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Abstract— We propose a distributed control scheme for
cyclic formations of multi-agent systems using relative position
measurements in local coordinate frames. It is assumed that
agents cannot communicate with each other and do not have
access to global position information. For the case of three
and four agents with desired formation defined as a regular
polygon, we prove that under the proposed control, starting
from almost any initial condition, agents converge to the desired
configuration. Moreover, it is shown that the control is robust
to the failure of any single agent. From Monte Carlo analysis,
a conjecture is proposed to extend the results to any number
of agents.

Index Terms— Position based formation, cyclic graph, dis-
tributed control, global stablility.

I. INTRODUCTION

Distributed formation control of multi-agent systems can
be defined as assigning control laws to individual agents
in a network, such that agents collaboratively achieve a
desired geometric formation. Distributed formation control
has applications in ground and/or aerial vehicle formations
[1], automated highway systems [2], cooperative robot ma-
nipulation, and modular robotics self configurations [3], to
name a few.

If agents can measure the position of their neighbors in
global or aligned local coordinate frames, existing methods
[4], [5] assure global convergence to any feasible desired
formation. However, oftentimes position measurements are
relative, and are obtained in unaligned local coordinate
frames. Furthermore, agents may not be able to communicate
among themselves. In such cases, the formation control
problem is significantly more complicated.

The majority of the work on formation control with
local relative position measurements focuses on the desired
formations that are defined in terms of inter-agent distances
(distance-based control) [6]–[8], or angles (bearing-based
control) [9]–[11]. Sensors that are used in practice such as
ladar, radar, sonar, stereo cameras, etc., provide both angle
and distance information, for which desired values can be
defined. Therefore, desired formations defined in terms of
both distances and bearings have been recently considered
in the literature [12], [13]. Our focus in this work is such
desired formations.
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The sensing topology among the agents is another factor
that can make the formation control more challenging. If
the sensing topology is rich enough, any feasible desired
formation can be achieved globally. For instance, we have
shown in [13] that a sufficient condition for global stability
is that the sensing graph contains a spanning subgraph with
hierarchical structure1. On the other hand, sensing graphs
that are cyclic do not satisfy the previous condition, and
finding a control law with global convergence in such cases
is still an open problem in its full generality. Therefore,
analyzing cyclic formations is an important step toward
finding control schemes that work for an arbitrary sensing
topology.

In this work, we consider formation control of multi-
agent systems with cyclic sensing graph and relative local
position measurements. We focus on desired formations that
are regular polygons, and propose a distributed control law to
achieve the desired formation. We prove for the case of three
and four agents that the control almost globally stabilizes the
agents to the desired formation. Furthermore, from Monte
Carlo analysis we conjecture that the results can be extended
to any number of agents.

The main contribution of this work is the almost global
stability of cyclic formations with desired formations defined
in both distances and bearings. We are not aware of any
previous work under these conditions. For bearing-only
desired formations, [14] and [15] have proposed control laws
for the case of 3 and 4 agents, respectively, that are globally
convergent. Work by [16] proposed a control law for any
number of agents that is locally convergent. Thus, agents may
not converge to the desired shape if the initial configuration
is not near the desired formation. Notice that it is not possible
to control the scale of a configuration with bearing-only
measurements. For cyclic distance-only desired formations,
[17] has proposed a control scheme to stabilize the agents
to a regular polygon. The convergence is local since there
are initial conditions for which the system converges to a
stable undesired equilibrium. In the case of distance-based
desired formation, work done in [18], [19] has shown that
a continuous, decentralized, and globally stable control may
fail to exist for systems with 4 or more agents that contain
cycles. Notice that it is not possible to distinguish a formation
from its reflection using distance-only measurements. Lastly,
note that in the problem of cyclic pursuit [20], [21], the
control is a function of the relative position vectors that

1To be specific, it is sufficient if a spanning subgraph exists for which the associated
Laplacian matrix is upper triangular and has two −1 elements in the i-th column, i≥ 3.



are measured in a global coordinate frame. In this work, all
position measurements are relative and local. If agents can
sense the position of a common target or neighbor, relative
local position measurements suffice to achieve the cyclic
pursuit [22]. Here, agents do not have a common neighbor.

The organization of the paper is as follows. The notation
and assumptions are introduced in Section II. Background
materials that are needed throughout the proofs are presented
in Section III. The control law is introduced is Section IV.
The stability analysis in the case of three and four agents
are presented in Sections V and VI, respectively. Lastly, in
Section VII it is shown that the control law can be used for
more agents.

II. NOTATION AND ASSUMPTIONS

Let Zn := {0, 1, ..., n− 1} represent the set of n distin-
guished agents. We describe the sensing topology among
the agents by a directed graph. Each vertex of the graph
represents an agent. A directed edge from vertex k ∈ Zn to
i∈Zn indicates that agent k can measure the relative position
of agent i in its local coordinate frame. In such a case, agent
i is called a neighbor of agent k. Throughout the paper the
following assumptions hold.

Assumption 1. The positions of all agents are restricted to
a plane. Agents are numbered, i.e., they are distinguished,
and know the identification number of their neighbors.

Assumption 2. Agents can measure the relative position of
their neighbors, i.e., they do not need to have an aligned or
global coordinate frame.

Assumption 3. The sensing graph is cyclic, and agents are
numbered such that agent k is neighbor with agents k− 1
and k+1 (modulo n), as shown in Fig. 1.

