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Conditions and strategies for uniqueness of the solutions to cooperative
localization and mapping problems using rigidity theory

Iman Shames, Tyler H. Summers, Farhad Farokhi, Rohan Shekhar

Abstract— In this paper, we use the rigidity theory to address
two problems encountered in cooperative localization and
mapping. First, we consider the problem of map merging
in scenarios where a group of mobile agents explore an
environment. We establish conditions for the agents to be
able to exchange the environmental information that they have
gathered in their own local coordinate frames. We relate these
conditions to the sensing capabilities of the agents. Second, we
study a scenario where a group of mobile agents in a network
need to localize their positions. It is assumed that there are not
enough measurements to achieve this task at any time instance.
We propose a coordinated motion strategy that enables the
agents to achieve this goal over a period of time. Numerical
simulations are provided to demonstrate the results.

I. INTRODUCTION

The problem of deploying sensor platforms for monitoring
and exploration purposes has been studied in different scenar-
ios over the last few years, e.g. habitat monitoring [1], forest
fire detection [2], search and rescue [3], and exploration and
map building [4].

Often the sensors do not have access to a global coordinate
frame. This is the case when the sensors operate in settings
where there is no reliable access to the global positioning
system (GPS), as in contested [5] or dense urban environ-
ments [6], [7]. As a result, the spatial information gathered
by each sensor platform is not readily useful to other sensors.
Thus, as a first step to harness the potential of cooperation in
such scenarios, the sensor platforms should be able to “trans-
late” the information gathered by all the sensors to their own
local coordinate frames. This is one of the main challenges
of cooperative localization and mapping. The problem of
cooperative localization and mapping has been the target of
many recent studies, e.g. [8], [9], [10], [11], [12]. However,
to the best of our knowledge, minimum requirements for the
success of cooperative localization algorithms are not fully
understood.

In this paper, we particularly focus on understanding the
conditions under which each of the sensors can translate
the information gathered by the other sensors to their own
coordinate frame based on the type and the number of
measurements collected by each of the agents. Moreover, we
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establish certain motion strategies that ensure the satisfaction
of the aforementioned conditions. In other words, based
on the sensing capabilities of the sensors, we determine
the information type and the number of times that such
information needs to be exchanged between the sensors, so
that they can use each others’ measurements in the future.

We draw from distance-based rigidity theory to establish
the results presented in this paper. The application of rigid
graph theory to distanced-based localization problems in
sensor networks has been the focus of many recent studies
[13], [14], [15], [16], [17]. Most of these studies focused
on characterizing rigid graph properties that allow unique
localization solutions for different networks based on the
type of measurements that individual agents can collect [18],
[19], [20], [13], [14], [16].

Here, we focus on the scenarios that the sensors can
only measure their distances to other sensors or points of
interest. First, we introduce the necessary preliminaries in
Section II. In Section III, we study the case where multiple
mobile platforms explore the environment and determine
the necessary conditions so that each sensor pair can use
the exchange information. Then in Section IV, we study
what conditions need to be satisfied so that sensors can
compute the position of all the other sensors in their own
local coordinate frame by employing local motions. We
propose a motion strategy for each sensing platform that
ensure the satisfaction of these conditions. We demonstrate
the applicability of the results proposed in this paper via
numerical examples in Section V. Concluding remarks are
presented in Section VI.

II. PRELIMINARIES

A framework is a graph G = (V(G),E(G)) with vertices
in a set V(G) = {1, 2, . . . , n} and the edge set E(G) together
with a map π(i) : V(G) → R2. Denote such a framework
by the ordered pair (G, π) with G being its underlying
graph. For simplicity of notation denote π(i) as πi which
is the coordinate vector associated with vertex i ∈ V(G).
Suppose a set of positive real numbers (representing inter-
vertex distances) D = {dij : {i, j} ∈ E(G)} is defined. The
framework is a realization if it results in ‖πi − πj‖ = dij
for any {i, j} ∈ E(G). The two frameworks (G, π) and
(G, π̄) are equivalent if ‖πi − πj‖ = ‖π̄i − π̄j‖ for any
{i, j} ∈ E(G). The two frameworks (G, π) and (G, π̄) are
congruent if ‖πi − πj‖ = ‖π̄i − π̄j‖ for all pairs i and j
whether or not {i, j} ∈ E(G). This is equivalent to saying
that (G, π) can be obtained from (G, π̄) by an isometry of
R2, i.e. a combination of translation, rotation, and reflection.

