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Stabilization of Stiff Formations with a Mix of Direction and Distance Constraints

Adrian N. Bishop, Tyler H. Summers and Brian D.O. Anderson

Abstract— Heterogenous formation shape control with a mix
of inter-agent distance and bearing constraints involves the
design of distributed control laws that ensure the formation
moves such that these inter-agent constraints are achieved and
maintained. This paper looks at the design of a distributed
control scheme to solve the mixed constraint formation control
problem with an arbitrary number of agents. A gradient
control law is proposed based on the mathematical notion of
a stiff formation structure and a corresponding stiff constraint
matrix (which has origins in graph theory). This work provides
an interesting and novel contrast to much of the existing
work in formation control where distance-only or bearing-
only constraints are typically maintained. A stability analysis
is sketched and a number of other technical results are given.

I. INTRODUCTION

The general distributed formation control problem involves
a group of agents which are tasked with maintaining a pre-
scribed geometrical formation described in terms of relative
distance and/or angular constraints.

Typically, when formulating any distributed formation
control problem one must specify what geometrical (inter-
agent) constraints are to be controlled by each individual
agent and what sensing (or measurements) are available to
each agent. There is a wide literature that considers distance-
only constraints [1]-[7] and relative position sensing. In [8]
bearing-only constraints are considered with relative position
measurements. There are also a number of papers [9]-
[12] that consider angular-type constraints with bearing-only
measurements. In [13] distance-only constraints are consid-
ered along with distance-only sensing (to a larger set of
neighbours than those to which constraints are considered).
In [14] a three-agent formation control problem is considered
with a mix of distance and bearing constraints and a mix of
distance-only and bearing-only sensing.

In this work, the shape of a formation is controlled by
actively, and in a distributed fashion, controlling a mixed set
of inter-agent bearing and distance constraints using relative
position measurements. Specifically, our contribution is the
design and analysis of a novel distributed controller for
an arbitrary number of agents with a heterogenous set of
constraints. Our work is similar in design and analysis to
the work in [5], [8]; however in [8] bearing-only constraints
are solely considered and in [5] distance-only constraints are
solely considered. We present a unified theory now where
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an (essentially) arbitrary mix of distance and bearing only
constraints between neighbours can be accommodated.

A stability and convergence analysis is undertaken simi-
larly to [5]. In contrast to much work on formation control,
no restriction to triangular formations applies.

Many existing formation control laws, particularly those
with distance-only constraints, do not provide global stabil-
isation of the desired formation shape due to the existence
of undesired equilibria [6], [15], [16]. Another key benefit
displayed in the new work is that with a mixture of distance
and bearing constraints many of these undesired equilibria
sets vanish; e.g. collinear formations cannot be controlled
with distance-only constraints [5] while they can be con-
trolled with mixed constraints. Moreover, with bearing-only
constraints [8] the scale of the formation is uncontrollable
whereas with mixed constraints one can control the scale.

II. STIFFNESS THEORY WITH TRULY MIXED DIRECTION
AND DISTANCE CONSTRAINTS

The idea of stiff point formations discussed herein follows
[17] and is related to rigid formations [4] and parallel rigid
formations [18], [19] and their graph origins [20].

Consider n agents indexed by V = {1,2,...,n} and with
positions p; € R2. Suppose now a graph G(V, ) is defined
onV =1{1,2,...,n} where £ C V x V defines a set of m
links (7, j) between agents ¢,j € V. We define the so-called
neighbour sets accordingly (i,j) € £ = j e N; & i€ Nj.

Definition 1 (Formal Point Formation). A point formation
Fp(G) is defined by a graph G(V,E) and a map p : V — R?
which takes agent i in V to its respective position p; in R,

Now suppose we create two (not necessarily, but possibly,
disjoint) sets £z C £ and Ep from £ C £ such that EgUEP =
E. We suppose that Eg # () and Ep # .

Define a graph G(V, g, Ep) consisting of two edge sets.
When (i,7) € £g and (4, 7) € Ep then G(V, Ep, Ep) has two
edges between agents ¢ and j.

Definition 2 (Formal Point Formation (Alternate Defini-
tion)). A point formation F,(G) can then be defined by a
graph G(V,E5,Ep) and a map p : V — R? which takes
agent i in V to its respective position p; in R2.