Assumption 4. The parameters that specify desired dis-
tances and angles are assumed to uniquely define a realizable
shape (unique up to rotations and translations on the plane).
The desired distances are assumed to be strictly positive.

Assumption 5. Agents are treated as points on the plane,
and collision avoidance is not considered.

Assumption 6. The agents have single-integrator holonomic
dynamics

ṗk = uk (1)

where pk ∈R2 is the position of agent k, and uk ∈R2 is the
control input to be determined.

Distance between agents i and j is denoted by di j, and the
desired distance by d∗i j. If agent k has neighbors i and j, we
denote by θk the angle ∠i k j measured counterclockwise,
and by θ ∗k the desired angle. The set of non-negative real
numbers is denoted by R+.

III. BACKGROUND

Throughout the paper we will use the following definitions
and lemmas (see [23] for more details).
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Fig. 1. Cyclic formation of n agents on the plane. Agent k ∈ Zn can measure the
relative position of its neighbors, agents k−1 and k+1.

Definition 1. Consider the dynamical system ẋ = F(x) with
equilibrium x̄, initial state x0, and flow Φ(t,x). We say that x̄
is almost globally stable if the set {x0 : limt→∞ Φ(t,x0) 6= x̄}
has zero Lebesgue measure. That is, trajectories converge to
the equilibrium from almost all initial conditions.

Definition 2. Let F be continuously differentiable. A point
x∗ ∈R2 is called a ω-limit point of a trajectory of ẋ = F(x)
if there exists a sequence of times {tk}∞

k=1 such that tk→ ∞

and x(tk)→ x∗. The set of all ω-limit points is called the
ω-limit set.

Poincaré-Bendixson Theorem. Let F : Ω→R2 be continu-
ously differentiable on Ω⊂R2, where Ω is positive invariant
and contains only finitely many equilibria. Suppose an ω-
limit set of a trajectory belongs to a closed set B⊂Ω. Then
the ω-limit set is either
• a single equilibrium point,
• a periodic trajectory,
• a set of equilibrium points together with homoclinic or

heteroclinic orbits connecting them.
Gronwall’s Lemma. Let x ∈C1([a,∞)), f ∈C0([a,∞)), be
such that ẋ ≤ f (t)x for all t ∈ [a,∞). Then,

x(t) ≤ x(a)e
∫ t

a f (τ)dτ , t ≥ a. (2)

In particular, if
∫

∞

a f (τ)dτ =−∞, there exists ε : [a,∞)→R+,
given by ε(t) := |x(a)| exp

∫ t
a f (τ)dτ , such that

x(t) ≤ ε(t), lim
t→∞

ε(t) = 0. (3)

Note that when it is clear from the context, we omit the
time dependency of variables for conciseness, e.g., we write
x instead of x(t).

Lemma 1. Let x∈C1([a,∞)), f ,g∈C0([a,∞)), be such that

ẋ = f (t)x+g(t), (4)

and assume that f (t) < 0, g(t) ≥ 0, for every t ∈ [a,∞).
Moreover, assume that

∫
∞

a f (τ)dτ =−∞. Assume that

M := limsup
t→∞

(
g(t)
− f (t)

)
< ∞. (5)

Then, there exists ε(t)≥ 0 such that

x(t) ≤ M+ ε(t), lim
t→∞

ε(t) = 0. (6)

Proof. Due to assumption f (t)< 0, from (4) and (5) for any
M̃ > M there exists a t0 ∈ [a,∞) such that for all t > t0

ẋ = f (t)(x− g(t)
− f (t)

) ≤ f (t)(x− M̃). (7)
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Fig. 2. Agent k with neighbors i = k− 1 and j = k + 1. To simplify the analysis,
the local coordinate frame of agent k is transformed such that its origin is located
at the midpoint of the line segment i j with the positive x-direction along the vector
connecting i to j.

Since M̃ is constant, this implies

d(x− M̃)

dt
≤ f (t)(x− M̃). (8)

Since
∫

∞

a f (τ)dτ =−∞, by Gronwall’s Lemma we conclude
from (8) that x(t)−M̃≤ ε(t) and because M̃ >M is arbitrary,
(6) follows.

IV. CONTROL LAW

Consider n agents with a cyclic sensing graph. By As-
sumption 3, agent k has neighbors k− 1 and k+ 1. Define
the shorthand notations i := k− 1 and j := k+ 1 to denote
the neighbors. Without loss of generality, pick the origin of
agent k’s local coordinate frame at the midpoint of the line
segment connecting i to j, with the positive x-direction from
i to j, as shown in Fig. 2. If at any time i and j coincide,
the x-direction is chosen along any arbitrary direction. Notice
that since agent k can measure the relative positions of agents
i and j, its current local coordinate frame can be transformed
to the aforementioned frame. This specific choice of coordi-
nate simplifies the subsequent analysis.