CONFIDENTIAL. Limited circulation. For review only.

Preprint submitted to 54th IEEE Conference on Decision and Control.
Received March 24, 2015.



2

Definition 1 (Rigidity): A network (G, π) is rigid if there
exists a sufficiently small positive ε such that if (G, π̄) is
equivalent to (G, π) and ‖πi− π̄i‖ ≤ ε for all i ∈ V(G) then
(G, π̄) is congruent to (G, π). Intuitively, a rigid network is
one that cannot flex.
There exist rigid networks (G, π) and (G, π̄) which are
equivalent but not congruent.

Definition 2 (Global Rigidity): A network (G, π) is glob-
ally rigid if every network (G, π̄) which is equivalent to
(G, π) is also congruent to (G, π).
Generally, rigidity and global rigidity are generic properties
of networks. This means that the rigidity (global rigidity) of
a generic realization of a graph G depends (almost) only on
the graph G and not the particular realization.

It should be noted that a framework is an abstraction of any
network with vertices in some coordinate frame. However,
even given the graph and distance set of a globally rigid
framework, there is not enough information to position the
framework absolutely in R2. In fact, the framework can only
be positioned to within a translation, rotation, or reflection.
Eliminating this non-uniqueness requires further knowledge,
typically the positions of at least three vertices. The problem
of assigning positions to the vertices of a network that satisfy
some given distance constraints is termed the localization
problem and formally is defined below.

Definition 3 (Distance Based Network Localization):
A network with the underlying graph G is said to be
localizable if πi, ∀i ∈ V(G) can be determined uniquely
given the positions of some of the sensors πj , j ∈ V(G)′,
V(G)′ ⊂ V(G), and the set of distances dij .
In the rest of this paper, we relate the problems that arise
in cooperative localization and mapping scenarios to the
distance based network localization problem defined above.
This enables us to provide conditions on when one can solve
these problems.

III. COOPERATIVE MAPPING

Consider N mobile agents indexed by the set N =
{1, . . . , N} where the position of each agent i in a global
coordinate frame at some time t is represented by pi(t).
Moreover, assume there are m stationary environmental
features, termed landmarks, at positions `i′ ∈ R2, i′ ∈
{1, . . . ,m}. It is assumed that the each agent i does not
have access either to the global values `i′ , i′ ∈ {1, . . . ,m}
or its position pi(t). However, at any given time it is assumed
that each agent i has access to its position in its own local
coordinate frame. Denote this position as pi,i(t). The goal
of each agent is to generate the map of the environment in
its own coordinate frame. This entails agent i determining
the position of the landmarks in {1, . . . ,m} in its own
coordinate frame. We denote the position of landmark i′ in
the coordinate frame of agent i by `i,µi(i′) where µi(i′) is
the label chosen for landmark i′ by agent i. We assume that
the µi(i

′) 6= µj(i
′), i.e. the agents do not have access to

a global labeling system for the landmarks. Moreover, it is
assumed that each landmark i′ is discovered by agent i if
‖pi(t) − `i′‖ ≤ rd where rd > 0 is termed the detection

radius. Here, we note that in this paper we do not concern
ourselves with the exact method that is employed to estimate
the position of the landmark in the coordinate frame of the
agent. The only important point is that such estimation is
possible. For example, one can refer to [21], [22] for more
information on methods and techniques for estimating the
position of a landmark using distance information only.

Let Ai(t) be the set of all `i,µi(i′) such that landmark i′

has been discovered by agent i until time t. Moreover, if at
some time t, ‖pi(t) − pj(t)‖ ≤ rd then the following two
actions occur;

(i) Agents i and j add the tuples (t, pi,i(t), ‖pi(t)−pj(t)‖)
and (t, pj,j(t), ‖pi(t)−pj(t)‖) to local sets Bij(t) and
Bji(t), respectively.

(ii) Agent i transmits Ai(t) and Bij(t) to j and vice versa.
Note that at any given time |Ai(t)| is the number of the land-
marks discovered by agent i and |Bij(t)| = |Bji(t)| is the
number of the times that agents i and j have encountered and
exchanged their local maps. In the first problem considered in
this paper we are interested in understanding the conditions
that allow agent i to learn about the landmarks that it has
not yet visited through exchanges of the type described above
with other agents. We have the following problem.

