satisfies the conditions of Theorem 1. Then, there exists
ε∗ > 0 such that for all 0 < ε < ε∗ the desired formation is
an almost globally exponentially stable equilibrium.

Proof of Theorem 2 is presented in the Appendix. The term
“equilibrium” should be understood as the set of equilibria,
which consists of all rotations and translations of the de-
sired formation. Furthermore, the almost global exponential
stability implies that almost every trajectory coverages to
a point in this set with a rate that depends on the initial
condition. As a combination of the BCB and DB control
approach, the control strategy (13) has the advantages of
both methods. Namely, convergence to the desired formation
is almost global and the achieved formation has the desired
scale.

Remark 3. Theorem 2 ensures the existence of an ε, however,
the value of ε∗ is not specified. From the proof of Theorem 2,
one can see that ε must be chosen small enough such that
matrix G in (29) is negative definite. By considering the worst
case scenario and using the Gershgorin circle theorem [34,
Thm. 6.1.1], an upper bound for the largest eigenvalue of F
in (21) can be derived as µmax := 2 (n− 1) fmax, where n
is the number of agents and fmax > 0 is an upper bound
for |f(·)| in (13). If λmax < 0 denote the largest (nonzero)
eigenvalue of A, then by choosing

ε < |λmax/µmax| (14)

the negative definiteness of G is guaranteed from the Weyl
Theorem [34, Thm. 4.3.1].

Lastly, it can be shown that under (13) the closed-loop
dynamics is globally stable (i.e., trajectories are bounded) for
all values of ε and the only consequence of choosing a large ε
that does not satisfy (14) is the possibility of convergence to
an undesired equilibrium associated with the DB approach.



(a) (b) (c) (d)

Fig. 5. Trajectories of 8 agents with a rectangular desired formation. (a) Trajectories under the LF-BCB control (11). (b) Trajectories under the proposed
control (13). (c) Effect of additive disturbances to the positions of agents 1 and 2 on the formation shape under the LF-BCB control. (d) Effect of additive
disturbances under the proposed control.
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Fig. 6. Distance errors dij − d∗ij plotted versus time for all agents and their neighbors. (a) Errors corresponding to the LF-BCB control. (b) Errors
corresponding to the proposed control. (c) Effect of additive disturbances to the positions of agents 1 and 2 on the inter-agent distance errors under the
LF-BCB control. The distance error between agents 1 and 2 is shown via the dashed line. (d) Effect of additive disturbances under the proposed control.

V. SIMULATIONS

We present two simulations to validate the proposed ap-
proach and compare the sensitivity of the discussed methods
to disturbances. Links to the Matlab simulation code and
videos are provided in the Supplementary Material section.

The desired formation considered in the simulations is a
rectangular formation with 8 agents (see Fig. 5(b)), where
the desired distance among all neighboring agents is defined
as 1 unit of measurements. The gain matrices that satisfy
the conditions of Theorem 1 for the corresponding desired
formation are computed using the SDP approach presented
in our previous work [31], [32]. The algorithm discussed in
[16] is used to compute the gain matrices that satisfy the con-
ditions of Proposition 2 for the LF-BCB approach. To have a
fair comparison, the aggregate gain matrices computed from
both approaches are designed to have the same eigenvalues.
In particular, the eigenvalues of matrix A for both methods
are {−0.72, −2.68, −5.36, −5.36, −8.04, −10}, each with
multiplicity two6. The value of ε in the proposed control
strategy (13) is set to 0.5.

Figs. 5(a) and (b) show the trajectories of agents starting
from the same randomly chosen initial positions under the
LF-BCB control strategy (11) and the proposed strategy (13),
respectively. The corresponding distance errors defined as
dij − d∗ij between agents and their neighbors are plotted
versus time in Figs. 6(a), (b). As can be seen from the
figures, the agents achieve the desired formation with the

6All numbers are rounded up to two decimal digits.

desired scale under both control strategies. However, the
traversed trajectories are much shorter under our proposed
control strategy7.