Consider the local coordinate frame of agent k. Let pi and
p j show the coordinates of the neighbors, and pk := [x̄k, ȳk]

T

show the coordinate of agent k in this coordinate frame.
Using the notations introduced in Section II, if the neighbors
are at the desired distance from one another (i.e., di j = d∗i j),
then the distance and angle equalities dik = d∗ik, d jk = d∗jk and
θk = θ ∗k determine the desired position of agent k. Indeed,
from the distance equalities we have

‖pk− pi‖= d∗ik, ‖pk− p j‖= d∗jk, (9)

which since pi = [− d∗i j
2 , 0]T and p j = [

d∗i j
2 , 0]T results in

(x̄k +
d∗i j

2
)2 + ȳ2

k = d∗ik
2, (x̄k−

d∗i j

2
)2 + ȳ2

k = d∗jk
2. (10)

Subtracting the equations in (10) yields

x̄k =
1

2d∗i j
(d∗ik

2−d∗jk
2). (11)

Note that since d∗i j > 0 by Assumption 4, x̄k is well defined.
The area of the parallelogram formed by vectors pk− pi

and pk− p j is given by dik d jk sin(θk), and is equal to the
determinant of the matrix formed by the vectors. Thus, from
distance and angle equalities we have

det([pk− pi, pk− p j]) = d∗ik d∗jk sin(θ ∗k ), (12)

which after simplifications results in

ȳk =
1

d∗i j
d∗ik d∗jk sin(θ ∗k ). (13)

By Assumption 4, yk is well defined.
Using the right hand sides of (11) and (13), define the

vector of the desired location by

p∗k :=
[

x∗k
y∗k

]
:=

1
2d∗i j

[
d∗ik

2−d∗jk
2

2d∗ik d∗jk sin(θ ∗k )

]
. (14)

Note that p∗k is a constant vector determined by the distances
and angle in the desired formation. We define the control law
uk in agent k’s local coordinate frame by

uk :=−pk + p∗k . (15)

The control law uk navigates agent k to the desired position,
which is the end point of the vector p∗k , as shown in Fig. (2).

To analyze the stability of the system under the local
control law (15), we need to represent the dynamics in
a global coordinate frame. We assume from now on that
qk := [xk, yk]

T represents the coordinates of agent k ∈ Zn
in an arbitrary global coordinate frame (which is unknown
to agents). Let ϕ ji be the angle that vector q j − qi makes
with the x-axis of the global coordinate frame, measured
counterclockwise. From (1) and the local control law (15),
the dynamics of agent k in the global coordinate frame is

q̇k =−qk +
1
2
(q j +qi)+R ji p∗k (16)

where p∗k is the constant vector defined in (14), and the
rotation matrix R ji ∈ SO(2) is defined as

R ji :=
[

cos(ϕ ji) −sin(ϕ ji)
sin(ϕ ji) cos(ϕ ji)

]
=

1
d ji

[
x j− xi −y j + yi
y j− yi x j− xi

]
.

(17)
From (17), we can write (16) as

q̇k =−qk +
1
2
(q j +qi)+

1
d ji

H∗k (q j−qi), H∗k :=
[

x∗k −y∗k
y∗k x∗k

]
(18)

where H∗k ∈R2×2 is a constant matrix in terms of the desired
coordinates (14). Notice for desired formations defined as
regular polygons, x∗k = 0, y∗k := h∗ for all k ∈ Zn. Thus,

H∗k :=
[

0 −h∗

h∗ 0

]
. (19)

V. STABILITY ANALYSIS FOR 3 AGENTS

Stability analysis of the control scheme proceeds by prov-
ing the following theorem.

Theorem 1. Consider a cyclic formation of 3 agents with
an equilateral triangle as the desired formation. Under the
control law (15), the desired formation is almost globally
stable, and the control is robust to the failure of any single
agent.

We start the proof with the case when 2 agents can move
and show the robustness to the failure of any single agent.
We then extend the proof idea to the case where all 3 agents
move.
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Fig. 3. Configuration of 3 agents on the plane with agent 0 located at the origin. Scalar
dk := ‖qk‖ ∈ R+, k ∈ {1,2}, represents the side length. Scalar hk ∈ R represents the
signed height subtended at agent k, and is equal to the y-coordinate of agent k in its
local coordinate frame, Fk .
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Fig. 4. Equilateral desired formation, with d∗ > 0 and h∗ > 0 representing the desired
side lengths and heights, respectively. The local coordinate frames of agents 1 and 2
are shown by F1 and F2, respectively.

A. Robustness to Failure of One Agent

The organization of the proof is as follows. We first
introduce the variables that are used in the analysis and show
that they are bounded along the trajectories of the system.
We then show that all trajectories converge to the invariant
manifold on which the distance between each moving agent
and the fixed agent is equal. The proof proceeds by showing
that starting from almost any initial condition, the signed
area of the triangle formed by the agents becomes strictly
positive in finite time and stays strictly positive thereafter.
That is, when agents start from the wrong orientation, they
achieve the correct orientation in finite time. Lastly, under
the assumption that the signed area is positive, we apply the
Poincaré-Bendixson Theorem and show that agents achieve
the desired formation.

Denote the coordinates of agent k ∈ Z3 by qk := [xk, yk]
T

in the global coordinate frame, as shown in Fig. 3. Without
loss of generality, assume that agent 0 is fixed at the origin
and cannot move. Denote the angle between vectors q2 and
q1 (measured counterclockwise) by θ ∈ (−π,π], and define
d1 :=

√
x2

1 + y2
1, d2 :=

√
x2

2 + y2
2 as the length of the vectors

q1 and q2, respectively. The desired formation is shown in
Fig. 4. The desired height and side length are shown by
h∗ and d∗, respectively. We assume that h∗ is positive and
define the desired signed area of the triangle by A∗ := 1

2 h∗d∗.
Note that the signed height (and area) is what distinguishes
a formation from its reflection.

