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Robust Distributed Planar Formation Control for
Higher Order Holonomic and Nonholonomic Agents
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Abstract—In this article, we present a distributed formation con-
trol strategy for agents with a variety of dynamics to achieve a de-
sired planar formation. Our approach is based on the barycentric-
coordinate-based (BCB) control, which is fully distributed, does not
require interagent communication or a common sense of orienta-
tion, and can be implemented using relative position measurements
acquired by agents in their local coordinate frames. This removes
the need for global positioning or alignment of local coordinate
frames, which are required across several existing strategies. We
show how the BCB control for agents with the simplest dynam-
ical model, i.e., the single-integrator dynamics, can be extended
to agents with higher order dynamics such as quadrotors, and
nonholonomic agents such as unicycles and cars. Specifically, our
extension preserves the desired convergence and robustness guar-
antees of the BCB approach and is provably robust to saturations in
the input and unmodeled linear actuator dynamics for unicycle and
car agents. We further show that under our proposed BCB control
design, the agents can move along a rotated and scaled control
direction without affecting the convergence to the desired forma-
tion. This observation is used to design a fully distributed collision
avoidance strategy, which is often not considered in the formation
control literature. We demonstrate the proposed approach in sim-
ulations and further present a distributed robotic platform to test
the strategy experimentally. Our experimental platform consists of
off-the-shelf equipment that can be used to test and validate other
multiagent algorithms. The code and implementation instructions
for this platform are available online.

Index Terms—Distributed collision avoidance, distributed
robotic platform, formation control, multiagent systems.
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Fig. 1. Proposed formation control strategy implemented on our distributed
wheeled mobile robotic platform to form the letters UTD.

I. INTRODUCTION

T ECHNOLOGICAL advances in recent years have made it
increasingly possible to deploy a large fleet of agents to

cooperatively map and monitor an environment [1], [2], deliver
goods [3], or manipulate objects [4]–[6]. In these applications,
the ability to bring the agents to a desired geometric shape is a
fundamental building block upon which more sophisticated ma-
neuvering and navigation policies are constructed. By assigning
local control laws to individual agents, distributed formation
control strategies ensure that a desired geometric shape emerges
from the collective behavior of agents. Compared to the cen-
tralized methods, distributed strategies have better scalability,
naturally parallelized computation, resilience to communication
loss and hardware failure, and robustness to uncertainty and lack
of global measurements.

In this article, we present a unified, distributed control strategy
for planar formations of agents with a variety of dynamics.
In particular, we consider agents with linear or input-to-state
linearizable dynamics, and further extend the results to agents
with nonholonomic unicycle and car dynamics, as shown in
Fig. 1. Our approach is based on the barycentric-coordinate-
based (BCB) control, which is fully distributed, does not require
interagent communication or a common sense of orientation,
and can be implemented using relative position measurements
acquired by agents in their local coordinate frames. We start
by formulating a semidefinite program (SDP) to compute the
control gains needed for agents with the single-integrator model.
Thanks to this design strategy, convergence to the desired
formation is invariant to any (strictly) positive scaling of the
control vector and any rotation amounting up to ±90◦. This
observation leads to provable robustness guarantees such as
robustness to saturations in the input and disturbances in the
control direction. This observation is further exploited to de-
sign a fully distributed collision avoidance strategy, which is
often not considered in the formation control literature. The
control for single-integrator agents is extended subsequently to
agents with higher order linear, feedback-to-state linearizable,
nonholonomic unicycle, and nonholonomic car dynamics. The
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main challenges addressed in these extensions are to 1) ensure
convergence guarantees to the desired formation are preserved;
2) ensure robustness properties are preserved (e.g., robustness
to input saturations and unmodeled/unknown linear actuator
dynamics); and 3) have a unified design by using the same con-
trol gains computed from the SDP approach for single-integrator
agents. To vet the theoretical results, several simulations are
presented for quadrotors, differential drive robots with unicycle
dynamics, and cars, where it is shown that agents achieve a
desired formation without collision. To typify the results fur-
ther, the proposed control strategy is tested experimentally on
a distributed differential-drive wheeled robotic platform with
different numbers of robots and desired formations.

A. Related Work and Contributions

There exists a notable body of work on distributed forma-
tion control (see [7]–[9]). These works can be differentiated
by the assumed sensing and measurements (e.g., global versus
relative/local) and the use of interagent communication (e.g.,
allowed versus limited). Examples of methods that require
global measurements (e.g., GPS) are mentioned in [10]–[12].
Consensus-based methods, such as [13]–[16], or techniques
based on distributed pose estimation [17], on the other hand, do
not require global sensing. However, agents must communicate
to peers during the mission to estimate their pose, synchronize
their orientation, or register their local coordinate frames with
respect to a common heading direction.

Unlike the aforementioned methods, a certain class of forma-
tion control strategies is concerned with the most challenging
case: when measurements are local/relative and interagent com-
munication is limited or not allowed. Examples of the latter class
include distance-based [18]–[20], bearing-based [21]–[24], and
the BCB formation control strategies [25]–[31]. Due to challeng-
ing nonlinear dynamics, no distance-based formation control
algorithm with global convergence to the desired formation
(in the general setting) is known to this day in the literature.
Moreover, bearing-based formation control methods with global
convergence guarantees require alignment of local coordinate
frames [32]. Unlike the aforementioned methods, convergence
guarantees of the BCB control to the desired shape are global
(except for a measure zero set, which is inconsequential for the
implementation).

The BCB control strategy was introduced by Lin et al. [33],
[34], who presented the general theory for agents with single-
integrator dynamics and derived the (almost) global convergence
guarantees. As these guarantees hold for agents with linear
dynamics, it is therefore essential to extend them to agents
with nonlinear and nonholonomic dynamics that are commonly
encountered in robotics applications. In this article, we lever-
age the gradient-descent control framework developed by Zhao
et al. [35], [36] for agents with nonholonomic dynamics and
show that for a subclass of sensing topologies that are undirected
and universally rigid, the global convergence guarantees extend
to agents with higher order, input-to-state feedback linearizable,
and nonholonomic unicycle and car dynamics. We further show
that under the proposed SDP design, robustness guarantees of

the BCB control for single-integrator agents extend to agents
with unicycle and car dynamics, and the proposed control is
provably robust to saturation of the input and unmodeled linear
actuator dynamics.

A contribution of this work is a fully distributed collision
avoidance strategy that naturally arises from the robustness prop-
erties of the control and preserves the stability of the closed-loop
system. Much of the distributed formation control literature do
not consider collision avoidance (e.g., in the original BCB ap-
proach [33], [34]), and existing collision avoidance approaches
are often centralized. Furthermore, an ad hoc augmentation of a
distributed formation control strategy with collision avoidance,
e.g., using potential functions, can lead to undesired behaviors
or even instability (e.g., robots may drift or move in a limit cycle
indefinitely).

We further present a portable and low-cost distributed robotic
platform that consists of off-the-shelf components (see Fig. 1).
This platform is used to validate our proposed formation control
experimentally and can be used to test other multiagent control
strategies. Since the platform is distributed, the number of robots
used for an experiment is only limited by the available resources.
The code and technical implementation details related to this
platform are made available online, and are accessible in the in
the supplementary material noted in the footnote on page 1.

In order to make this article self-contained, this comprehen-
sive work contains a summary of the relevant results derived
in our previous papers [37]–[40] and subsequent extensions
after the submission of this manuscript [41], [42]. Specifically,
[37] studied the BCB control design under arbitrary switching
sensing typologies, [38] presented the initial extension of the
BCB control to agents with higher order linear dynamics, [39]
presented an augmentation of the BCB control to fix the forma-
tion scale with convergence guarantees, and [40] presented the
extension to agents with a kinematic unicycle model, particularly
for fixed-wing aerial vehicles. Contributions of this work include
extension of the BCB control to agents with dynamic unicycle
and car models with convergence guarantees even in the presence
of unmodeled linear actuator dynamics, and collision avoidance
with stability guarantees. These contributions are accompanied
by thorough simulation and experimental evaluations on an
open-source robotic platform. Our latest extensions [41], [42]
expand the BCB control to 3-D formations and leverage task
assignment to mitigate gridlock scenarios that arise due to the
distributed collision avoidance, respectively.

In summary, the main contributions of this article are as
follows.

1) A distributed, provably convergent, and robust formation
control strategy for vehicles with a large variety of holo-
nomic and nonholonomic dynamics, which eliminates the
need for global position measurements, common heading
direction, interagent communication, and complete sens-
ing graph required in existing formation control literature.