Problem 1: Let ‖pi(t)−pj(t)‖ ≤ rd at some time t. What
are the conditions so that `i,µi(i′) can be computed and added
to Ai(t) for all i′ where `j,µj(i′) ∈ Aj(t)?
First we make the following assumptions.

Assumption 1: The agents have access to a global time
reference1.

Assumption 2: At any given time t, each agent i has
access to its position in its own local coordinate frame. In
other words, pi,i(t) is known for all t.
To be able to address the problem we define the following
graphs and frameworks for each agent i. Let Xi(t) be the
complete graph over the vertex set {i′ : `i,µi(i′) ∈ Ai(t)},
and Di(t) be a set of distances associated with the edges of
Xi(t), i.e.

Di = {‖`i,µ(i′) − `i,µ(j′)‖ : `i,µ(i′), `i,µ(j′) ∈ Ai(t)}.
Similarly, let Hij(t) be a graph with the vertex set

V(Hij(t)) = {iτ : ∀τ ∈ Ti,ij} ∪ {jτ : ∀τ ∈ Tj,ij},
where

Ti,ij = {τ : ∃(τ, p, d) ∈ Bij(t)}
and

Tj,ij = {τ : ∃(τ, p, d) ∈ Bji(t)}.
Note that because of Assumption 1 Ti,ij = Tj,ij . Thus we
can define the edge set as

E(Hij(t)) = {{iτ , jτ} : τ ∈ Ti,ij}.
Moreover, let the set Dij(t) (which is equivalent to Dji(t))
be the set of distance measurements collected at each en-
counter between i and j. These distances correspond to the
edges of Hij(t).

1This assumption is not crucial, but it greatly simplifies the notation and
thus is adopted.
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V(Xi)

V(Xj)

jt3

jt2

jt1

jt0

{j⌧ : 8⌧ 2 Tj,ij}
it0

it1

it2

it3

{i⌧ : 8⌧ 2 Ti,ij}

Fig. 1: The blue and red circles denote the set of landmarks
discovered by i and j respectively. The squares correspond
to the cases where ‖pi(t) − pj(t)‖ ≤ rd. The solid lines
correspond to the distance measurements, i.e. E(Hij(t)).

Assuming that the agents i and j have an encounter at
some time t, i.e. ‖pi(t)− pj(t)‖ ≤ rd, After conducting the
distance measurements and the information exchange of the
type outlined above, both agents will have access to a graph
Gij(t), where

V(Gij(t)) = V(Xi(t)) ∪V(Xj(t)) ∪V(Hij(t)), (1)
E(Gij(t)) = E(Xi(t)) ∪E(Xj(t)) ∪E(Hij(t))

∪ {{l, iτ} : l ∈ V(Xi(t)), τ ∈ Ti,ij}
∪ {{l, jτ} : l ∈ V(Xj(t)), τ ∈ Ti,ij}. (2)

An example for the vertex sets described above is presented
in Fig. 1.

Additionally, the agents have access to a distance set
Dij(t) with all the distances associated with the edges in
E(Gij(t)). It can be observed that agent i knows all the
positions associated with the vertices in

V ′ij(t) = V(Xi(t)) ∪ {iτ : ∀τ ∈ Ti,ij} (3)

in its own coordinate frame. Similarly, agent j has access to
the positions of the vertices in V ′ij(t) where

V ′ji(t) = V(Xj(t)) ∪ {jτ : ∀τ ∈ Ti,ij}. (4)

At any given time if agent i is capable of solving the
localization problem associated with a network with the
underlying graph Gij(t) and distance set Dij(t) then it can
find the position of all the landmarks that agent j has visited.
Thus, addressing Problem 1 is equivalent to finding the
conditions for unique localization of a network with the
underlying graph Gij(t) and distance set Dij(t) in the local
coordinate frames of agents i and j. We have the following
result.

Proposition 1: At time t, for all i′ such that `j,µj(i′) ∈
Aj(t), `i,µi(i′), can be computed and added to Ai(t) if
|Bij(t)| ≥ 4 and 6 ∃{(t, p, d), (t̄, p, d̄)} ⊆ Bij(t) with t 6= t̄.