Substituting H∗k , given by (19), and q0 = [0, 0]T in (18),
dynamics of the agents in the global coordinate frame are

given by

ẋ1 =−x1 +
1
2

x2−
h∗

d2
y2,

ẏ1 =−y1 +
1
2

y2 +
h∗

d2
x2,

ẋ2 =−x2 +
1
2

x1 +
h∗

d1
y1,

ẏ2 =−y2 +
1
2

y1−
h∗

d1
x1.

(20)

1) Required Variables: Define the sum of side lengths
and its desired value by P := d1 +d2 ∈ R+, and P∗ := 2d∗,
respectively. Computing Ṗ along the trajectories of (20)
yields

Ṗ =
2h∗

d1d2
(x2y1− x1y2)+

d1 +d2

2d1d2
(x1x2 + y1y2)− (d1 +d2).

(21)
Noting that

x2y1− x1y2 = det([q2, q1]) = d1d2 sin(θ), (22)
x1x2 + y1y2 = dot(q2, q1) = d1d2 cos(θ), (23)

and since h∗ =
√

3
2 d∗ in an equilateral triangle, we can

simplify (21) as

Ṗ =

(
cos(θ)

2
−1
)

P +

√
3sin(θ)

2
P∗. (24)

Since cos(θ)
2 −1 ≤ −1

2 , by Lemma 1 we conclude from (24)
that there exists ε(t)≥ 0 such that ε(t)→ 0 and

P(t)≤ limsup
t→∞

( √
3sin(θ)

2

1− cos(θ)
2

P∗
)
+ ε(t) = P∗+ ε(t). (25)

Note that the argument of limsup in (25) achieves its
maximum at θ = π

3 . Positivity of distances together with
(25) implies

0 ≤ P(t) ≤ P∗+ ε(t). (26)

Therefore, we have shown that P is upper bounded in the
limit by its desired value, P∗, as t→ ∞.

Let A ∈ R be the signed area of the triangle, defined by

A :=
1
2

det([q2, q1]) =
1
2
(x2y1− x1y2) =

1
2

d1d2 sin(θ).

From (20) we get

Ȧ = x1y2− x2y1 +
h∗

2d1
(x2

1 + y2
1)+

h∗

2d2
(x2

2 + y2
2). (27)

Since d2
k = x2

k + y2
k , k ∈ {1,2}, (27) simplifies to

Ȧ =−2A+
h∗

2
P. (28)

Substituting P by its upper bound (26) and noting that h∗P∗=
2A∗ we have

Ȧ ≤ −2A+2A∗+
h∗ε(t)

2
. (29)

Note that A∗,h∗,ε are non-negative, and ε → 0. Thus, by
Lemma 1, (29) implies

A(t) ≤ A∗+ ε
′(t), (30)



where ε ′ is positive and ε ′→ 0.
Other dynamics that are required in the analysis are

dynamics of d1 and d2, which are given by

ḋ1 =−d1 +
1
2

d2 cos(θ)+ h∗ sin(θ),

ḋ2 =−d2 +
1
2

d1 cos(θ)+ h∗ sin(θ),
(31)

and θ , which is given by

θ̇ =
d1 +d2

d1d2
h∗ cos(θ)− d2

1 +d2
2

2d1d2
sin(θ). (32)

Note that (32) is calculated by taking the time derivative of
A = 1

2 d1 d2 sin(θ), and substituting Ȧ, ḋ1, ḋ2 from (28) and
(31).

2) The Invariant Manifold: We now show that all trajec-
tories of (20) are attracted to the invariant manifold d1 = d2.
Define E ∈ R+ as E := 1

2 (d1−d2)
2. From (31) we have

Ė = (−2− cos(θ))E ≤ −E. (33)

Since E is bounded below by zero, by Gronwall’s Lemma it
follows that E converges to zero.

3) Lower Bounds for A and P: If agents start from the
wrong orientation, i.e., A(0) < 0, it is shown in Appendix
I that A becomes non-negative in a finite time t = τ .
Additionally, for almost all initial conditions either d1 or d2
are non-zero at time τ , which implies P is non-zero. Thus,
from (28), A becomes strictly positive and remain positive
thereafter. Note that once P > 0, A > 0, from Gronwall’s
Lemma (24) and (28) ensure that P > 0, A > 0 after this
moment. Therefore, d1,d2 > 0 and θ ∈ (0,π) for all t > τ .

Since for a given P the maximum area of triangle is
achieved when θ = π

2 , we have A≤ P2, from which by (28)

Ȧ≥−2A+
√

A. (34)

Since
√

A > 2A for small non-zero A, (34) implies that there
exists A0 > 0 such that A(t) > A0 at some time. Therefore,
from A≤ P2, there exists P0 > 0 such that P(t)> P0. These
lower bounds together with upper bounds (26) and (30) imply
that there exists a finite time τ0 such that for all t > τ0

P0 ≤ P ≤ P∗+ ε(t), θ0 ≤ θ ≤ π−θ0 (35)

where ε→ 0 and θ0 := arcsin( A0
P∗2 ) is a positive constant. We

are now ready to apply the Poincaré-Bendixson’s Theorem.
4) Convergence to the Desired Shape: Since d1 = d2 is

an invariant and attracting manifold for system (20), we can
constrain the analysis to d1 = d2 := d. On this manifold,
dynamics of P = 2d and θ are given from (24) and (32) as

Ṗ =

(
cos(θ)

2
−1
)

P +

√
3sin(θ)

2
P∗,

θ̇ =
4
P

h∗ cos(θ)− sin(θ).
(36)

Since P is non-negative by definition, the only feasible
equilibrium of (36) is (P, θ) = (P∗,θ ∗), where θ ∗ := π

3 . By
applying Poincaré-Bendixson’s Theorem to the intersection
of the manifold d1 = d2 with the closed set (35), it follows
that all trajectories converge to the desired equilibrium.