2) A fully distributed collision avoidance algorithm naturally
incorporated in the formation control strategy with stabil-
ity guarantees.

3) A low-cost distributed robotic platform with off-the-shelf
components for validation of formation control pipeline.
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B. Paper Organization

In Section II, the notation and assumptions used throughout
this article are introduced. In Section III, the control strategy
for agents with single-integrator dynamics is introduced, the
SDP gain design algorithm is presented, and robustness of
the proposed approach to perturbations and saturated input is
proven. Gains designed for single-integrator agents are used in
Section IV to extend the control to agents with higher order
linear or linearizable holonomic dynamics such as quadrotors. In
Sections V and VI, the control is further extended to agents with
nonholonomic unicycle and car dynamics, where robustness to
saturations in the input and unmodeled dynamics is shown.
In Section VII, additional topics such as collision avoidance,
time-varying sensing topologies, scale of the formation, and
extension to 3-D case are discussed. Finally, in Sections VIII and
IX simulation and experimental results are presented to typify
the proposed strategy.

II. NOTATION AND ASSUMPTIONS

We consider a team of n ∈ N agents with the interagent
sensing topology described by an undirected graph G = (V, E),
where V = Nn := {1, 2, . . . , n} is the set of vertices, and E ⊂
V × V is the set of edges. Each vertex of the graph represents
an agent. An edge from vertex i ∈ V to j ∈ V indicates that
agents i and j can measure the relative position of each other in
their local coordinate frames. In such a case, agents i and j are
called neighbors. The set of neighbors of agent i is denoted by
Ni := {j ∈ V | (i, j) ∈ E}. We denote by eig(A) ⊂ C the set of
eigenvalues of matrix A.

Throughout this article, we assume that the desired formation
and the sensing topology are such that achieving the formation
is physically feasible. In particular, we assume that the sensing
topology is undirected and universally rigid. This assumption
is both necessary and sufficient [34], [43] for guaranteeing the
existence of control gains that are computed from the proposed
SDP approach. We further point out that by “formation” we
imply a desired geometric shape up to a positive scale factor. To
fix the scale of the formation to a desired value, an augmented
control is presented in Section VII.

III. FORMATION CONTROL FOR SINGLE-INTEGRATOR

DYNAMICS

In this section, we present the distributed formation control
strategy introduced in [33] for agents with single-integrator
dynamics. We then propose a novel design approach for finding
stabilizing control gains by formulating a convex optimization
problem. The results of this section are a cornerstone for forma-
tion control of agents with more complicated dynamic models
that are discussed in the subsequent sections.

A. Control Strategy

The single-integrator dynamics can be described as

q̇i = ui (1)

Fig. 2. Example of three agents with agents 2 and 3 neighbors of agent 1.

where qi := [xi, yi]
� ∈ R2 is the coordinate of agent i ∈ Nn

in a common global coordinate frame (unknown to the agent),
and ui ∈ R2 is the control law. To bring the agents to a desired
formation, the control law for each agent can be chosen as

ui :=
∑
j∈Ni

Aij (qj − qi) (2)

where Aij ∈ R2×2 are constant control gain matrices that will
be designed later, and each has the form

Aij :=

[
aij bij

−bij aij

]
, aij , bij ∈ R. (3)

Thanks to the commutativity property of the Aij matrices, the
closed-loop dynamics with coordinates qi and qj expressed in
the agents’ local coordinate frames are identical to the case that
coordinates are expressed in a global coordinate frame (for more
details see [37]). The geometric intuition behind the control
strategy (2) is explained in the following example.

Example 1: Consider three agents in Fig. 2 , where agents 2
and 3 are neighbors of agent 1. Let q2 = [2, 3]� and q3 = [3, 1]�

denote the position of neighbors in agent 1’s local coordinate
frame, and assume that control gains for agent 1 are given as

A12 =

[
2 −1

1 2

]
, A13 =

[
−1 3

−3 −1

]
. (4)

From (2), the control vector for agent 1 is computed as

u1 = A12 q2 +A13 q3 =

[
1

−2

]
(5)

which is shown in the figure and can be interpreted geometrically
as follows. At any instance of time, agent 1 moves along the
control vector with the speed equal to the vector’s magnitude.
Note that due to the special structure of gain matricesA12, A13,
they can be interpreted as scaled rotation matrices that rotate
and scale vectors connecting agent 1 to its neighbors. One can
see that this action is independent of agent 1’s local coordinate
frame position and orientation, hence, q1 and q2 can be replaced
by their coordinates in a global coordinate frame for analysis.

Let q := [q�1 , q
�
2 , . . . , q

�
n ]

� ∈ R2n denote the aggregate state
vector of all agents. Using this notation, the closed-loop dynam-
ics under the control strategy (2) can be expressed as
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q̇ = Aq, (6)

A =

⎡
⎢⎢⎢⎢⎢⎣
−∑n

j=2A1j A12 · · · A1n

A21 −∑n
j=1
j �=2

A2j · · · A2n

...
. . .

...

An1 An2 · · · −∑n−1
j=1 Anj

⎤
⎥⎥⎥⎥⎥⎦

∈ R2n×2n

where for j /∈ Ni theAij block is defined as a zero matrix. Note
that the 2× 2 diagonal blocks of A are the negative sum of the
rest of the blocks on the same row. Hence,A has block Laplacian
structure, and it follows that vectors:

1 := [1, 0, 1, 0, . . . , 1, 0]� ∈ R2n

1̄ := [0, 1, 0, 1, . . . , 0, 1]� ∈ R2n (7)

are in the kernel1 of A.
Let q∗ ∈ R2n denote the coordinates of agents at the desired

formation (the orientation, translation, and scale of the desired
formation can be chosen arbitrarily). Further, let q̄∗ ∈ R2n de-
note the coordinates of agents when the desired formation is
rotated by 90◦ about the origin. The following theorem states
the conditions that guarantee the convergence of agents to the
desired formation.

Theorem 1: Consider agents with single-integrator dynamics
(1) and control (2). If the Aij’s are chosen such that in (6)

i) A has null vectors 1, 1̄, q∗, and q̄∗,
ii) other than the four zero eigenvalues associated with these

null vectors, all eigenvalues ofA have negative real parts,
then, agents globally converge to the desired formation.

Proof: The formal proof can be found in our previous
work [37, Th. 1], and is based on the observation that if nonzero
eigenvalues of matrix A have negative real parts, all trajectories
of the linear system q̇ = Aq exponentially converge to the kernel
of A. The kernel of A is nothing but all rotations, translations,
and nonnegative scale factors of the desired formation. �

Note that in Theorem 1 convergence to the desired formation
implies that the formation is achieved up to a rotation and
translation in the global coordinate frame, and a nonnegative
scale factor. As we will discuss in Section VII, in applications
where the scale is important, the control can be augmented to
attain the desired scale. We should point out that null vectors1, 1̄
correspond to the case where all agents coincide, which can be
interpreted as the desired formation achieved with the zero scale.
It can be shown that the set of initial conditions that converge
to this coinciding equilibrium is measure zero. Notice that in
practice, trajectories of agents cannot remain on a measure zero
set (due to noise, disturbances, etc.), thus, coinciding agents are
not of practical concern.

Remark 1: The topological conditions that guarantee the
existence of a symmetric matrix A satisfying the conditions
of Theorem 1 are studied in [25, Th. 3.2], which presents the

1If A ∈ Rn×n, the kernel or null space of A is defined as
ker(A) := {v ∈ Rn |Av = 0}.

necessary and sufficient condition2 that the sensing graph is
undirected and universally rigid. Throughout this article, we
assume that this condition is met.

Remark 2: Motion of the ensemble set of agents, during
and after getting into formation, can be addressed in various
ways. We have previously employed leader–follower strategies
and preassigned high-level control tasks [40]. Such a task may
require global information and is not discussed further here.