Proof: Consider a network with the underlying graph
Gij(t) and distance set Dij(t). It is uniquely localizable in
the coordinate frame of agent i if it is globally rigid and
|V ′ji(t)| ≥ 3. It can be seen that Gij(t) is composed of two

t0

t1

t2G(t2)

G(t1)

G(t0)

it2

it1

it0

Fig. 2: An example for G(t) for t = t0, t1, t2. Note that node
itk is the vertex label for agent i at time tk.

complete graphs on V ′ji(t) and V ′ij(t) given in (3) and (4)
along with the edges in E(Hij(t)). The complete graphs
on V ′ji(t) and V ′ij(t) correspond to globally rigid networks.
Furthermore, we know from [23] that the resulting network
obtained from connecting two globally rigid networks is
globally rigid if there are at least four edges that do not
share any vertices connect them to each other. Thus, for
Gij(t) to be associated with a globally rigid network, first,
|E(Hij(t))| ≥ 4. Second, they should not be incident on a
common vertex or equivalently on two or more co-located
vertices in V(Hij(t)). In other words, there must not be two
(t, p, d) and (t̄, p, d̄) with t 6= t̄ such that both (t, p, d) and
(t̄, p, d̄) are in Bij(t).

IV. COOPERATIVE LOCALIZATION

In this section, we consider the scenario where a group
of mobile agents, N = {1, . . . , N}, form a network that
is not globally rigid, and as a result their positions cannot
be calculated uniquely in any coordinate frame. Similar to
Section III, each agent i can measure its distance to agent j
if their distance from each other is less than rd. Assuming
that each agent has access to all the distance measurements
in the network, the goal of the agents is to uniquely localize
the network in their own coordinate frame. This problem is
stated below.

Problem 2: Let G(t) = (N (t),E(G(t))) be a graph at
time t with vertex set N (t) = {1t, 2t . . . , Nt} and edge set
E(G(t)) where E(G(t)) = {{i, j} : ‖pi(t) − pj(t)‖ ≤ rd}
and t = t0, t1, . . . , tκ. Note that pi(t) corresponds to the
vertex labeled it in graph G(t)2. An example of such graphs
for κ = 2 is depicted in Fig. 2. Let D(t) be the set of all
distances associated with the edges in E(G(t)). Moreover,
assume G(t0) is connected and Assumptions 1 and 2 hold.
Answers to the following questions are desired.

1) What are the conditions that need to be satisfied for
pi(t), i ∈ N , and κ such that each agent i can calculate
pi,j(t), ∀j ∈ N and t ∈ {t0, t1, . . . , tκ}, given G =⋃κ
k=0 G(tk) and D =

⋃κ
k=0D(tk)?

2For simplicity, we use N instead of N (t) when it is clear that we are
interested in the state of each agent i at time t.
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2) What is a motion strategy for i such that these condi-
tions are satisfied?

Answering the first question in Problem 2 is straightforward.
Note that the question of finding pi,j(t), ∀j ∈ N and
t ∈ {t0, t1, . . . , tκ} given G and D is the same as the
question of unique localizability of a network with G as its
underlying graph, D as the distance set associated with its
edges, and the positions of the vertices in some anchor set
V ′i in the coordinate frame of agent i with |V ′i| ≥ 3. It is
assumed that pi,i(t) is known for all t ∈ {t0, t1, . . . , tκ}.
Thus, agent i has access to the positions of the vertices in
the set V ′i = {pi,i(t0), . . . , pi,i(tκ)}. Hence, pi,j(t), ∀j ∈ N
and t ∈ {t0, t1, . . . , tκ} can be calculated uniquely if the
network with G as its underlying graph and the distance
set D along with known positions of the vertices in V ′i
is uniquely localizable. This is equivalent to the network
being globally rigid and κ ≥ 2. However, this in itself does
not shed much light on how one can guarantee that these
conditions hold. To this aim we consider two special cases.
First, we consider a scenario where G(t0) corresponds to a
globally rigid graph, and only agent i is capable of motion.
Let Ni(t) = {j : ‖pi(t) − pj‖ ≤ rd}. Note that this set is
the same as the set of agents j that share an edge with agent
i at time t. We have the following result.