Let ¢;; denote the bearing to agent j at agent ¢ and

B = {¢i €10,27) : (i, j) € Es} (1)
where ¢;; = (7 + ¢;;) mod(27) and
D' ={d% R :(i,j) € Ep} 2)

where d; = ||p; — p;||* = d3; denotes the range squared.
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Assumption 1 (Global Coordinate System). There exists a
global coordinate frame within which agent positions and
inter-agent bearings are measured against.

This assumption can be eliminated in the design of the
control algorithm but for notational and setup simplicity we
leave this assumption in place.

Definition 3 (Equivalent Formations). Two formations F,

and F, are said to be equivalent if their underlying graphs

G(V,Ep,Ep) are identical and the set of bearing mea-
/ /

surements B and distance measurements D in one of the

formations is equal to the same sets in the other.

Consider a formation F,, and a continuously parameterised
formation trajectory defined by a time-varying q;(¢) for all
t € V such that F,; is defined by a time-varying map
q(t) : V — R% Both F, and F,(t) are defined by the same
underlying G(V, £). Suppose q;(0) = p; for all i. Then for
each (i,j) € € consider the constraint

(pi — pj) - (@i — q;) = di €)]
The time-derivative of this constraint is then
(Pi —pj) (4 —q;) =0 4

If such a constraint holds for each (i,j) € & then the
solutions ¢; of the corresponding |£| = m homogenous
linear equations defines an infinitesimal formation motion
with respect to F,.

Similarly, consider a formation F,, and q;(¢) for all i € V
defining F ;) as before with both 7, and F,(t) defined by
the same G(V, ). Suppose q;(0) = p; for all 4. For each
(,7) € € consider the constraint

(Pi—pj)" (i —q;)=0 (5)

where the operator (-)* rotates a plane vector by /2
counterclockwise. If such a constraint holds for each (i, j) €
€ then F, and F, are said to be parallel drawings [18], [19]
of each other in the sense that for each (7, j) € £ the vectors
(pi —pj) and (q; — q;) are parallel. The time-derivative of
this constraint is then

(pi —pj)" - (4 —¢q;) =0 (6)
and the solutions ¢; of the corresponding |£| = m ho-

mogenous linear equations defines an infinitesimal formation
motion with respect to F,.

Definition 4 (Formation Shakes). Assume F, is given and
Fq is defined on the same underlying graph G(V,Ep,Ep).
Then F is said to be a shake with respect to F,, if and only
if (6) is satisfied for all (i,j) € Ep and (4) is satisfied for
all (Z,j) € &p.

Thus, F ) is a shake with respect to F), if
(Pi —pj) - (@i(t) —q;(t)) = 0, (i,j)€ép
(pi =) - (@) —q;(t) = 0, (i,j)€&s (D
which can be written in matrix form as

R(p)q=0 (®)

where p = [p] ps ... p,]" and similarly for q. R(p) €
R™*27 ig called the constraint matrix for formations with

distance and bearing constraints [17].

Definition 5 (Stiff Formations). A point formation F,, is said
to be a stiff formation if all shakes of F,, can be obtained
via translations.

Example 1. Consider four agents indexed by 1, 2, 3, and
4. An example of a stiff formation is illustrated in Figure
1. Conditions for testing and confirming stiffness are given
subsequently.
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Fig. 1. A stiff formation defined by the interaction graph G(V, &) and
a random embedding of the four agents on the plane. In this case V =
{1,2,3,4} and € = {(1,2),(1,3),(1,4),(2,3),(3,4) }.

The graph G(V, &) associated with the formation has 5
edges while the graph G(V,Ep,Ep) associated with the
formation has 6 edges (two between agents 3 and 4).
Edges (1,2) and (1,3) correspond to distance constraints,
edges (1,4) and (2,3) correspond to bearing constraints
and edge (3,4) corresponds to both a distance and bearing
constraint. The edges, arranged in lexicographical order, are
{(1,2),(1,3),(1,4),(2,3),(3,4)}. The constraint matrix for
the formation is given by (9). The constraint matrix is a
6 x 8 matrix in this example. The rows correspond to the
independent constraints in the graph associated with the
formation and the columns correspond to the agents.