Indeed, since any periodic orbit must contain the equilibrium
point (P∗,θ ∗), from P ≤ P∗+ ε(t) and ε → 0 we conclude
that the ω-limit set of any trajectory should contain the
equilibrium point (P∗,θ ∗), or a homoclinic orbit. However,
eigenvalues of the Jacobian matrix derived from linearizing
the dynamics (36) at the desired equilibrium are − 3

4 ,−2.
Therefore, the equilibrium is locally stable and homoclinic
orbits do not exist. Heteroclinic orbits do not exist since the
closed region (35) contains only one equilibrium.

B. Stability Analysis for all 3 Agents Moving

When all 3 agents can move, dynamics in the global
coordinate frame are given by (18), where di j’s represent
the side lengths of the triangle. Denote the side lengths by
d12, d20 and d01. Let i = k−1, j = k+1 be the neighbors of
agent k ∈ Z3. It is straightforward to show that

ḋi j = − 3
2

di j +2
dki +dk j

di j dki dk j
Ah∗ (37)

where A is the signed area of the triangle and is given by2

A =
1
2 ∑

k∈Z3

det([qk+1, qk]). (38)

Denote the perimeter of the triangle by P := d12 + d20 +
d01 ∈R+, with desired value P∗ = 3d∗. From (37) it follows
that

Ṗ = − 3
2

P+
4Ah∗

d12 d20 d01
P. (39)

Since the area of every triangle is upper bounded by

A≤ 3
√

3
4

d12 d20 d01

P
(40)

with equality holding if and only if the triangle is equilateral
[24], from (39) and using the relation h∗ =

√
3

2 d∗ we obtain

Ṗ ≤ −3
2

P+
3
2

P∗. (41)

From (41) and Lemma 1 we conclude that

0 ≤ P(t) ≤ P∗+ ε(t), (42)

where ε is a non-negative function that goes to zero. Note
that the zero lower bound holds due to non-negativity of
perimeter by definition.

Let A∗ := 1
2 h∗d∗ represent the desired area. From (38), one

can show that
Ȧ =−3A+

h∗

2
P. (43)

Substituting (42) in (43) and using Lemma 1 yields

−ε
′(t) ≤ A(t) ≤ A∗+ ε

′′(t), (44)

where ε ′, ε ′′ are non-negative functions that go to zero.
Define E := 1

2 (dki − dk j)
2 for an arbitrary pair of side

lengths dki and dk j. Using (37) we derive

Ė = −
(

3+
4Ah∗

d12 d20 d01

)
E. (45)

2Known as Gauss’s area formula or the shoelace formula.



Due to non-negativity of distances, h∗, and A in the limit
(as shown in (44)), we conclude from (45) and Gronwall’s
Lemma that E goes to zero. Thus, the length of all sides
become equal in the limit. Since the manifold d12 = d20 =
d01 := d is invariant and attractive, we henceforth constrain
the analysis to this manifold, on which P= 3d. Consequently,
from (39) and (43) we derive the 2-dimensional system

Ṗ = −3
2

P+
108Ah∗

P2 ,

Ȧ = −3A+
h∗

2
P.

(46)

Since P ≥ 0 by definition, the only feasible equilibrium of
(46) is at (P,A) = (P∗,A∗). From (42), (44), and Poincaré-
Bendixson’s Theorem it follows that all trajectories start-
ing from a compact set S := {(P,A) : P ∈ [P0, P∗], A ∈
[A0, A∗], P0, A0 > 0} converge to the desired equilibrium
(P∗,A∗). From similar analysis to Section V-A, we can show
that all trajectories should enter S in finite time, with the
exception of only one trajectory that tends to (P,A) = (0,0).
Therefore the desired formation is almost globally stable.

VI. STABILITY ANALYSIS FOR 4 AGENTS

We extend the results in previous section by proving the
following theorem for 4 agents.

Theorem 2. Consider a cyclic formation of 4 agents with
control law (15), and desired formation defined as a square.
The desired formation is almost globally stable.

The dynamics of the system in the global coordinate frame
are given by (18), where di j’s represent the diagonals of the
quadrilateral. Denote the diagonals by d13 and d20. Notice
that h∗ represents half of the diagonal length in the desired
square, as illustrated in Fig.5. From (18), it follows that

ḋ13 = −d13 +
4

d13 d20
Ah∗,

ḋ20 = −d20 +
4

d13 d20
Ah∗.

(47)

Define P := d13 +d20, and denote the desired value of P by
P∗ := 4h∗. From (47) we obtain

Ṗ = −P+
8

d13 d20
Ah∗, (48)

where A is the signed area of the quadrilateral and is defined
as

A :=
1
2 ∑

k∈Z4

det([qk+1, qk]). (49)

Since the area of any quadrilateral is upper bounded by A≤
d13 d20

2 , from (48) we derive

0 ≤ P(t) ≤ P∗+ ε(t), (50)

where ε → 0 and is non-negative.
It is straightforward to show that

Ȧ =−2A+h∗P, (51)

from which by (50) we have

−ε
′(t) ≤ A(t) ≤ A∗+ ε

′′(t), (52)

ℎ∗

��

0

1

3

2

Fig. 5. Square desired formation, with h∗ > 0 representing half of the diagonal length.
The local coordinate frame of agents 1 is shown by F1.