Proposition 2: Assume that the following conditions hold
for t = t0, . . . , tκ.

1) The network with the underlying graph G(t0) at time
t0 is globally rigid.

2) The neighbors of agent i remain constant, i.e.Ni(t0) ⊆
Ni(tκ), k = 1, . . . , κ.

3) There are no t and t̄ such that ‖pi(t) − pj‖ = 0 or
‖pi,i(t)− pi,i(t̄)‖ = 0.

4) κ ≥ 2.
Then, agent i can calculate pi,j(t), ∀j ∈ N and t ∈
{t0, t1, . . . , tκ}, given G(t0) and D = D(t0) ∪ {‖pi(tk) −
pj‖ : j ∈ Ni, k = 1, . . . , κ}.

Proof: We first consider the network at t0. Even
though it is globally rigid, but due to the fact that there
agent i only has access to one position, i.e. pi,i(t0), the
network is not localizable in the coordinate frame of agent
i. At time t1, agent i moves to a new position pi,i(t1)
such that its neighbor set contains its neighbors at time t0,
i.e. Ni(t0) ⊆ Ni(t1). Thus, it has access to {‖pi(t1)− pj‖ :
j ∈ Ni(t0)}∪{‖pi(t1)−pj‖ : j ∈ Ni(t1)\Ni(t0)} as well as
‖pi,i(t0)− pi,i(t1)‖. This information can be abstracted as a
network with an underlying graph G with V(G) = N ∪{it1}
and E(G) = E(G) ∪ {{it1 , j} : j ∈ Ni(t1)}. It is easy
to see that this network is globally rigid as well. However,
agent i still has access to only two positions in this network,
i.e. pi,i(t0) and pi,i(t1). Similarly, repeating this for the case
where agent i has moved to a pi,i(t2) results in a network
that is localizable in the coordinate frame of i. This continues
to hold for all κ > 2 as well. This completes the proof.
Before continuing any further we propose a motion strategy
for agent i such that the conditions of Proposition 2 are
satisfied. By construction we have the following result.

Proposition 3: If for all tk, k = 0, . . . , κ, agent i is at the
position obtained from the application of Algorithm 1, then

Algorithm 1 Agent i motion strategy in a network of
stationary agents to achieve unique localizability.

Require: κ ≥ 2, pi,i(t0)
1: for k = 0, . . . , κ− 1 do
2: δi(tk)← minj∈Ni(t0) rd − ‖pi(tk)− pj‖|
3: Pick pi,i(tk+1) uniformly from the set {p : ‖pi,i(tk)−

p‖ ≤ δi(tk−1)}
4: Move to pi,i(tk+1) at tk+1

5: end for

Ni(t0) ⊆ Ni(tk), k = 1, . . . , κ.
Hence, if agent i is at the position obtained from the
application of Algorithm 1 and κ ≥ 2 and δi(t0) 6= 0, then
the conditions of Proposition 2 are satisfied with probability
one. Furthermore, after κ steps agent i has access to enough
information to estimate the positions of all the agents in the
network in its own local coordinate frame.

Next we look into the case where G(t0) is a path graph.
Similar to the previous case we have the following result.
We have the following result.

Proposition 4: Assume that the following conditions hold
for t = t0, . . . , tκ.

1) The network with the underlying graph G(t0) at time
t0 is a path graph.

2) The set of neighbors of each agent i at any time
tk contains the initial neighbors of each agent i,
i.e. Ni(t0) ⊆ Ni(tk), ∀i ∈ N , k = 1, . . . , κ.

3) There is no t, t̄, i, or j such that ‖pi(t)− pj(t)‖ = 0.
4) κ ≥ 3

Then, each agent i can calculate pi,j(t), ∀j ∈ N and t ∈
{t0, t1, . . . , tκ}, given

D =

κ⋃
k=0

D(tk) ∪ {‖pj(tk̄)− pj(tk)‖ : j ∈ N ,

k̄, k = 0, . . . , κ},

and pi,i(t0), . . . , pi,i(tκ).
Proof: The proof follows from augmenting the initial

network by the information that becomes available at any
given time, and consequently showing that after 4 steps,
(similar to the proof of Proposition 1), the network becomes
globally rigid.
As before, we propose a motion strategy as outlined in
Algorithm 2 for each agent i so that the Ni(t0) ⊆ Ni(tk),
∀i ∈ N , k = 1, . . . , κ. In fact, if the motion of the agents

Algorithm 2 Agent i motion strategy in a network of mobile
agents to ensure unique localizability.