B. Control Gain Design

Given a desired formation for agents with a universally rigid
sensing topology, we present a novel algorithm to find con-
trol gain matrices that meet the conditions of Theorem 1. Let
N := [q∗, q̄∗, 1, 1̄] ∈ R2n×4 be the set of bases for the kernel
of A, where 1, 1̄ are given in (7), q∗ ∈ R2n is the coordinates
of agents at the desired formation, and q̄∗ ∈ R2n is the 90◦

rotated coordinates about the origin. Let U S V � = N be the
(full) singular value decomposition (SVD) of N , where

U = [Q̄, Q] ∈ R2n×2n (8)

with Q ∈ R2n×(2n−4) defined as the last 2n− 4 columns of U .
Lemma 1: Using Q in (8), define

Ā := Q�AQ ∈ R(2n−4)×(2n−4). (9)

Matrices A and Ā have the same set of nonzero eigenvalues.
Proof of Lemma 1 follows by observing that U is an orthog-

onal matrix, and range(Q̄) = range(N). Therefore Ā is the
restriction of A onto the orthogonal complement of range(N),
which removes the zero eigenvalues of A.

For an undirected sensing topology, by imposing the con-
straints aij = aji, bij = −bji in (3) matrixA can be designed to
be symmetric. Note that from Remark 1 existence of such matrix
is guaranteed. In this case, Ā is symmetric, and its eigenvalues
are real and can be ordered. Hence, A can be computed by
solving the optimization problem

A = argmax
aij , bij

λ1(−Ā)

subject to AN = 0

trace(A) = constant (10)

where λ1(·) denote the smallest eigenvalue of a matrix and the
last constraint ensures that the solution remains bounded. Note
that (10) is a concave maximization problem [44], and can be
formulated as the SDP problem

A = argmax
aij , bij , γ

γ

subject to Ā+ γ I � 0

AN = 0

trace(A) = constant (11)

2To be specific, the necessary and sufficient condition is for a generic desired
formation. For certain desired formations matrix A exists even when the graph
is not universally rigid.
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TABLE I
EXECUTION TIME OF THE CVX SOLVER USED FOR (10) VERSUS OUR

CUSTOMIZED ADMM SOLVER IN [42] FOR OBTAINING 2-D FORMATION

GAINS FOR DIFFERENT NUMBER OF AGENTS

OOM: Out of memory. Reported times are in seconds and rounded to two decimals.

Algorithm 1: Formation Control Gain Design.
input: Desired formation coordinates q∗.
Output: Gain matrix A.
step 1: Let N := [q∗, q̄∗, 1, 1̄].
step 2: Compute SVD of N = U S V �.
step 3: Define Q as the last 2n− 4 columns of U .
step 4: Solve (10) using a SDP solver.

where the first constraint is a linear matrix inequality. The
proposed approach for finding stabilizing gain matrix A is
summarized in Algorithm 1.

Several effective algorithms for solving SDPs were developed
in recent years [45] that can be used to solve problem (10).
CVX [46] is well-suited to solve (10) when the number of agents
is less than 50, and it features a relatively simple interface. For
scenarios with larger number of agents, customized and more
computationally efficient solvers can be leveraged to obtain an
answer. In [42], we presented an alternating direction method of
multipliers (ADMM)-based customized solver for (10). Table I
shows the time required to solve (10) for a random sensing
topology in MATLAB using an Intel Core i7-7700 K with 16 GB
RAM. As it can be seen, by using the ADMM-based solver gains
for formations of 100 agents can be computed in less than 11 s.

It is important to note the distinction between the design phase
and implementation in our approach. Designing the control gains
by Algorithm 1 is a centralized paradigm (which requires the
knowledge of the sensing topology). These gains are transmitted
from the base station to agents to be used during the mission. The
implementation of our approach is distributed, where agents use
the prescribed gains to achieve the desired formation without a
need for communication and using only relative/local position
measurements. Distributed optimization techniques can solve
(11) without relying on the complete knowledge of the sensing
topology. An example of such distributed design can be found
in [25]. However, these techniques require interagent commu-
nication, which we avoid in this work.

C. Robustness to Perturbations

An important characteristic of the proposed design approach
is that the gains found via (10) lead to significant robustness to
perturbations. For instance, noise and disturbances can cause an
agent to move in a direction that is different from the desired
control vector. The following theorem shows that by using the

gains computed from (10) positive scaling and rotation of the
control vectors (up to ±90◦) do not affect the convergence.

Theorem 2: Given control gain matrixA designed from (10),
let Ri ∈ SO(2) denote a rotation matrix of αi radians, and ci ∈
R be a scalar. If αi ∈ [−π

2 + ε, π2 − ε] for an arbitrary small
ε > 0, and ci > 0, under the perturbed control

ui := ciRi
∑
j∈Ni

Aij (qj − qi) (12)

single-integrator agents achieve the desired formation.
We first present and prove the following lemma that is used

in the proof of Theorem 2.
Lemma 2: Let R ∈ SO(2) represent a rotation of α ∈

[−π, π) radians. If |α| < π
2 , then R+R� is positive definite.

Proof: Matrix R ∈ SO(2) can be represented as R =[
c −s
s c

]
, where c, s are shorthand notations for cos(α), sin(α),

respectively. Hence,R+R�=
[
c 0
0 2c

]
, which since for |α|< π

2

we have c > 0, and matrix R+R� is positive definite. �
We now present the proof of Theorem 2.
Proof: Under the perturbed control (12), the aggregate dy-

namics can be represented by

q̇ := P Aq (13)

where P := diag(c1R1, c2R2, . . . , cnRn) ∈ R2n×2n is a
block diagonal matrix that contains the perturbation terms.
Consider the Lyapunov function candidate V := −q�Aq. Note
that V is positive semidefinite since by design A is negative
semidefinite, and V = 0 if and only if q ∈ ker(A). Noting that
A� = A, the derivative of V along the trajectories of (13) is

V̇ = −q̇�Aq − q�A q̇ = −q�A (
P� + P

)
Aq. (14)

Matrix P� + P is block diagonal and each diagonal block is
given by ci (R�

i +Ri) ∈ R2×2. From Lemma 2, we have that
if |αi| < π

2 and ci > 0 for all i ∈ {1, . . . , n}, then all diago-
nal blocks are positive definite. This implies that P� + P is
positive definite, and consequently V̇ < 0 for all q /∈ ker(A).
From the Lyapunov stability theory and LaSalle’s invariance
principle [47], it then follows that all trajectories of (13) converge
to the invariant set q ∈ ker(A), which shows that the desired
formation is achieved. �

D. Robustness to Saturated Input

In practice, the velocity of an agent cannot take arbitrary
large values. Thus, any large control input will be saturated by a
maximum feasible/allowed speed. This, however, does not affect
convergence of agents to the desired formation.

Theorem 3: Consider single-integrator agents with dynamics
(1) and assume that umax > 0 is a real positive scalar. If ui is
saturated such that |ui| ≤ umax, then under the control (2) the
desired formation is achieved globally.

We first discuss the following Lemma and Corollary:
Lemma 3: [48, Sec. 2.1.2] Consider the family of switched

systems ẋ = fi(x), with i = 1, 2, . . . , N . Let V : Rn → R
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Fig. 3. Top: The ith diagonal entry of matrix S. Bottom: The effect of
saturation on the control.

be a positive definite, continuously differentiable, and radi-
ally unbounded function. If ∂V∂x fi(x) < 0, ∀x �= 0, ∀i, then the
switched system is globally uniformly asymptotically stable.

Corollary 1: Lemma 3 can be extended to a positive semidef-
inite V with the zero set ofZ := {x ∈ Rn : V (x) = 0}. In this
case, if ∂V∂x fi(x) < 0, ∀x /∈ Z, ∀i, then all trajectories globally
uniformly asymptotically converge to Z.

We now present the proof of Theorem 3.
Proof: To model the input saturation, we can define the

diagonal matrix S ∈ Rn×n with diagonal elements

(S)ii =

{
1 if |ui| ≤ umax

umax

|ui| if |ui| > umax.
(15)

As illustrated in Fig. 3, diagonal elements ofS can be considered
as functions that saturate any large input to the maximum value
umax. The closed-loop dynamics under the saturated input can
be expressed in the vector form via

q̇ = S Aq (16)

System (16) should be understood as a family of switched
dynamical systems, for which the solution is well-defined in
the Filippov sense (see [48, Ch. 2 ] for more details). To show
that this system is uniformly stable, we consider

V := −1

2
q�Aq ≥ 0 (17)

as a common Lyapunov function candidate for all systems. Note
that sinceA is negative semidefinite, V is a positive semidefinite
scalar valued function. Time derivative of V along the trajectory
of (16) is

V̇ = −q�A q̇
= −q�AS Aq
= −(S

1
2 Aq)�(S

1
2 Aq) = −‖S 1

2 Aq‖2 ≤ 0 (18)

where S
1
2 is the diagonal matrix with elements given by the

square root of diagonal entries of S. Note that all diagonal
elements of S are strictly positive, hence S

1
2 is well-defined.