The convention for ordering the rows of R(p) outlined in
the following assumption.

Assumption 2. We suppose that the constraints R(p)q =0
in (8) are written such that the rows corresponding to the
bearing constraints are written on top of those corresponding
to the distance constraints and that within this partitioning
the rows are ordered lexicographically with respect to the
edge labelling in the graph G(V,Ep,Ep); see (9).

We highlight now a test for stiffness.

Theorem 1. A formation F, of n agents is stiff if
rank(R(p)) = 2n — 2.

Refer to (8) and note the condition rank(R.(p)) = 2n —2
implies the kernel of R(p) is of dimension 2. It is easily
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((p1 — F’4)L)T 0 0 ((pa — pl)L)T
0 (P2 —p3)")" | ((ps— pz)i)l o
(p1 —Opz)—r (P2 —Opl)T ((p3 _5)4) : ((P4 _533) ) =R(p) )
(p1—p3)" 0 (ps —p1)" 0
0 0 (p3 — 1)4)T (pa — p3)T

shown that this is the lowest dimension the kernel can take
on and it corresponds to the fact that the trajectories of the
formation at q in (8) are free up to translations (accounting
for two linearly independent solutions g to (8)).

Definition 6 (Generic Formations). A formation is said to be
in generic position p in R?" if the set of its coordinates are
not algebraically dependent; e.g. see [4] for more details.

Theorem 2. Consider two formations F, and F in generic
positions defined on the same underlying graph G(V,E).
Then F, is stiff if and only if Fq is stiff.

This theorem underpins the following definition.

Definition 7 (Generically Stiff Graph). When F, is stiff
for all generic points p then we say the graph G(V,E)
associated with F,, is generically stiff.

We often refer also to the formation F,, whose graph
G(V, &) is generically stiff as a generically stiff formation.

III. THE STIFF FORMATION CONTROL PROBLEM

Consider again the n agents indexed by V = {1,2,...,n}
and with positions z; € R2. Let ¢ € [0, 00) denote time. The
motion of agent ¢ is governed by

d .
—Z;, = Z; = 4,

dt
where u; is a control vector to be determined. The com-

(10)

bined motion of the formation is z = u where z =
T, T T
[zy 29 ... 2z,] etc

Suppose agent ¢ can measure the bearing and range (or
relative position) to agent j iff j € N; < i € Nj where N is
the set of neighbours of ¢. The sets V = {1,2,...,n} and NV,
Vi € V define a graph that represents the measurements be-
tween the agents. Denote this sensing graph by Ga(V, Ear)
where Ex¢ C V x V is the set of m (measurement) links
(i,7) where (4,7) exists iff j € N; < i € Nj.

The set of bearing measurements B is

B(z) = {¢i; € 0,2m) : i < j, (i,)) € Em} (11)
where ¢;; = (7 + ¢j;) mod(27) and |B| = m.
Define also a set of range measurements
D(z) = {d}; eR* :i <j, (i.j) €Em}  (12)
where |D| = m and di; = ||z; — z;||> = d5;. If an agent

actually measures d;; then it also knows d3;.

Suppose now a constraint graph Ge(V, g, Ep) is defined
onV ={1,2,...,n} and where &g C Exq and Ep C Epmg
and £g U Ep = Epq. We suppose that £5 # () and Ep # 0.

We define some so-called neighbour sets accordingly
(i,j) € & = j € NP & i e NP and (i,j) € &p =
jeNP sieNP.

Now define a set of desired bearing values

B. = {¢j; €[0,27) :i < j, (i,j) € Ep} (13)

where ¢5; = (7 + ¢5;) mod(27) and B. C B(z). Similarly,

D.={dj; eR" :i < j, (i,5) € Ep} (14)
where df; = ||z; — z;||> = d§; and D, C D(z). Note df; is

a squared distance.

Assumption 3. The formation F,(Ge(V,Eg,Ep)) is gener-
ically stiff and z; # z; at t =0, Vi,j € V.

This assumption does not imply rank(R(z)) = 2n — 2
since z at ¢ = 0 may not be a generic point.

Definition 8 (Realizable Constraint Sets). Assume a forma-
tion F, is given. Then a pair of sets B’ and D’ of bearings
and distances are realizable if and only if each ¢;; € B’
and d;; € D’ can exist between the respective p; and p;
simultaneously.