Require: κ ≥ 2, pi,i(t0)
1: for k = 2, . . . , κ− 1 do
2: δi(tk)← minj∈Ni(t0) rd − ‖pi(tk)− pj(tk)‖
3: Pick pi,i(tk+1) uniformly from the set {p : ‖pi,i(tk)−

p‖ ≤ δi(tk)/2}
4: Move to pi,i(tk+1) at tk+1

5: end for
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is governed by Algorithm 2, then we have the following
corollary.

Corollary 1: Let the motion of each agent i be governed
by Algorithm 2. Moreover, assume that G(t0) is connected,
κ ≥ 3, and δi(t0) 6= 0. Then, each agent i can calculate
pi,j(t), ∀j ∈ N and t ∈ {t0, t1, . . . , tκ} with probability
one, given

D =

κ⋃
k=0

D(tk) ∪ {‖pj(tk̄)− pj(tk)‖ : j ∈ N ,

k̄, k = 0, . . . , κ},
and pi,i(t0), . . . , pi,i(tκ).
So far we have not explicitly commented on the constraints
that govern the motion of each agent i. In fact, Algorithms
1 and 2 rely on the assumption that agent i can reach
pi,i(tk+1), t ∈ {t0, t1, . . . , tκ−1}, starting from pi,i(tk). In
what comes next, we consider the case where not all the
points from the set {p : ‖pi,i(tk)−p‖ ≤ δi(tk)} as described
in Algorithm 1 (and similarly the set {p : ‖pi,i(tk) − p‖ ≤
δi(tk)/2} as described in Algorithm 2) are reachable from
pi,i(tk) due to constraints on the motion of agent i. We
consider the motion of agent i between tk and tk+1 to be
governed by

ẋi,i(τ) = f(xi,i(τ), ui(τ)) (5)

where tk ≤ τ ≤ tk+1, xi,i(τ) = [pi,i(τ)>, vi,i(τ)>]> ∈ X
is the state of agent i in its coordinate frame with pi,i(τ)
and vi,i(τ) being its position and velocity in its coordinate
frame, X is the set of feasible states, and ui(τ) ∈ U is the
control input with U being the set of feasible inputs. We first
have the following definition.

Definition 4 (Reachable Position Set): The reachable po-
sition set S(xi,i(tk), tk+1) of the agent i governed by (5)
from the initial state xi,i(tk), is the set of all positions that are
reachable along a trajectory satisfying (5) from the agent’s
position and velocity at tk, in other words:

S(xi,i(tk), tk+1) = {p(tk+1) : ẋ(τ) = f(xi,i(τ), u(τ)),

x(τ) = [p(τ)>, v(τ)>]>,

x(tk) = xi,i(tk), x(τ) ∈ X
∃u(τ) ∈ U, tk ≤ τ ≤ tk+1}.

(6)
Given this definition, Algorithms 1 and 2 can be rewritten
to reflect the constraints on each of the agents’ motion.
Specifically, in line 3 of Algorithms 1 and 2, pi,i(tk) should
be picked uniformly from the sets

{p : ‖pi,i(tk)− p‖ ≤ δi(tk)} ∩ S(xi,i(tk), tk+1)

and

{p : ‖pi,i(tk)− p‖ ≤ δi(tk)/2} ∩ S(xi,i(tk), tk+1),

respectively.
We observe that computing S(xi,i(tk), tk+1) in (6) is

computationally cumbersome and might not be practical for
all systems. We conclude this section by commenting on
a special case where S(xi,i(tk), tk+1) can be calculated
efficiently. This is the case where motion of each agent i

�i(t0)/2

di(t0)

�i(t0)/2

Fig. 3: An example where 4rmin ≤ min(di(t0), δi(t0)) holds
for 3 agents with constant speed and minimum turning radius
constraints.

governed by (5) corresponds to that of a small fixed-wing
unmanned aerial vehicle (UAV). In other words, agent i can
only travel with a constant speed, v̄, and has a minimum
turning radius, rmin. We have the following result for this
scenario.