where ε ′, ε ′′ are non-negative functions that go to zero.
By defining E := 1

2 (d13− d20)
2, we can show from (47)

that Ė = −2E, and therefore diagonals become equal in
length in the limit t → ∞. By constraining the analysis to
the manifold d13 = d20 := d, we have P = 2d, and from (47)
and (51)

Ṗ = −P+
32Ah∗

P2 ,

Ȧ = −2A+h∗P.
(53)

The only feasible equilibrium of (53) is at (P, A) = (P∗, A∗).
From the Poincaré-Bendixson Theorem and similar analysis
to Section V, it follows that P and A converge to their
desired values for all but one of the trajectories. Formations
satisfying (P, A) = (P∗, A∗) form a 5-dimensional manifold
M consisting of quadrilaterals with equal perpendicular
diagonals of the desired length d∗. Thus, we have shown
that M is an almost globally attractive manifold for the
system. Notice that (P,A) = (P∗,A∗) implies that d = 2h∗,
from which 1

d ji
H∗k is a skew-symmetric matrix with ± 1

2 off-
diagonal elements. Thus, from (18) the dynamics on M are
defined by the linear system

ẋk =−xk +
1
2
(x j + xi− y j + yi)

ẏk =−yk +
1
2
(y j + yi + x j− xi)

, k ∈ Z4, (54)

where i = k−1 and j = k+1. The eigenvalues of the linear
system (54) on M are 0 of multiplicity four and −2. The
4-dimensional kernel corresponds to square formations and
their rotations and translations. Therefore, (since A = A∗) we
conclude that agents converge to the desired formation.

VII. STABILITY ANALYSIS FOR 5 OR MORE AGENTS

Analysis for 5 or more agents is challenging and will
be a subject of future work. Nevertheless, based on Monte
Carlo analysis with 106 random initial conditions for up to
20 agents, we propose the following conjecture.

Conjecture 1. Under the control law (15), any regular
polygon is almost globally stable. Furthermore, the control
is robust to the failure of one agent.

Example 1. Consider cyclic formation of 10 agents with
regular 10-gon as the desired formation. Assume that agents
have initial random positions on the plane, as shown in Fig.
6(a) by circles. The control law (15) drives the agents to their
final positions, shown by discs in the figure. Due to lack of
global coordinate frame, agents achieve the desired formation
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Fig. 6. (a) Starting from random initial positions, shown by circles, the control law (15) drives the agents to their final position, shown by discs. The desired formation is
a regular 10-gon. (b) Starting from the same initial conditions and under the assumption that agent 0 has failed to move and is fixed at its initial condition, the rest of the
agents achieve the desired formation. (c) For 5 agents with regular pentagon desired formation, star configurations define an undesired, but unstable invariant manifold. (d) Small
perturbation of agent 0 in the star configuration results is convergence to the desired formation. Simulation videos are available at https://youtu.be/XWoSKu29CUs .

up to rotations and translations. Under the assumption that
agent 0 has failed to move and is fixed at its initial condition,
Fig. 6(b) shows the trajectories of the agents starting from
the same initial conditions. As can be seen from the figure,
agents converge to the desired formation. The link to the
simulation video can be found in the figure caption.

Example 2. Consider cyclic formation of 5 agents with
desired formation defined as a regular pentagon. Due to the
almost global stability property, these exists a measure zero
set of initial conditions for which agents do not converge
to the desired equilibrium. For example, Fig. 6(c) shows
that star configurations define an invariant manifold, on
which agents converge to an undesired equilibrium. One can
show that Jacobian matrix has positive eigenvalue 0.339 of
multiplicity two at the star equilibrium. Therefore, star is an
unstable equilibrium. Indeed, Fig. 6(d) shows the trajectories
when agent 0 is slightly perturbed. The perturbation causes
the agents to converge to the desired formation.

VIII. CONCLUSIONS AND FUTURE WORK

We proposed a distributed control law for cyclic formation
of multi agent systems with relative position measurements.
We proved for the case of 3 and 4 agents that desired
formations defined as regular polygons are almost globally
stable equilibria of the control law. Using Monte Carlo
analysis, we proposed the conjecture that regular polygons
are almost globally stable for any number of agents. Future
work include proving the conjecture, and extending the
results to a wider class of desired formations.

APPENDIX I
CONVERGENCE TO NON-NEGATIVE AREA

Assume by contradiction that A < 0 for all time. This
implies that d1, d2 are non-zero, and θ ∈ (−π,0) for all time.
By (24) we conclude that P→ 0 as t→ ∞. Therefore, there
exists ε > 0 and time τ such that P≤ ε for t ≥ τ . If for some

t ≥ τ we have cos(θ)≤ −ε

h∗ , then by (32) and since P < ε

θ̇ ≤ −ε P
d1d2

− d2
1 +d2

2
2d1d2

sin(θ) ≤ −ε P
d1d2

+
P2

2d1d2

≤ −P2

2d1d2
≤ −1

2
. (55)

Thus, θ monotonically decreases with velocity (at least) − 1
2 ,

which contradicts θ ∈ (−π,0) for all time (i.e., θ becomes
−π in finite time). Similarly, if cos(θ)≥ −ε

h∗ , we derive θ̇ ≥ 1
2

which is a contradiction. Thus, we must have that |cos(θ)| ≤
ε

h∗ , but then sin(θ)≈ 1 and from (31) we get ḋ1 <
−h∗

2 and
ḋ2 <

−h∗
2 . This is a contradiction since either d1 or d2 become

zero in finite time. Therefore we have shown that if agents
start from the wrong orientation, the area becomes zero in
finite time t = τ . We now show that there is only one orbit
with both d1(τ) and d2(τ) zero at time τ .