Assumption 4. The set of desired bearing values B, and
desired distance values D, that define the desired formation
shape, scale and orientation is realizable. Moreover, there is
a value ¢; for each (i,j) € &g and a value dS; for each
(i,7) € Ep and due to Assumption 3 the desired formation
is generically stiff.

Suppose now that one has a set B’ of bearings indexed by
edges in some subset of £, which includes £z. Then

b = column(B'; £p) (15)

defines a |Eg| x 1 column vector by stacking the bearings in
B’ that are indexed by edges in £g. The bearings are stacked
according to a lexicographical ordering such that ¢;; is above
¢q if j <l and ¢;; is above ¢y if ¢ < k. Similarly, the same
idea applies given a set D’ of distances and column(D’; Ep).
Thus define b(z) = column(B(z);E) and similarly
define d(z) = column(D(z);Ep). Similarly define b, =
column(B,; £g) and similarly define d. = column(D,; Eg).
Both b, and d. are formed by stacking all the constraints
in (13) and (14) respectively into column vectors. On the
other hand b(z) and d(z) are formed by stacking (typically
a subset of) measurements such that they correspond row-
wise with b, and d. in terms of their respective indexing.
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Note b(z) is determined by the bearing measurements and
is a function of z whereas b, is a vector of desired bearing
constraints and is constant. Similarly for d(z) and d..

Now it possible to define an error vector as

e=[b(z)" dz)']" ~[b; d/]" (16)

and note e — 0 for some formation F, implies the formation
is equivalent to the desired formation.

Problem 1. The formation control problem is to design a
control input w;, Vi € V, as a function of at most ¢;;, d;j,
di; and ¢S, for all j € N;, such that e — 0.

Before outlining the control law proposed to solve Prob-
lem 1 we note that the Jacobian of e € R™ evaluated at a

point p € R?" is given by
Je(p)

Il
<
o

a7

where Je(p) € R™*2n,
Let D = d(z) "I where I is an identity matrix. The (‘"
element of a m-vector x is (x : £). We then have

0
J®) = bla)
z=p
9(b(z):1) d(b(z):1) ]
921 g —p, 92Zn  |g,=p,
B(b(az)ichl) B(b(g):ll@c\)
“1 z1= %n Zp=Pn
= o(d(z)1)| i 8(d(z):1) i
0z1 21=p1 0Zn Zn=Pn
0(d(2):|Dc|) 0(d(z):|De|)
L 9z z1=p1 Zn Zp,=Pn
-D ' o
- [0 rw

where R(p) is the constraint matrix for the formation
Felomp

Example 2. Consider four agents indexed by 1, 2, 3, and
4 and the stiff formation illustrated in Figure 1 of Example
1. Again, the edges, arranged in lexicographical order, are
{(1,2),(1,3),(1,4),(2,3),(3,4)}. The constraints associ-
ated with each edge are as in Example 1.

[b(z)" d(z)T]T = [p14 o3 P4 diy diy d3y)"

where each measured ¢;; or d;; is a function of z; and z;.
The constraint matrix for the formation is given by (9). The
Jacobian Jo(p) of the error vector e is given by (20) and
is of the same dimension as (9). The rows correspond to
the edges in the graph associated with the formation and
the columns correspond to the agents. We note again that
an agent i that knows ¢;; and d;; also knows ¢;; and dj;

19)

and vice versa. Thus, given the measurements ¢;; and d;;
at agent i for j € N it follows that the rows of Jo(p)
corresponding to an edge incident on i are known locally
at agent i and the two columns corresponding to the agent
itself are also known locally.

The proof is immediate from (18). In particular, the
sparsity pattern of both R(p) and J.(p) is identical for an
arbitrary formation F,.