Since V is a positive semidefinite, continuously differentiable,
and radially unbounded function, from Lemma 3, Corollary 1,
and LaSalle’s invariance principle, it follows that all trajectories
of (16) converge to the zero set of V , which is the kernel of A.
Thus, the desired formation is achieved. �

Remark 3: To reject steady-state errors, the control law (2)
can be augmented by an integrator term as

ui := k0
∑
j∈Ni

Aij (qj − qi) + k1

∫ t

0

∑
j∈Ni

Aij (qj − qi) dτ

(19)

where k0, k1 ∈ R are scalar control gains. It can be shown that if
k0, k1 > 0, this augmented control rejects constant input/output
disturbances (see [38, Sec. III-D] for more details).

Remark 4: The robustness properties of control (2), such as
robustness to positive scaling and rotations up to ±90◦, are
similar to the properties of the first-order consensus methods.
This originates from the structure of the Lyapunov analysis
that is similar in both approaches. However, consensus-based
methods [13], [14] require alignment of agents’ local coordinate
frames, whereas the formation control strategy studied in this
work does not have this constraint.

IV. FORMATION CONTROL FOR AGENTS WITH HIGHER

ORDER DYNAMICS

In this section, we extend the single-integrator control strategy
to agents with higher order dynamics. We show how the control
gains designed for single-integrator agents in Section III-B can
be used directly to control higher order agents without having
to find a new control strategy or redesign the gains by solving a
new optimization problem. This means the same formation can
be regulated for any type of vehicle using the same gains. We
assume that the aggregate higher order dynamics of all agents
can be expressed in the controllable canonical form

⎡
⎢⎢⎢⎢⎢⎢⎣

q̇

q̇(1)

...

q̇(m−1)

q̇(m)

⎤
⎥⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 I 0 · · · 0

0 0 I 0
...

. . .
...

0 0 0 I

0 0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

q

q(1)

...

q(m−1)

q(m)

⎤
⎥⎥⎥⎥⎥⎥⎦+

⎡
⎢⎢⎢⎢⎢⎢⎣

0

0
...

0

I

⎤
⎥⎥⎥⎥⎥⎥⎦ u (20)

where q ∈ R2n is the aggregate position vector of all agents,
q(j) ∈ R2n denotes the jth derivative of q, and I ∈ Rn×n is
the identity matrix. Although at first sight (20) may seem re-
strictive, in fact, it encompasses a large class of agents. This
is because by coordinate transformation techniques such as
feedback linearization, or approximation techniques such as
linearization and gain scheduling, dynamics of many systems
can be expressed as (20).

Given the gain matrix A designed for agents with the single-
integrator model, the control for agents with dynamics (20) can
be chosen as

u = k0Aq + k1Aq
(1) + · · ·+ kmAq

(m) (21)

where k0, k1, . . . , km ∈ R are scalar control gains, and u :=
[u�1 , u

�
2 , . . . , u

�
n ]

� ∈ R2n denote the aggregate control vector.
Note that (21) can be implemented locally using only the relative
measurements (due to the special structure of A). Under this
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control, the closed-loop dynamics is given by⎡
⎢⎢⎢⎢⎢⎢⎣

q̇

q̇(1)

...

q̇(m-1)

q̇(m)

⎤
⎥⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 I 0 · · · 0

0 0 I 0
...

. . .
...

0 0 0 I

k0A k1A k2A · · · kmA

⎤
⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
E

⎡
⎢⎢⎢⎢⎢⎢⎣

q

q(1)

...

q(m-1)

q(m)

⎤
⎥⎥⎥⎥⎥⎥⎦ .

(22)

Theorem 4: If for all nonzero μ ∈ eig(A) roots of the poly-
nomial equation

λm+1 − km μ λm − · · · − k1 μ λ − k0 μ = 0 (23)

have negative real parts, then under control (21), agents with
dynamics (20) globally converge to the desired formation.

Before, we present the proof of Theorem 4, we present and
prove the following Lemma.

Lemma 4: Letp(·)be a given polynomial. Ifμ is an eigenvalue
of matrix A with v as the associated eigenvector, then p(μ)
is an eigenvalue of the matrix p(A) with v as the associated
eigenvector.

Proof: Let p(·) be a polynomial of degree k, and consider

p(A) v = akA
kv + ak−1A

k−1v + · · ·+ a1Av + a0 v (24)

where aj’s, j = 0, . . . , k, are coefficients of the polynomial.
Since v is an eigenvector, we have Ajv = Aj−1(Av) =
Aj−1(μ v) = μ(Aj−1v) = · · · = μjv. Thus, from (24), we get

p(A) v = (akμ
k + ak−1μ

k−1 + · · ·+ a1μ + a0) v = p(μ) v

which concludes the proof. �
We now present the proof of Theorem 4.
Proof: The closed-loop state matrix E, defined in (22), is in

the (block) controllable canonical form. From this observation
and Lemma 4, the characteristic equation of E is given by

det(λm+1 I − km λmA− · · · − k1 λA− k0A)

=
∏

μ∈eig(A)

(λm+1 I − km λm μ− · · · − k1 λμ− k0 μ) = 0

(25)

which from the assumption of the theorem implies that the
nonzero eigenvalues of E have negative real parts. �

To find gains k0, k1, . . . , km that satisfy the condition of
Theorem 4, the Routh–Hurwitz criterion can be used.

Remark 5: In the above analysis, the control can alternatively
be chosen as

u = k0Aq + k1 q
(1) + · · ·+ km q

(m). (26)

In this case, agents do not need measurements of states
q(1), . . . , q(m) for their neighbors (since A is replaced by the
identity matrix). Note that (26) can also be implemented using
only the local relative measurements.

Remark 6: There are several methods that can be used to
determine the relative position of agents; e.g., our previous
work [49] used vision sensors. Light detection and ranging

Fig. 4. Illustration of a quadrotor’s body frame in the world frame.

(LIDAR) could be used to augment vision for accurate dis-
placement measurements. In what was discussed above, relative
velocity, acceleration, etc., can be computed by taking time
derivatives of the measured relative position and using appro-
priate filtering when measurements are noisy.

Example 2: (Quadrotor dynamics) Quadrotor dynamics can
be described as [50]⎡

⎢⎣ẍÿ
z̈

⎤
⎥⎦ = R

⎡
⎢⎣ 0

0

ua

⎤
⎥⎦−

⎡
⎢⎣00
g

⎤
⎥⎦ (27a)

⎡
⎢⎣ϕ̇θ̇
ψ̇

⎤
⎥⎦ = T

⎡
⎢⎣ωxωy
ωz

⎤
⎥⎦ (27b)

⎡
⎢⎣ω̇xω̇y
ω̇z

⎤
⎥⎦ = J−1

⎡
⎢⎣u

x

uy

uz

⎤
⎥⎦− J−1

⎛
⎜⎝
⎡
⎢⎣ωxωy
ωz

⎤
⎥⎦ × J

⎡
⎢⎣ωxωy
ωz

⎤
⎥⎦
⎞
⎟⎠ (27c)

where as illustrated in Fig. 4 , x, y, z ∈ R are coordinates of the
quadrotor’s center of mass in the world frame, ϕ, θ, ψ are roll,
pitch, yaw angles that describe the orientation of the quadrotor
body frame in the world frame, ωx, ωy, ωz are the angular body
rates about associated body axes, g is the gravitational constant,
ua is a mass-normalized thrust input, and ux, uy, uz are moment
inputs applied to the airframe about corresponding body axes.
Further, J ∈ R3×3 is the mass moment of inertia matrix, R ∈
SO(3) is the rotation matrix parameterized in terms of z–x–y
Euler angles as

R :=

⎡
⎢⎣cψ cθ − sϕ sψ sθ −cϕ sψ cψ sθ + cθ sϕ sψ

cθ sψ + cψ sϕ sθ cϕ cψ sψ sθ − cψ cθ sϕ

−cϕ sθ sϕ cϕ cθ

⎤
⎥⎦ (28)

where c and s are, respectively, shorthand notations for
cos(·), sin(·) functions, and

T :=
1

cϕ

⎡
⎢⎣cϕ cθ 0 −cθ
sϕ sθ cϕ −cθ sϕ
−sθ 0 cθ

⎤
⎥⎦ ∈ R3×3 (29)

is the transformation matrix that relates the roll, pitch, yaw
derivatives to the angular velocities in the body frame.