A. Case d1(0) 6= d2(0)
Notice that if d1(0) 6= d2(0), from (33) we have d1 6= d2

for all time. Indeed, from (33) we have Ė ≥−3E, and from
Gronwall’s Lemma we have E(τ)≥ e−3τ E(0). Thus, if one
of d1, d2 becomes zero at t = τ , the other distance is non-zero
at this time.

B. Case d1(0) = d2(0)
Notice that by (33), d1 = d2 for all time. Since Ṗ < 0 for

t ∈ [0,τ), from dividing (32) by (24) (with d1 = d2 =
P
2 ) we

have
dθ

dP
= f (P,θ) :=

4
P h∗ cos(θ)− sin(θ)

( cos(θ)
2 −1)P+2h∗ sin(θ)

(56)

where we defined f (P,θ) as the right hand side of (56).
Assume P∈ (0,ε) for fixed ε > 0. We show that if P→ 0,

then cos(θ)→ 0, i.e., θ → −π

2 . Indeed, if cos(θ)≥ ε

h∗ , by
4
P

h∗ cos(θ)≥ 4ε

P
, − sin(θ)≥ 0,(

cos(θ)
2
−1
)

P≤ P ≤ ε, 2h∗ sin(θ)≤ 2h∗,
(57)

we have from (56) that

dθ

dP
≤−

4ε

P
ε +2h∗

≤ − 4ε

3h∗P
. (58)

https://youtu.be/XWoSKu29CUs


From (58) we have

θ(ε)−θ(P) ≤ − 4ε

3h∗

∫
ε

P

dP
P

= − 4ε

3h∗
ln
(

ε

P

)
, (59)

which implies

θ(P) ≥ θ(ε)+
4ε

3h∗
ln
(

ε

P

)
, (60)

and therefore θ(P)→ ∞ as P→ 0. This shows that θ = 0
before P reaches zero. Note that once cos(θ)≥ ε

h∗ for some
t ∈ [0,τ), from (32) we have

θ̇ ≥ 4ε

P
− sin(θ) ≥ 4ε

P
> 0. (61)

Thus, cos(θ) remains larger than or equal to ε

h∗ thereafter.
We conclude for any trajectory with cos(θ) ≥ ε

h∗ , at t = τ

one of d1, d2 is greater than zero. Similar argument shows
that for any trajectory with cos(θ) ≤ −ε

h∗ , θ = −π before
P reaches zero. Since the analysis holds for all ε > 0, any
trajectory with P→ 0 has cos(θ)→ 0. It remains to show
that there is only one trajectory for which P→ 0.

Suppose, by contradiction, that there exist two trajectories
for which P→ 0. Let θ1 and θ2 represent the solutions of (56)
for each trajectory for P > 0. We should have θ1,θ2→ −π

2
as P→ 0. Without loss of generality, assume θ1 > θ2, and
define ∆θ := θ1−θ2. Note that since f (P,θ) is Lipschitz for
non-zero P, due to uniqueness of solutions θ1 and θ2 cannot
collide at any other point than −π

2 . From the mean value
theorem, there exists θ̃(P) ∈ (θ2,θ1) such that

d∆θ

dP
= f (P,θ1)− f (P,θ2) =

∂ f (P, θ̃)
∂θ

∆θ . (62)

From (56) we have ∂ f
∂θ

= f1 + f2 + f3 where we define

f1 :=
−4
P h∗ sin(θ)

( cos(θ)
2 −1)P+2h∗ sin(θ)

,

f2 :=
−cos(θ)

( cos(θ)
2 −1)P+2h∗ sin(θ)

,

f3 :=

(−4
P h∗ cos(θ)− sin(θ)

)(
2h∗ cos(θ)− sin(θ)

2 P
)

(
( cos(θ)

2 −1)P+2h∗ sin(θ)
)2 .

Since P→ 0 implies that θ → −π

2 , it follows that f2 and
f3 are bounded by some constants, while f1 → −∞ as
P→ 0. Thus, f1 is the dominating term, and there exists
a constant k > 0 such that ∂ f

∂θ
≤ −k

P . From (62), we then
have d∆θ

dP ≤
−k
P ∆θ , from which d∆θ

∆θ
≤ −k dP

P . Solving the
latter differential equation (and by Gronwall’s Lemma), for
any P′ < P we can show

ln
∣∣∣∣ ∆θ

∆θ ′

∣∣∣∣≤−k ln
∣∣∣∣ P
P′

∣∣∣∣ ⇒ ∆θ Pk ≤ ∆θ
′P′k (63)

where ∆θ ′ := ∆θ(P′). Since P′ → 0 implies that ∆θ ′ → 0
as can be seen in Fig. 7, from (63) we have ∆θ Pk ≤ 0,
which implies ∆θ = 0. This implies θ1 = θ2, which is a
contradiction. Therefore, there is only one trajectory for
which P→ 0.
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Fig. 7. Two trajectories converging to θ = −π

2 as P→ 0.

REFERENCES

[1] F. Giulietti, L. Pollini, and M. Innocenti, “Autonomous formation flight,” IEEE
Control Systems, vol. 20, no. 6, pp. 34–44, 2000.