To test the sensitivity of control strategies to noise and
measurement inaccuracies that often exist in a practical im-
plementation, periodic disturbances of 0.2 [sin(t), cos(t)]>

and 0.1 [cos(t), sin(t)]> are added to the position vectors q1

and q2, respectively. The effect of these additive disturbances
on the formation shape are shown in Figs. 5(c), (d) for
the LF-BCB and the proposed control strategy, respectively.
The corresponding inter-agent distance errors are plotted in
Figs. 6(c), (d). As can be seen from the figures, in the LF-
BCB control approach the additive disturbance is amplified
by the follower agents. In particular, the further a follower
agent is from the leaders, the more severe is the effect of
the disturbance on the agent’s trajectory. Under the proposed
control, on the other hand, the disturbance is attenuated and
agents that are further from the disturbed agents are less
affected.

VI. CONCLUDING REMARKS AND FUTURE WORK

By combining the BCB and DB control strategies using
the slow-fast dynamics, we presented a novel distributed
formation control that has the advantages of both methods
and avoids their shortcomings. In particular, similar to the
BCB and unlike the DB approach, the agents almost globally

7We point out that simulation with ε < 0.5 did not lead to a noticeably
different trajectory. Although the convergence to the desired scale was
slower, the length of the traversed trajectories remained roughly the same.



coverage to the desired formation. On the other hand, similar
to the DB and unlike the BCB approach, the formation scale
can be controlled. Moreover, under the proposed strategy the
formation is far more robust to disturbances that affect the
LF-BCB approach.

As discussed in our previous work [23], [31], [32], the
BCB control with gains designed from the SDP method
enjoys several robustness properties. Specifically, any pos-
itive scaling or rotation (up to ±90◦) of the control vector,
saturation of the control magnitude, and switching among
the feasible sensing topologies do not affect the convergence
of the agents to the desired formation. Furthermore, a fully
distributed collision avoidance algorithm emerges naturally
from these robustness properties. Since the fast dynamics
associated with the control proposed in this work is based
on the BCB approach, one can expect the same properties to
follow. Detailed analysis of these properties will be a topic of
future work. We further point out that although the focus of
this paper was on agents with the single-integrator dynamics,
one can leverage [31], [32] to extend the results to higher-
order dynamics.

The results of this work were established for planar
formations and undirected sensing graphs. Additional future
work includes extending the results to 3D formations and
directed graphs. The observation that disturbances and mea-
surement inaccuracies in leader positions can strongly affect
the shape of the formation in the LF-BCB approach was
demonstrated using a simulation example. Quantifying the
effect of disturbances in the LF-BCB approach analytically
is another topic of research.

APPENDIX

We first prove Theorem 1 for symmetric A since a similar
procedure is used subsequently to prove Theorem 2.

Proof (Theorem 1). Let N := [q∗, q̄∗, 1, 1̄] ∈ R2n×4 de-
note the bases for ker(A). Further, let U S V > = N be the
(full) singular value decomposition (SVD) of N , where

U = [Q̄, Q] ∈ R2n×2n, (15)

with columns of Q̄ ∈ R2n×4 denoting orthonormal vectors
that span ker(A), and columns of Q ∈ R2n×(2n−4) denoting
orthonormal vectors that are the orthogonal complement of
Q̄. Consider the change of coordinates defined by p := U> q,
in which the closed-loop dynamics q̇ = Aq is

ṗ = U>AU p

=

[
Q̄>

Q>

]
A
[
Q̄ Q

]
p =

[
Q̄>AQ̄ Q̄>AQ
Q>AQ̄ Q>AQ

]
p. (16)

Let p := [p>1 , p
>
2 ]>, where p1 ∈ R4 represents the first 4

elements of p, and p2 ∈ R2n−4 is the vector of remaining
elements. Since Q̄ is a basis for ker(A) and A is symmetric,
we have Q̄>A = AQ̄ = 0, and from (16)[

ṗ1

ṗ2

]
=

[
0 0
0 Q>AQ

] [
p1

p2

]
. (17)

The eigenvalues of Q>AQ ∈ R(2n−4)×(2n−4) are the same
as the eigenvalues of A that are not associated to the kernel
vectors. From condition (ii) in the theorem, these eigenvalues
have negative real parts, and therefore p2 → 0 as t → ∞,
while p1 remains constant. Hence,

lim
t→∞

q = lim
t→∞

U p =
[
Q̄ Q

] [p1

0

]
= Q̄ p1, (18)

which shows each trajectory converge to a point in ker(A).

The following Lemma is used in the proof of Theorem 2.