Proposition 5: Consider the case where each agent i ∈
N is a nonholonomic vehicle with constant speed v̄
and minimum turning radius rmin. Moreover, assume
4rmin ≤ min(di(t0), δi(t0)) for all i ∈ N where
δi(t0) = minj∈Ni(t0) rd − ‖pi(t0) − pj(t0)‖, di(t0) =
minj∈Ni(t0) ‖pi(t0) − pj(t0)‖, κ ≥ 2, and G(t0) is con-
nected. If each agent travels along a circle of radius rd in
clockwise or counter-clockwise direction from their initial
position pi,i(t0) and collect measurements at t1, . . . , tκ Then,
each agent i can calculate pi,j(t), ∀j ∈ N and t ∈
{t0, t1, . . . , tκ}, given

D =

κ⋃
k=0

D(tk) ∪ {‖pj(tk̄)− pj(tk)‖ : j ∈ N ,

k̄, k = 0, . . . , κ},
and pi,i(t0), . . . , pi,i(tκ).

Proof: Note that, since 4rmin ≤ δi(t0), Ni(t0) ⊆
Ni(tk), ∀i ∈ N , k = 1, . . . , κ. Furthermore, since gener-
ically 2πrmin

v̄(tk−tk+1) is not an integer and 4rmin ≤ di(t0),
there are no t̄, t ∈ {t0, . . . , tκ} or i, j ∈ N such that
‖pi(t) − pj(t̄)‖ = 0. Then, similar to Proposition 4, after
κ steps, the information available to each agent i will be
enough to find all pi,j(t), ∀j ∈ N and t ∈ {t0, t1, . . . , tκ}.

A scenario with 3 agents where the condition 4rmin ≤
min(di(t0), δi(t0)) is satisfied is depicted in Fig. 3.

V. SIMULATIONS

In the first scenario, we consider the case where the agents
explore an unknown environment with m = 20 landmarks as
outlined in Section III. We assume that rd = 5 and the agents
operate in a 20×20 environment. We assume that the agents’
motion is determined randomly, i.e. at each step tk each
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(a) N = 1
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(b) N = 5
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(c) N = 10

Fig. 4: The ratio of discovered landmarks by each of the agents versus time steps for 3 scenarios.
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Fig. 5: The positions of each of the agents in 4 time steps.
The solid lines correspond to the displacement of each of the
agents in different time steps and the dashed lines correspond
to the inter-agent distance measurements collected at each
time.

agent i moves in the direction of ∆pi where ∆pi is selected
uniformly from the set {p : ‖pi,i − p‖ ≤ 2}. We compare
the rate of landmarks discovery for three cases where N =
1, N = 5 and N = 10 agents explore the environment
and share their discovered landmarks when the conditions of
Proposition 1 are satisfied. The simulations are repeated ten
times for different landmark positoins and agents trajectories
and the results are depicted in Fig. 4. We observe that when
more agents are used to cooperatively map the environment,
every agent discovers the position of all landmarks much
faster than with a single agent. In the second scenario, we
consider the case where N = 5 agents with single integrator
dynamics apply Algorithm 2 for κ = 4 to be able to satisfy
the conditions of Proposition 4. The position of the agents
after 4 steps and all the collected measurements are depicted
in Fig. 5. It can be easily checked that the resulting graph is
globally rigid and as a result, uniquely localizable.

VI. CONCLUSIONS

In this paper we considered different situations where a
group of agents aim to cooperatively map and localize via
collecting distance measurements to each other or landmarks.
Through the application of the rigidity theory, we established

the conditions under which it is possible for the agents
to gain access to the data collected by other agents and
we related these conditions to the number of measurements
exchanged between each agent pair. We demonstrated that
there exists a motion strategy that enables the agents to
satisfy the above-said conditions. We note that even though
the results that we proposed here are for the case that the
agents have only access to distance measurements, similar
results can be obtained for the case where the agents collect
only bearing measurements. A future research direction is
to extend the results addressed here to other measurements,
such as bearing. Another important future direction is to
develop a numerically efficient algorithm to solve the lo-
calization problems obtained from agents carrying out the
maneuvers of the kind outlined in Algorithms 1 and 2 and
collecting the necessary measurements. Another research
direction is to consider executing these motions with some
cost associated with the agents’ operations in the presence
of disturbances.
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