[2] L. Y. Wang, A. Syed, G. G. Yin, A. Pandya, and H. Zhang, “Control of vehicle
platoons for highway safety and efficient utility: Consensus with communications
and vehicle dynamics,” Journal of systems science and complexity, vol. 27, no. 4,
pp. 605–631, 2014.

[3] A. Spröwitz, R. Moeckel, M. Vespignani, S. Bonardi, and A. J. Ijspeert,
“Roombots: A hardware perspective on 3D self-reconfiguration and locomotion
with a homogeneous modular robot,” Robotics and Autonomous Systems, vol. 62,
no. 7, pp. 1016–1033, 2014.

[4] Y. Cao, W. Yu, W. Ren, and G. Chen, “An overview of recent progress in the
study of distributed multi-agent coordination,” IEEE Transactions on Industrial
Informatics, vol. 9, no. 1, pp. 427–438, 2013.

[5] E. Montijano, D. Zhou, M. Schwager, and C. Sagues, “Distributed formation
control without a global reference frame,” in IEEE American Control Conference,
2014, pp. 3862–3867.

[6] R. Olfati-Saber and R. M. Murray, “Distributed cooperative control of multiple
vehicle formations using structural potential functions,” in IFAC World Congress,
2002, pp. 346–352.

[7] L. Krick, M. E. Broucke, and B. A. Francis, “Stabilisation of infinitesimally rigid
formations of multi-robot networks,” International Journal of Control, vol. 82,
no. 3, pp. 423–439, 2009.

[8] Y.-P. Tian and Q. Wang, “Global stabilization of rigid formations in the plane,”
Automatica, vol. 49, no. 5, pp. 1436–1441, 2013.

[9] M. H. Trinh, K.-K. Oh, and H.-S. Ahn, “Angle-based control of directed acyclic
formations with three-leaders,” in International conference on mechatronics and
control, 2014, pp. 2268–2271.

[10] M. Deghat and A. N. Bishop, “Distributed shape control and collision avoidance
for multi-agent systems with bearing-only constraints,” in IEEE European
Control Conference, 2015, pp. 2342–2347.

[11] S. Zhao and D. Zelazo, “Bearing rigidity and almost global bearing-only forma-
tion stabilization,” IEEE Transactions on Automatic Control, vol. PP, no. 99, pp.
1–1, 2015.

[12] A. N. Bishop, T. H. Summers, and B. D. Anderson, “Stabilization of stiff for-
mations with a mix of direction and distance constraints,” in IEEE International
Conference on Control Applications, 2013, pp. 1194–1199.

[13] K. Fathian, D. I. Rachinskii, M. W. Spong, and N. R. Gans, “Globally asymp-
totically stable distributed control for distance and bearing based multi-agent
formations,” in American Control Conference. IEEE, 2016, pp. 4642–4648.

[14] M. Basiri, A. N. Bishop, and P. Jensfelt, “Distributed control of triangular
formations with angle-only constraints,” Systems & Control Letters, vol. 59, no. 2,
pp. 147–154, 2010.

[15] A. N. Bishop, “Distributed bearing-only formation control with four agents and a
weak control law,” in IEEE International Conference on Control and Automation,
2011, pp. 30–35.

[16] S. Zhao, F. Lin, K. Peng, B. M. Chen, and T. H. Lee, “Distributed control of
angle-constrained circular formations using bearing-only measurements,” in IEEE
Asian Control Conference, 2013, pp. 1–6.

[17] S. L. Smith, M. E. Broucke, and B. A. Francis, “Stabilizing a multi-agent
system to an equilateral polygon formation,” in International Symposium on
Mathematical Theory of Networks and Systems. Kyoto Japan, 2006, pp. 2415–
2424.

[18] D. V. Dimarogonas and K. H. Johansson, “Further results on the stability of
distance-based multi-robot formations,” in IEEE American Control Conference,
2009, pp. 2972–2977.

[19] M.-A. Belabbas, “On global stability of planar formations,” IEEE Transactions
on Automatic Control, vol. 58, no. 8, pp. 2148–2153, 2013.

[20] J. A. Marshall, M. E. Broucke, and B. A. Francis, “Formations of vehicles in
cyclic pursuit,” IEEE Transactions on automatic control, vol. 49, no. 11, pp.
1963–1974, 2004.

[21] K. S. Galloway, E. W. Justh, and P. S. Krishnaprasad, “Geometry of cyclic
pursuit,” in IEEE Conference on Decision and Control, 2009, pp. 7485–7490.

[22] J. Guo, G. Yan, and Z. Lin, “Cooperative control synthesis for moving-target-
enclosing with changing topologies,” in IEEE International Conference on
Robotics and Automation, 2010, pp. 1468–1473.

[23] G. Teschl, Ordinary differential equations and dynamical systems. American
Mathematical Soc., 2012, vol. 140.

[24] A. S. Posamentier and I. Lehmann, The secrets of triangles: a mathematical
journey. Prometheus Books, 2012.


	Introduction
	Notation and Assumptions
	Background
	Control Law
	Stability Analysis for 3 Agents
	Robustness to Failure of One Agent
	Required Variables
	The Invariant Manifold
	Lower Bounds for A and P
	Convergence to the Desired Shape

	Stability Analysis for all 3 Agents Moving

	Stability Analysis for 4 Agents
	Stability Analysis for 5 or More Agents
	Conclusions and future work
	Appendix I: Convergence to Non-negative Area
	Case d1(0) =d2(0)
	Case d1(0) = d2(0)

	References