Linearizing dynamics (27) about the hover pointx = y = z =
ẋ = ẏ = ż = 0, ωx = ωy = ωz = 0, ux = uy = uz = 0, and
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ua = g gives the quadrotor linearized dynamics

δẍ = g δθ δθ̈ = uy

δÿ = −g δϕ δϕ̈ = ux (30)

δz̈ = ua δψ̈ = uz

where δ represents a small displacement about the equilib-
rium/linearization point. Since we are interested in 2-D for-
mations, we only consider the lateral dynamics along the x-y
axes, and separately control the quadrotor’s altitude by setting
ua = g

cϕ cθ
to stabilize it at a constant altitude.

To represent the dynamics in the canonical form (20), we
define

δθ̄i := g δθi, δϕ̄i := −g δϕi, ūyi := g uyi , ūxi := −g uxi
where subscript i is used to distinguish agents. Using this nota-
tion, (30) can be described in the vector form as

ṗi =

⎡
⎢⎢⎢⎣
0 I 0 0

0 0 I 0

0 0 0 I

0 0 0 0

⎤
⎥⎥⎥⎦ pi +

⎡
⎢⎢⎢⎣
0

0

0

I

⎤
⎥⎥⎥⎦ui (31)

where

pi := [δxi, δyi, δẋi, δẏi, δθ̄i, δϕ̄i, δ
˙̄θi, δ ˙̄ϕi]

�

ui := [ūyi , ū
x
i ]

� (32)

are, respectively, the state and control vectors, and I ∈ R2×2 is
the identity matrix. Note that by defining the aggregate position
vector as q = [δx1, δy1, . . . , δxn, δyn]

�, dynamics of agents
can be expressed in the form (20). This model will be used in
the simulations section to achieve a desired formation.

V. FORMATION CONTROL FOR AGENTS

WITH UNICYCLE DYNAMICS

The motion profile of many vehicles, e.g., differential drive
robots or fixed-wing aerial vehicles, can be described via the
unicycle model. In this section, we introduce the unicycle model
and propose a formation control strategy to achieve the desired
formation using the control gains that were designed for single-
integrator agents. We then show that the desired formation is
achieved even if the input is saturated, and the control strategy
is robust to unknown dynamics that are not considered in the
kinematic unicycle model. We assume henceforth that a sym-
metric negative semidefinite gain matrix A is designed for the
desired formation by solving the optimization problem (10).

A. Unicycle Dynamics

Consider a unicycle agent located at position [xi, yi]
� ∈ R2

in a global coordinate frame (unknown to the agent), and assume
that the unicycle’s heading direction makes angle θi ∈ [0, 2π)
with the x-axis of the global coordinate frame. This scenario is
illustrated in Fig. 5. The unicycle dynamics can be described in
the global coordinate frame by

Fig. 5. Agent with unicycle dynamics at position (xi, yi) in the global
coordinate frame. The agent’s heading is denoted by hi, and makes the angle θi
with the global coordinate frame’s x-axis. Scalars vi and ωi are defined as the
length of the control vector ui projected on hi and h⊥

i , respectively.

ẋi = vi cos (θi)

ẏi = vi sin (θi)

θ̇i = ωi (33)

where scalars vi, ωi ∈ R are, respectively, the linear and angular
velocities of the agent. In the unicycle kinematic model, it is
assumed that vi and ωi are control variables and can be changed
instantaneously.

In the global coordinate frame, the unit norm heading vector
of the unicycle, hi ∈ R2, and its perpendicular vector h⊥i ∈ R2,
are given by

hi :=

[
cos (θi)

sin (θi)

]
, h⊥i :=

[
− sin (θi)

cos (θi)

]
. (34)

Seeing that ḣi = h⊥i θ̇i, (33) can be equivalently described by

q̇i = hi vi

ḣi = h⊥i ωi. (35)

Let q := [q�1 , q
�
2 , . . . , q

�
n ]

� ∈ R2n be the aggregate position
vector of all agents, and similarly let h ∈ R2n, v ∈ Rn, ω ∈ Rn

be the aggregate heading, linear velocity, and angular velocity
vectors, respectively. Using this notation, the motion of all agents
can be collectively expressed as

q̇ = H v

ḣ = H⊥ω. (36)

where matrices H, H⊥ ∈ R2n×n are defined as

H :=

⎡
⎢⎢⎢⎢⎣
h1 0 · · · 0

0 h2 0
...

. . .
...

0 0 · · · hn

⎤
⎥⎥⎥⎥⎦ , H⊥ :=

⎡
⎢⎢⎢⎢⎣
h⊥1 0 · · · 0

0 h⊥2 0
...

. . .
...

0 0 · · · h⊥n

⎤
⎥⎥⎥⎥⎦ .

(37)

B. Control Strategy

Consider a team of n unicycle agents with dynamics (35). We
seek to assign controls vi and ωi such that agents autonomously
achieve a desired formation. Let A ∈ R2n×2n be a symmetric
gain matrix designed in Section III-B for agents with single-
integrator model to achieve the desired formation. Further, let
ui given in (2) be the desired holonomic control direction for
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agent i. The proposed control strategy is as follows. Each agent
computes the control vectorui and projects it on its local heading
and perpendicular heading directions. The projected vectors are
then used as the linear and angular velocity commands. In the
global coordinate frame, which is unknown to agent, this strategy
can be described by

vi := h�i ui

ωi := h⊥�
i ui (38)

as illustrated in Fig. 5. Implementation of (38) does not rely on a
global coordinate system. This is becausehi is a unit vector along
the direction of vehicle, which is known by the agent locally,
and ui is the single-integrator control given in the agent’s local
coordinate frame.

Theorem 5: Let A be a symmetric gain matrix designed for
single-integrator agents. Under the control (38), unicycle agents
globally converge to the desired formation.

Proof: By replacing the control (38) in (35), the closed-loop
dynamics can be expressed in the vector form by

q̇ = HH�Aq

ḣ = H⊥H⊥�Aq. (39)

SinceA is symmetric and negative semidefinite, we can consider

V := −1

2
q�Aq ≥ 0 (40)

as a Lyapunov function candidate. Time derivative of V along
the trajectory of (39) is

V̇ = −q�A q̇
= −q�AH H�Aq

= −(H�Aq)�(H�Aq) = −‖H�Aq‖2 ≤ 0 (41)

which implies that the system is stable. To show convergence to
the desired formation, we use the LaSalle’s invariance principle
and show that q converges to the kernel of A. Since V̇ = 0
implies that H�Aq = 0, by LaSalle’s invariance principle q
converges to the largest invariant set in {q ∈ R2n |H�Aq ≡ 0}.
Thus, one of the following cases must hold.

i) Aq ≡ 0.
ii) Aq �= 0, H�Aq ≡ 0.
Case (i) implies that the desired formation is achieved.

In case (ii), H�Aq ≡ 0 implies that there exists constants
c1, c2, . . . , cn ∈ R, with at least one ci �= 0, such that

Aq =

⎡
⎢⎢⎢⎢⎣
c1h

⊥
1

c2h
⊥
2

...

cnh
⊥
n

⎤
⎥⎥⎥⎥⎦ �= 0. (42)

Since H�Aq ≡ 0, from (39) we get q̇ ≡ 0. Thus, q and Aq are
constant, and from (42), we conclude that h⊥i (and thus hi) is
constant for all nonzero ci. From the definition of H⊥ in (37),
one can see thatH⊥ has full column rank. Therefore, it does not
have a right null vector, and from (42) we have H⊥�Aq �= 0.
This shows H⊥H⊥�Aq �= 0, and consequently from (39), we

get ḣ �= 0. This implies that the heading vectors are not fixed
and rotating, which is a contradiction and shows that case (ii)
cannot happen. �

Remark 7: From the closed-loop dynamics (39) one can see
that when agents are at the desired formation, i.e., Aq = 0,
we have ḣ = 0 and hence the heading directions do not vary.
This implies that the controller drives agents to the desired
formation, however, their heading at the desired formation is
not controlled and can take an arbitrary value. If desired, a
supplementary control can be added to regulate heading angles
after convergence.

Remark 8: It is worth pointing out that the control (38) can
drive unicycle agents with a cart attached to the desired forma-
tion. In this case, the position and orientation of the attached
carts are not controlled. The dynamics of a unicycle agent with
cart attached is similar to the dynamics of a car, which is studied
in the following section.