A. The Proposed Control Law

The control law proposed is a gradient-type control law,

associated with the function 1eTe and can be written as

u 2 —(Ve)'e

= —Je(z)Te
D! o
_ T
= R'(2) [ 0 _I } e 21
from (18), and there results
z = u = —Jg(z)'e
D! o0
_ T
= R'(2) [ 0 _I ]e (22)

More specifically, the control law for an individual agent is

Zi = u;
- coS ¢; 9 .
- ez/\f:,D { sm@j ] dj_dij)
1 oS di; .
+ 4 { ,Sianij } (¢ij — &5;)  (23)

JENE

The first summation is a superposition of |[NP| vectors
pointing away from the neighbours of agent ¢ and with
which there is a distance constraint between agent ¢ and that
neighbour. The second summation is a superposition of |[NV7|
vectors pointing perpendicular to those links leaving agent
1 and corresponding to a bearing constraint. Each vector is

(18) scaled by an appropriate error term (which may be negatively

signed) and those corresponding to bearing-only constraints
are also scaled by the inverse range between the agents.

The controller proposed in this work is similar in principle
to the controller proposed in [5] for formation control with
range-only constraints and that proposed in [8] for bearing-
only constraints. More generally, there is a close connection
between this work and that in [1], [4]-[6], [8], [21] due to
the relationship between rigidity, parallel drawings and the
theory of stiffness used herein [17], [20].

The novelty of this work, compared to e.g. [S], [8], is that
we allow for a truly heterogenous constraint set made up of
both distance and bearing constraints. The desired formation
is invariant in this case only up to translation.

The existence and uniqueness of the coupled system
of differential equations (23) is guaranteed using standard
arguments [5], [22] if the trajectories over ¢ € [0, 00) or as
t — oo are such that d;; > 0 for the subset of inter-agent
distances (i,7) € Enm.
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r_ cosdia sin 14 cos ¢14 _ singig
2, &, 0 0 0 0 e TE
0 0 _ COS a3 sin ¢a3 cos ¢a3 _ sin ¢ag 0 0
3, d3s d3; Cfs )
0 0 0 0 _ coS ¢3g sin ¢34 CoS ¢34 _ sin¢ag _
. dsy d3, dsy diy = J(3)
COS P12 12 | —cosgiz  —singia 0 0
cos g3 sin i3 0 0 —cos¢i3 —singis 0 0
L 0 0 0 0 cosgzy  singzy | —cos¢zy  —singay |

Lemma 1. Ler Z = \71| > icy Zi- Then z = 0.

The next lemma concerns the controller and its invariance
to the global coordinate system chosen.

Lemma 2. For all w € R? it follows that Jo(z) =
Je(z + (1 ® w)) where 1 is an n-dimensional column vector
of all 1’s. Moreover; for every orthogonal matrix X € R?*?
it follows that Jo(z)(I, @ X)T = Jo((In ® X)z) where 1,
is a n X n identity matrix.

IV. STABILITY RESULTS
A. Minimally and Generically Stiff Formations

We know that a generically stiff formation F, is one
that can be characterized entirely by the associated graph
G(V,Ep,Ep) defining the formation interactions; e.g. see
Theorem 1. It is also the case that a necessary condition
for the formation to be (generically) stiff is that |Eg U&p| =
m>2V|—2=2n—2and s # 0 and Ep # 0.

Definition 9 (Minimally Stiff). Suppose £z # () and Ep #
0. A formation F, with |Eg U&Ep| = m = 2|V| —2 =
2n — 2 at z € R?" is called a minimally stiff formation if
rank(R(z)) = 2n — 2. A formation F, with |Eg U Ep| =
m = 2|V|—2 = 2n—2 is called a minimally and generically
stiff formation if and only if it is generically stiff.

Definition 10 (Fundamental Cycles [23]). Consider a con-
nected graph G(V, E) with a spanning tree Tg(V,E(Tg)) C
G. Then for every edge (i,j) € £\ E(Tg) there is a unique
cycle C in Tg(V,E(Tg) U (4,7)) and these cycles are called
fundamental cycles of G with respect to Tg.

There are (€] —V +1) independent cycles in a connected
graph G(V,€). Let C(Tgv.e)) = {Ci(To.e)) NI be
the set of fundamental cycles of G(V, £) with respect to Tg.

Suppose G(V, £) is not connected but is formed by a set
€g(v,e) of subgraphs of connected graph components. The
number of connected components is |€g(y ¢)| and is bounded
below by 1 and above by |V|. A spanning tree 73 can be
associated with each component H € €g(y ¢) and the set
of spanning trees associated with the components in €g(y ¢)
(one tree associated with each component) is denoted by
Tg(v,e)- In such a case let C(Tg(y,¢)) = {Ci} be the set of
fundamental cycles of G(V, £) with respect to Tg(y ¢).