Lemma 1. [35, Thm. 11.4] Consider the singularly per-
turbed system

ẋ = f(t, x, z, ε),

ε ż = g(t, x, z, ε),
(19)

where x ∈ Br ⊂ Rn, with Br representing the ball of
radius r about the origin, and z ∈ Rm. Assume that for
all (t, x, ε) ∈ [0, ∞)×Br × [0, ε0] it holds that

(i) f(t, 0, 0, ε) = 0 and g(t, 0, 0, ε) = 0.
(ii) The equation g(t, x, z, 0) = 0 has an isolated root

z = h(t, x) such that h(t, 0) = 0.
(iii) The functions f, g, h, and their partial deriva-

tives up to the second order are bounded for
z − h(t, x) ∈ Bρ ⊂ Rm.

(iv) The origin of the reduced system
ẋ = f(t, x, h(t, x), 0) is exponentially stable.

(v) The origin of the boundary-layer system
dy
dτ = g(t, x, y + h(t, x), 0), where τ = ε t, is
exponentially stable, uniformly in (t, x).

Then, there exists ε∗ > 0 such that for all ε < ε∗, then origin
of (19) is exponentially stable.

Remark 4. In Lemma 1, if Br = Rn, Bρ = Rm, and
the reduced and the boundary-later systems are globally
stable, from the proof presented in [35, Thm. 11.4] one
can conclude that the stability results hold globally, i.e., all
trajectories converge to the origin. This observation is used
in the following analysis.

Based on the procedure discussed in the proof of Theo-
rem 1, we now present the proof of Theorem 2.

Proof (Theorem 2). The closed-loop dynamics of single-
integrator agents under control law (13) is given by

q̇ = Aq + ε F (q) q (20)

where F (q) : R2n → R2n×2n is defined as

F (q) =


−
∑
j 6=1 F1j F12 · · · F1n

F21 −
∑
j 6=2 F2j · · · F2n

...
. . .

...
Fn1 Fn2 · · · −

∑
j 6=n Fnj

 ,
(21)

with 2× 2 off-diagonal block elements

Fij :=

{
f(dij − d∗ij) I if j ∈ Ni
0 otherwise

(22)



where I ∈ R2×2 is the identity matrix.
Consider the change of coordinates p := U>q defined in

the proof of Theorem 1, where U = [Q̄, Q] with columns of
Q̄ ∈ R2n×4 denoting orthonormal vectors that span ker(A).
In particular, Q̄ can be chosen as Q̄ = [Q̄1, Q̄2] with8

Q̄1 :=
[
q∗

‖q∗‖ ,
q̄∗

‖q̄∗‖

]
∈ R2n×2, Q̄2 :=

[
v1, v2

]
∈ R2n×2,

(23)
where v1, v2 ∈ R2n are orthonormal vectors that span 1, 1̄
and are orthogonal to Q̄1. In the new coordinates, the closed-
loop dynamics (20) is given by[
ṗ1

ṗ2

]
=

[
0 0
0 Q>AQ

] [
p1

p2

]
+ ε

[
Q̄>F Q̄ Q̄>F Q
Q>F Q̄ Q>F Q

] [
p1

p2

]
,

(24)

where F (q) is denoted by F for brevity. Due to the block
Laplacian structure of F , which implies F 1 = F 1̄ = 0, by
using the bases vectors defined in (23) it follows that

Q̄>F Q̄ =

[
λ I 0
0 0

]
∈ R4×4, Q̄>F Q =

[
H>

0

]
∈ R4×2n,

(25)
where I ∈ R2×2 is the identity matrix, and λ(p) : R2n → R,
H(p) : R2n → R2n×2 are defined as

λ :=
1

‖q∗‖2
q∗>F q∗ =

1

‖q̄∗‖2
q̄∗>F q̄∗, (26)

H := Q>F Q̄1, (27)

where for brevity we omitted the dependency of λ and
H on p. Let us denote the components of p1 ∈ R4 by
p1 = [p>11, p

>
12]>, p11, p12 ∈ R2, where p11 is the component

of state along the desired shape, and p12 is the translational
component. From substituting (25) in (24) we get[

ṗ11

ṗ12

]
= ε

[
λ 0
0 0

] [
p11

p12

]
+ ε

[
H>

0

]
p2

ṗ2 = ε
[
H 0

] [p11

p12

]
+Gp2

(28)

where G is defined as

G := Q>AQ+ εQ>F Q ∈ R(2n−4)×(2n−4). (29)

Since Q>AQ is negative definite by assumption, for ε small
enough from the boundedness of ‖F‖ (which holds due
to the boundedness of its elements) G remains negative
definite [34, Thm. 6.3.2]. Furthermore, from (28) we have
ṗ12 = 0, which shows that p12 remains constant. Hence,
by disregarding p12 in (28) the remaining dynamics can be
written as

ṗ11 = ε λ p11 + εH>p2,

ṗ2 = εH p11 +Gp2.
(30)

By representing (30) in the new time scale τ = ε t, which
implies d

dt = ε d
dτ , we get

ε
d p11

dτ
= ε λ p11 + εH>p2,

ε
d p2

dτ
= εH p11 +Gp2.