C. Robustness to Saturated Input

In practice, the linear and angular velocities that an agent can
execute are often limited to a certain range. We show that under
a saturated input, convergence of agents to the desired formation
is not affected.

Theorem 6: Consider the unicycle model (35) and assume
that vmax, ωmax > 0 are two real positive scalars. If vi and ωi
are saturated such that |vi| ≤ vmax, |ωi| ≤ ωmax, then under the
control (38) the desired formation is achieved globally.

Proof: To model the input saturation, we can define the
diagonal matrices S, E ∈ Rn×n with diagonal elements

(S)ii =

{
1 if |vi| ≤ vmax
vmax

|vi| if |vi| > vmax
(43)

and

(E)ii =

{
1 if |ωi| ≤ ωmax

ωmax

|ωi| if |ωi| > ωmax.
(44)

Elements of S, E can be considered as functions that saturate
any large input to the maximum allowed values vmax, ωmax (cf.
Fig. 3 for saturated single-integrator control). The closed-loop
dynamics under the saturated input can be expressed in the vector
form via

q̇ = H SH�Aq

ḣ = H⊥EH⊥�Aq. (45)

System (45) should be understood as a family of switched
dynamical systems, for which we choose V := − 1

2q
�Aq ≥ 0

as a common Lyapunov function candidate. Time derivative of
V along the trajectory of (45) is

V̇ = −q�A q̇
= −q�AH SH�Aq

= −(S
1
2 H�Aq)�(S

1
2 H�Aq) = −‖S 1

2 H�Aq‖2 ≤ 0.
(46)

Thus, V satisfies conditions of Lemma 3 and Corollary 1, and
from LaSalle’s invariance principle, it follows that all trajectories
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of (45) converge to the zero set ofV , which is the set of all desired
formations. �

D. Robustness to Unmodeled Linear Actuator Dynamics

In practice, the linear and angular velocities of a vehicle
cannot change instantaneously. The dynamic behavior of these
velocities, which is not accounted for in the unicycle model (33),
can be modeled by

ẋi = vi cos (θi)

ẏi = vi sin (θi)

v̇i = −a vi + b si

θ̇i = ωi

ω̇i = −c ωi + d ri (47)

where si, ri ∈ R are controls to adjust the linear and angular
velocities, and a, b, c, d ∈ R are strictly positive scalars, which
depend on the vehicle’s inertia, motor dynamics, friction, etc.,
and are in general unknown. We show that unmodeled velocity
dynamics do not affect the convergence of the unicycle control
strategy (38). That is, applying the control

si := h�i ui

ri := h⊥�
i ui (48)

in (47) results in the desired formation.
Theorem 7: Let A be a symmetric gain matrix designed for

single-integrator agents. Under the control (48) agents with
dynamics (47) globally converge to the desired formation.

Proof: Substituting (48) in (47) gives the closed-loop dynam-
ics in the vector form as

q̇ = H v

v̇ = bH�Aq − a v

ḣ = H⊥ ω

ω̇ = dH⊥�Aq − c ω (49)

where v := [v1, v2, . . . vn]
� ∈ Rn and ω := [ω1, ω2, . . .

ωn]
� ∈ Rn are aggregate linear and angular velocity vectors,

respectively. Consider the Lyapunov function candidate

V := − b
2
q�Aq +

1

2
v�v ≥ 0. (50)

Time derivative of V along the trajectory of (49) is

V̇ = −b q�A q̇ + v̇�v

= −b q�AH v + b q�AH v − a v�v

= −a v�v ≤ 0. (51)

Similar to the proof of Theorem 5, we use LaSalle’s invariance
principle and show that the largest invariant set consists of the
desired formations. By setting V̇ ≡ 0 to find the invariant sets,
from (51) we get v ≡ 0, which implies that v̇ ≡ 0. Consequently,
from (49) we should have that bH�Aq ≡ 0, which implies one
of the following two cases:

i) Aq ≡ 0.
ii) Aq �= 0, H�Aq ≡ 0.
Case (i) implies that the desired formation is achieved, where

by replacing Aq ≡ 0 in (49) the dynamics reduces to

ḣ = H⊥ω

ω̇ = −c ω. (52)

This shows ω, ḣ→ 0, and, therefore, ω converges to
zero and h converges to a constant value. Thus, the set
{[q�, v�, g�, ω�]� ∈ R6n : Aq = 0, v = 0}, which consists
of the desired formations, is an invariant set.

We now show that case (ii) cannot be an invariant set. Using
a similar reasoning to the proof of Theorem 5, from v ≡ 0,
H�Aq ≡ 0, and dynamics (49) one can conclude that in this
case q, Aq, and h are all constant and nonidentical to zero.
Further, H⊥�Aq �≡ 0, which from (49) implies that ω̇ �≡ 0 and
hence ω �≡ 0. This, together with H⊥ having full column rank
implies that ḣ �≡ 0, which is a contradiction to h being constant.
This shows that case (ii) is not an invariant set, which concludes
the proof. �

Remark 9: In (47), we assumed that a, b, c, d have the same
value for all agents. This assumption was made to simplify the
notation and does not affect the generality of the results. One
can assign a different value to these parameters for each agent
and use the same analysis to prove the convergence.

Remark 10: In (47), the assumption a, c > 0 implies that
agents are zero-input stable, which often holds in practice.
However, for a, c < 0 the control can be modified using the
velocity feedback as

si := −ks (vi − h�i ui)

ri := h⊥�
i ui (53)

where ks ∈ R is a positive control gain. Using similar analysis
to the proof of Theorem 7, one can show that if ks is chosen such
that a+ ks b > 0, the agents converge to the desired formation.
Last, with multiplying si, ri by the sign of b, d, respectively, the
assumption b, d > 0 can be relaxed to only knowing the sign of
these parameters.

VI. FORMATION CONTROL FOR AGENTS WITH CAR DYNAMICS

Cars are another common platform for which attaining a
desired formation is often of interest (e.g., in intelligent trans-
portation systems). In this section, we present a control strategy
for agents with both front and rear-wheel drive car model. We
then show that the convergence is not affected when the input
is saturated, and the control is robust to unmodeled dynamics.
Similar to previous section, henceforth we assume that a sym-
metric negative semidefinite control gain matrix A is designed
by solving the optimization problem (10).

A. Control Strategy for Front-Wheel Drive Car

Consider an agent with the front-wheel drive car model as
illustrated in Fig. 6. The motion of this agent can be described
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Fig. 6. Car at position (xi, yi) in the global coordinate frame. The agent’s
heading is denoted by hi, and makes the angle θi with the global coordinate
frame’s x-axis. The front wheels’ steering direction is along the vector gi, which
makes the angle δi with the x-axis.

by the dynamics

ẋi = vi cos(θi + ϕi)

ẏi = vi sin(θi + ϕi)

θ̇i =
vi
l

sin(ϕi)

ϕ̇i = ωi (54)

where xi, yi ∈ R2 are the coordinates of the front axle’s center,
vi ∈ R is the driving velocity, θi ∈ [0, 2π) is the heading angle,
ϕi ∈ [0, 2π) is the steering angle,ωi is the steering velocity, and
l ∈ R is the wheelbase. In this kinematic model, it is assumed
that vi and ωi are inputs and can be controlled directly. By
defining

δi := θi + ϕi (55)

one can alternatively write (54) as [51]

ẋi = vi cos(δi)

ẏi = vi sin(δi)

θ̇i =
vi
l

sin(δi − θi)

δ̇i =
vi
l

sin(δi − θi) + ωi. (56)

Note that to simplify the notation, we have assumed that l is
identical for all agents. This does not affect the generality of the
following results, and one can carry the following analysis with
a different l for each agent.