Lemma 3. Suppose F, is a minimally and generically stiff
formation. Let C(Tg(y g,)) be a set of fundamental cycles in
G(V,Ep) and let C(Tg(y ¢,,)) be a set of fundamental cycles

in GV, Ep). Then rank(R(z)) drops by 1 for the existence
of each:
1) Cycle C; € C(Tg(v,es)) where all agents defining C;
are collinear.
2) Cycle C; € C(Tg(v,e,,)) where all agents defining C;
are collinear.

The stability analysis in this subsection concerns mini-
mally and generically stiff formations F, and the resulting
differential system (22). Consider the set

Z*={ze€R*™:e=0} (24)

of equilibrium points corresponding to the formation F,
reaching the desired shape, scale and orientation defined by
b, and d.. Each formation that lives in Z* is generically
stiff due to Assumptions 3 and 4.

Definition 11 (Connected Space). A topological space X is
said to be disconnected if there exists two open sets U # ()
and W # O such that U "W =0 and X =UUW. If X is
not disconnected than it is said to be connected.

The maximal connected subsets of a nonempty topological
space are called the connected components of the space.

Lemma 4. The set Z* is connected and each z' € Z* can
be obtained from z € Z* by translation.

Unfortunately, the set Z* is not the only equilibrium set
for the differential system (23) and minimally stiff formations
under Assumptions 3 and 4. Consider the set

D™ O}ezo} (25)

0o -I
and note that it is trivial to conclude that z = 0 if and only
if z € Z,. A question remains as to when Z* = Z,.

Z, = {z €R™: R (2) {

Theorem 3. Suppose Assumptions 3 and 4 hold and the
formation F, is minimally and generically stiff. Assume that
rank(R(z)) = m =2n — 2 for all t € [0,00). Then z = 0
if and only if z € Z*.

Proof: The if part of the theorem is obvious from (22).

If rank(R(z)) = m = 2n — 2 then R(z) has full (row) rank
and the kernel of RT(Z) is trivial. Thus, Z* = Z,. O
We know from Lemma 3 that rank(R(z)) drops by 1 for
the existence of each fundamental cycle of collinear agents
in the respective constraint graphs. Thus, any undesirable
equilibria in { 2.\ Z*} seemingly coincide with the existence
of such collinear cycles. We conjecture, in the spirit of [5],
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that any equilibria in {Z, \ Z*} are non-attractive. Note
that in distance-constraint-based formation control using the
rigidity matrix [5], every initial collinear formation will
remain collinear. The situation here is less troublesome
in this respect as collinear formations do not generically
correspond to undesired equilibria when bearing-constraints
are introduced (thus an advantage of the general mixed-
constraint framework introduced).

Analysis concerning the state space and the equilibrium
sets {Z, and Z*} is the topic of further work.

Theorem 4. Suppose Assumptions 3 and 4 hold and the
Sformation F, is minimally and generically stiff. Then Z* is
locally asymptotically stable and there exists a neighbour-
hood U of Z* such that for all z(0) € U there exists a point
z* € Z* such that lim;_, .z = z*.

Proof will appear elsewhere. The theorem’s validity is
not surprising given the gradient-like nature of the system
and the structural similarity between the differential system
considered here and that considered in [5].

B. Generically Stiff Formations

The stability analysis in this subsection concerns generi-
cally stiff formations F, and the resulting differential system
(22). The equilibrium set considered in this subsection is the
desired one (24). However, we note that in general, non-
minimally stiff formations it follows that Z* C Z,.

Theorem 5. Suppose Assumptions 3 and 4 hold and the
formation F, is generically stiff. Then Z* is locally asymp-
totically stable and there is a neighbourhood U of Z*
such that Vz(0) € U there exists a z* € Z* such that
lim; 0z = 2*.

The proof of the preceding theorem will appear elsewhere
due to space limitations.

V. CONCLUSION

This paper looks at the design of a distributed control
scheme to solve the formation shape control problem with
a mix of distance and bearing constraints and an arbitrary
number of agents. In particular, a gradient control law is
proposed based on the notion of a stiffness constraint matrix.
An outline stability analysis is provided.
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