(31)

8Recall from Theorem 1 (i) that ‖q∗‖, ‖q̄∗‖ 6= 0.

Canceling ε from both sides of the first equation yields

ṗ11 = λ p11 +H>p2,

ε ṗ2 = εH p11 +Gp2,
(32)

where for brevity ṗ11, ṗ2 denote the time derivatives in the
new time τ .

System (32) is in the singularly perturbed format of
(19) in Lemma 1. Before applying the Lemma, we make
the following remarks: 1) Our analysis is based on the
desired formation equilibrium instead of the origin used in
the Lemma9. Furthermore, this equilibrium represents all
rotations of the desired formation on the plane. 2) The
origin q = 0 (i.e., coinciding agents) is an equilibrium of
(20). By linearizing (20) about this equilibrium, it can be
shown that the corresponding Jacobian matrix, and hence the
equilibrium, is unstable. It is straightforward to formulate a
modification of Lemma 1 and Remark 4 to include the above
remarks. Having this point in mind, we apply Lemma 1
directly on the system (32).

At the desired formation q = q∗, from p = U>q we have
p11 = p∗11 := Q̄>1 q

∗ and p2 = Q>q∗ = 0. Also, from (22)
it follows that at the desired formation F = 0. Taking these
into account, we proceed by showing that (32) satisfies the
conditions of Lemma 1:

(i) Since at the desired formation F = 0, from (26) and
(27) λ and H are zero. Thus, p11 = p∗11, p2 = 0 is an
equilibrium of (32).

(ii) Setting ε = 0 in (32) yields the quasi steady state
equation Gp2 = 0. Since G is negative definite by
assumption, p2 = 0 is the unique isolated root of the
quasi steady state equation.

(iii) By direct calculation, it is straightforward to show that
the right hand sides of (32) have bounded second order
derivatives for all p11 ∈ R2, p2 ∈ R2n−4.

(iv) By substituting p2 = 0 in (32) the reduced order
dynamics is derived as

ṗ11 = λ p11. (33)

Note that p2 = 0 implies that the agents are the desired
formation shape, i.e., p11 = c p∗11, where c ≥ 0 is the
scale of the formation. Since

dij − d∗ij < 0 if c < 1

dij − d∗ij = 0 if c = 1

dij − d∗ij > 0 if c > 1

(34)

from the definitions of F and λ in (21) and (26), and
since c = ‖p11‖/‖p∗11‖, it follows that

λ > 0 if ‖p11‖ < ‖p∗11‖
λ = 0 if ‖p11‖ = ‖p∗11‖
λ < 0 if ‖p11‖ > ‖p∗11‖

(35)

as illustrated in Fig. 7. Equation (35) implies that the
desired formation p11 = p∗11 (corresponding to c = 1)

9This does not change the analysis since one can use the transformation
q̃ := q − q∗ to shift the equilibrium to the origin.



	∗

Fig. 7. Value of λ versus the formation scale ‖p11‖.

is an asymptotically stable equilibrium for (33) [35, see
Example 4.2]. By direct computation, one can further
show that the slope of λ at c = 1 is a strictly negative
number, i.e., d λ

d c = k f ′(0) < 0, where k < 0 is a
constant scalar that depends on the desired formation
coordinates q∗. Hence, the equilibrium p11 = p∗11 is
almost10 globally exponentially stable [35, Thm. 4.13].

(v) Substituting ε = 0 in (32) gives the boundary-layer
system ṗ2 = Gp2. From negative definiteness of G it
follows that the origin is a globally exponentially stable
equilibrium of the boundary-layer system.

Consequently, from Lemma 1 it follows that for ε small
enough the desired formation is an exponentially stable
equilibrium of system (20). From Remark 4, and due to the
existence of an undesired but unstable equilibrium at the
origin, the (nonuniform) exponential stability holds almost
globally.
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