To derive an alternative formulation for (56) that is more
suitable for the control design, we define the steering vector
gi ∈ R2 and its perpendicular g⊥i ∈ R2, and heading vector
hi ∈ R2 and its perpendicular h⊥i ∈ R2 as

gi :=

[
cos(δi)

sin(δi)

]
, g⊥i :=

[
− sin(δi)

cos(δi)

]

hi :=

[
cos(θi)

sin(θi)

]
, h⊥i :=

[
− sin(θi)

cos(θi)

]
. (57)

Seeing that ġi = g⊥i δ̇i, ḣi = h⊥i θ̇i, and sin(δi − θi) =
sin(δi) cos(θi)− cos(δi) sin(θi) = h⊥�

i gi, we can describe

(56) equivalently by

q̇i = gi vi

ġi = g⊥i

(
1

l
h⊥�
i gi vi + ωi

)

ḣi = h⊥i

(
1

l
h⊥�
i gi vi

)
. (58)

From (58), the dynamics of all agents can be collectively
expressed in the vector form

q̇ = Gv

ġ =
1

l
G⊥H⊥�Gv +G⊥ ω

ḣ =
1

l
H⊥H⊥�Gv. (59)

where q, g, h ∈ R2n are aggregate state, steering, and heading
vectors, and v, ω ∈ Rn are aggregate control vectors. Further,
H, H⊥ are defined according to (37), andG, G⊥ are defined by
replacing hi’s by gi’s in (37).

Using a similar strategy to the unicycle agents in Section V,
we define the driving and steering velocity controls as the
projections of the holonomic control vector along the steering
direction and its perpendicular by

vi := g�i ui

ωi := g⊥�
i ui (60)

where ui is given in (2). We emphasize that (60) can be imple-
mented using only the local relative position measurements.

Theorem 8: Let A be a symmetric gain matrix designed for
single-integrator agents. Under the control (60), agents with
front-wheel drive car dynamics globally converges to the desired
formation.

Proof: The proof follows from similar analysis to the proof
of Theorem 5. By substituting (60) in (59), the closed-loop
dynamics is given in the vector form as

q̇ = GG�Aq

ġ =
1

l
G⊥H⊥�GG�Aq +G⊥G⊥�Aq

ḣ =
1

l
H⊥H⊥�GG�Aq. (61)

Using V := − 1
2q

�Aq ≥ 0 as a Lyapunov function candidate,
one can show that the time derivative of V along the trajectory
of (61) is V̇ = −‖G�Aq‖2 ≤ 0, which implies the stability
of system. Convergence to the desired formation follows from
the LaSalle’s invariance principle. In particular, in the case that
Aq �= 0 but G�Aq ≡ 0, dynamics of g in (61) reduces to ġ =
G⊥G⊥�Aq, which is the same as dynamics for h in the unicycle
model (39). By the same token, this case cannot be a invariant
set, and the only possibility is Aq ≡ 0, which indicates that the
desired formation is achieved. �

Remark 11: Similar to the unicycle agents, the final heading
and steering angles of agents with car dynamics at the desired
formation are not controlled and can take arbitrary values.
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B. Control Strategy for Rear-Wheel Drive Car

The dynamics of a rear-wheel drive car is identical to the front-
wheel drive car except that the front wheels’ driving velocity vi
is indirectly controlled via the rear wheels’ driving velocity vri .
The relation between the front and rear wheels’ driving velocities
is given by

vi =
1

cos(ϕi)
vri . (62)

To set vi to the desired value defined in (60), from (62) we have
that the rear wheels’ driving velocity should be

vri := cos(ϕi) g
�
i ui. (63)

The main difference between the rear and front-wheel drive car
is that whenϕi = ±π

2 , from (63) vri , and hence vi, become zero.
On the contrary, vi in a front-wheel drive car can take any desired
value in this case (one can interpret this as the car pivoting about
its rear wheels).

Theorem 9: Under the conditions of Theorem 8 with driving
velocity control (63), agents with rear-wheel drive car dynamics
almost globally converge to the desired formation.

Proof: Under the control (63), the closed-loop dynamics is
similar to (61), except when the steering angles are±π

2 , in which
case the driving velocity is zero. By defining the diagonal matrix
Γ ∈ Rn×n with diagonal entries

(Γ)ii =

{
1 ifϕi �= ±π

2

0 ifϕi = ±π
2

(64)

the driving velocity can be expressed as v = ΓG�Aq, and from
(59), the closed-loop dynamics of a rear-wheel drive car is given
by

q̇ = GΓG�Aq

ġ =
1

l
G⊥H⊥�GΓG�Aq +G⊥G⊥�Aq

ḣ =
1

l
H⊥H⊥�GΓG�Aq. (65)

We use V := − 1
2q

�Aq ≥ 0 as a common Lyapunov function
candidate for the switched system (65) to prove stability and
convergence in a manner similar to Theorem 8. By direct
calculation, derivative of V along the trajectory of (65) is
V̇ = ‖ΓG�Aq‖2 ≤ 0. When the diagonal elements of Γ are
all ones, i.e., no heading angle is equal to ±π

2 , the dynamics
(65) is identical to (61) and convergence follows from the proof
of Theorem 8. Thus, we only need to analyze instances where
ϕi = ±π

2 . At such instances, one of the following cases hold:
i) ∃i, ϕi �= ±π

2 or G⊥�Aq �= 0.
ii) ∀i, ϕi = ±π

2 and G⊥�Aq = 0.
If agents are not at the desired formation, i.e., Aq �= 0, case

(i) cannot be an invariant set. This is because V̇ ≡ 0 implies
ΓG�Aq ≡ 0, and hence from (65) we get ġ = G⊥G⊥�Aq,
which shows g is varying and the heading angles cannot re-
main at ±π

2 . On the other hand, case (ii) is an invariant set
at which the agents stop moving without reaching the desired
formation. From the Picard–Lindelof theorem on the existence

and uniqueness of solutions, only one trajectory of system (61)
passes through the point where all ϕi’s are π

2 . Thus, the number
of trajectories at which all heading angles are either π2 or −π

2 is
2n. In the space of all trajectories, these trajectories are a measure
zero set (i.e., they have zero volume). This shows almost global
convergence of system (65) to the desired formation. �

Remark 12: Due to noise, unmodeled dynamics, distur-
bances, etc., in practice agents cannot stay on a measure zero set
of trajectories. Furthermore, as we will show subsequently, the
steering angle of a car can be bounded to remain less than ±π

2
and avoid the undesired case (ii) in the proof. Consequently, the
“almost” global convergence of rear-wheel drive car in Theorem
9 does not affect the applicability of the control strategy.

Due to the similarity of the dynamics and analysis for the
front and rear-wheel drive car models, we only consider the
front-wheel drive car model throughout the rest of this section.

C. Robustness to Saturated Input and Bounded Steering Angle

The steering angle and the driving and steering velocities of
a car often cannot take arbitrary values and must be bounded by
practical limits. This, however, does not affect the convergence
of the agents to the desired formation.

Theorem 10: Consider car dynamics (54), and assume that
vmax, ωmax, ϕmax > 0 are real positive scalars. If vi and ωi are
saturated such that |vi| ≤ vmax, |ωi| ≤ ωmax, and the steering
angle is bounded by |ϕi| ≤ ϕmax, then under the control (60),
the desired formation is achieved globally.

Proof: To model the input saturation, we consider the diago-
nal matrices S, E ∈ Rn×n defined in (43) and (44). Further, to
model the bounded steering angel, we define the diagonal matrix
Γ ∈ Rn×n via

(Γ)ii =

{
1 if |ϕi| ≤ ϕmax

0 if |ϕi| > ϕmax.
(66)

The closed-loop dynamics under the saturated input and
bounded steering angle can be expressed in vector form as

q̇ = GS G�Aq

ġ =
1

l
G⊥H⊥�GS G�Aq +G⊥ ΓEG⊥�Aq

ḣ =
1

l
H⊥H⊥�GS G�Aq. (67)

The solutions of switched system (67) are well-defined in the
Filippov sense. Similar to the proof of Theorem 6, by con-
sidering V := − 1

2q
�Aq ≥ 0 as a common Lyapunov function

candidate, the time derivative of V along the trajectory of (65) is
V̇ = −‖S 1

2 G�Aq‖2 ≤ 0. The Lyapunov function V satisfies
the conditions of Lemma 3, and from Corollary 1 and LaSalle’s
invariance principle, it follows that the desired formation is
achieved. �

D. Robustness to Unmodeled Linear Actuator Dynamics

Since in practice the driving and steering velocities of a car
cannot change instantaneously, the car dynamics (54) can be
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modified as

ẋi = vi cos(θi + ϕi)

ẏi = vi sin(θi + ϕi)

v̇i = −a vi + b si

θ̇i =
vi
l

sin(ϕi)

ϕ̇i = ωi

ω̇i = −c ωi + d ri (68)

to incorporate the dynamics of these velocities. In (68), si ∈
R and ri ∈ R are control inputs to adjust the driving and steering
velocities, respectively. Further, we assume that a, b, c, d ∈ R
are strictly positive, but unknown. The following theorem shows
that the unmodeled velocity dynamics does not affect the conver-
gence of the control strategy (60). That is, applying the control

si := g�i ui

ri := g⊥�
i ui (69)

in (68) results in the desired formation.
Theorem 11: Let A be a symmetric gain matrix designed

for single-integrator agents. Under the control (69), agents with
dynamics (68) globally converge to the desired formation.

Proof: By substituting (69) in (68), the closed-loop dynamics
is given in the vector from by

q̇ = Gv

v̇ = bG�Aq − a v

ġ =
1

l
G⊥H⊥�Gv +G⊥ ω

ḣ =
1

l
H⊥H⊥�Gv

ω̇ = dG⊥�Aq − c ω (70)

where vandω are the aggregate driving and steering velocity
vectors. Similar to the proof of Theorem 7, we consider V :=
− b

2q
�Aq + 1

2v
�v ≥ 0 as a Lyapunov function candidate. After

simplifications, the time derivative of V along the trajectory
of (70) is given by −a v�v ≤ 0. To show convergence using
LaSalle’s invariance principle, we set V̇ ≡ 0 to find the largest
invariant set. This implies that v ≡ 0, and therefore v̇ ≡ 0.
Consequently, from (70), we should have that bG�Aq ≡ 0,
which implies one of the following two cases.

i) Aq ≡ 0.
ii) Aq �= 0, G�Aq ≡ 0.
Case (i) implies that the desired formation is achieved, where

by replacing v ≡ 0 andAq ≡ 0 in (70) the dynamics reduces to

ġ = G⊥ω

ω̇ = −c ω. (71)

This shows ω, ġ → 0, and therefore ω converges to zero
and g converges to a constant value. Thus, the set
{[q�, v�, g�, ω�]� ∈ R6n : Aq = 0, v = 0}, which consists
of the desired formations, is an invariant set.

Fig. 7. Control vector of agent i rotated outside of the collision cones.

We now show that case (ii) cannot be an invariant set. Using
a similar reasoning to the proof of Theorem 7, from v ≡ 0,
G�Aq ≡ 0, and dynamics (70) one can conclude that in this
case q, Aq, and g are all constant and nonidentical to zero.
Further, G⊥�Aq �≡ 0, which from (70) implies that ω̇ �≡ 0 and
hence ω �≡ 0. This, together with G⊥ having full column rank
implies that ġ �≡ 0, which is a contradiction to g being constant.
This shows that case (ii) is not an invariant set, which concludes
the proof. �

Remark 13: On a similar note to Remarks 9 and 10, in (68)
parameters a, b, c, d can take different values for each agent.
Further, if ks ∈ R is chosen such that a+ ks b > 0, the modified
control

si := −ks(vi − g�i ui)

ri := g⊥�
i ui (72)

can bring agents with a, c < 0 to the desired formation.

VII. EXTENSIONS AND VARIATIONS

In this section, we briefly address additional topics such
as collision avoidance, stability under a time-varying sensing
topology, and formation scale adjustment, which are important
in a practical implementation.

A. Collision Avoidance

As discussed in Section III-C, by using the control gains
computed from Algorithm 1, positive scaling and rotation of
the control vectors up to ±90◦ does not affect convergence
of agents to the desired formation. This observation can be
used to implement a distributed collision avoidance strategy.
Fig. 7 illustrates a scenario where the desired control direction
of agent i can potentially cause collision with an adjacent agent.
Tangent lines from agent i to circles of radius r ∈ R centered at
the adjacent agents define collision avoidance cones, where by
rotating the control vector to a direction outside of these cones,
the collision is prevented. To preserve the stability properties, the
rotation is limited to ±90◦ of the original control direction, e.g.,
in Fig. 7, the control ui cannot be rotated below the solid black
line. In a case, where there is no possible direction of motion
within the allowed rotation range the control is set to zero, and
the agent stops until a feasible control direction is available. To
alter the control direction as little as possible, one can define
a distance threshold dc ∈ R such that the collision avoidance
strategy is triggered only when the distance to an adjacent agent
is less than this threshold. The above collision avoidance strategy
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Algorithm 2: Distributed Collision Avoidance.

input: Desired control direction ui ∈ R2

Collision circle radius r ∈ R
Activation threshold dc ∈ R
Output: Modified control direction u′i ∈ R2

step 1: Construct collision cones with circles of radius r
centered at agents closer than dc.

step 2: Find rotation R(θ) ∈ SO(2) with minimum |θ|
such that Rui is outside of collision cones.

step 3: If step 2 is infeasible or |θ| ≥ 90◦ set u′i = 0,
otherwise set u′i = R(θ)ui.

is outlined in Algorithm 2. Note that this strategy is distributed
and does not required interagent communication.

If the initial interagent distances are greater than r, it is
straightforward to show that collision avoidance is guaranteed
for single-integrator agents under Algorithm 2 (this follows by
showing that interagent distances cannot become less than r).
For agents with higher order dynamics, r should be chosen large
enough to accommodate for the maximum braking distance. We
should point out that convergence to the desired formation under
the proposed strategy is heuristic and not always guaranteed. In
particular, one can construct counter examples where agents are
caught in a gridlock due to unavailability of feasible control
direction. However, in our simulation and experimental studies,
we observed that if agents are initially spaced far apart, they
can resolve gridlocks and converge to the desired formation. We
are not aware of any existing collision avoidance strategy that is
distributed, does not require communication, and can guarantee
convergence of agents to the desired formation. Commonly used
distributed strategies such as safety barrier functions [52] and
traffic circles [53] have similar gridlock situations. We point out
that in scenarios where interagent communication is possible,
distributed task assignment techniques can be leveraged to re-
solve gridlocks (see our recent work [42]).

On the other hand, under the proposed strategy, stability of the
overall system is guaranteed by Theorem 2. This distinguishes
the proposed strategy from an ad hoc augmentation of the
control to avoid collision, e.g., via potential functions. Such
augmentations may lead to undesired behavior or instability of
the overall system. For example, they may cause the robots to
drift along a direction or circle in a limit cycle indefinitely. Such
behaviors are not present in the proposed approach, and if the
robots do not go to a gridlock, convergence to the desired shape
is guaranteed.

B. Time-Varying Sensing Topology

In a time-varying or switching sensing topology, the agents
can lose or acquire sensing capability of other agents in the
group. For example, if a vision sensor is used to provide position
measurements, sensing capability is lost when a neighbor agent
is obstructed by another agent and acquired when an agent moves
in the line of sight. The following theorem shows that by using
the proposed gain design approach, a switching sensing topology
does not affect the convergence of single-integrator agents to the
desired formation.

Fig. 8. Top: four sensing topologies. Bottom: switching among the topologies
versus time.

Theorem 12: Let G := {G1,G2, . . . ,Gm} denote a finite set
of undirected and universally rigid sensing topologies, with
associated gain matricesA1, A2, . . . , Am ∈ R2n×2n computed
from Algorithm 1. If single-integrator agents use the associated
gains for each topology, under control (2) the agents globally
converge to the desired formation while the sensing graph can
switch in G arbitrarily.

Proof: The closed-loop dynamics under the proposed control
strategy is given by q̇ = Ai q, where i ∈ 1, 2, . . . ,m denote the
index of the sensing topology. By considering V := q� q ≥ 0
as a common Lyapunov function candidate for the this family
of switched systems, we derive V̇ = q�Ai q. Since Ai is neg-
ative semidefinite by design for every i, it follows that V̇ ≤ 0.
Hence, from Lemma 3 and Corollary 1, we have that the de-
sired formation is achieved under an arbitrary switching among
topologies. �

Theorem 12 ensures convergence under an arbitrary switching
of sensing topologies provided that stabilizing gain matrices are
computed for each topology. To ensure that the formation control
strategy is applicable in a switching scenario without interagent
communication, additional constraints can be enforced to obtain
gains that jointly stabilize all sensing topologies. To elaborate
this point, consider the example of four sensing topologies illus-
trated in Fig. 8. In topologies numbered as (1) and (3), agent 1
has the same set of neighbors, namely agents 2 and 4. Since agent
1 is not aware of the overall sensing topology, from its point of
view topologies (1) and (3) are indistinguishable. Consequently,
the control gains for agent 1 in matrices A1 and A3 should be
identical to ensure they jointly stabilize both topologies.

To find gain matrices that jointly stabilize switching sensing
topologies, the optimization problem (10) can be modified as
follows. We define the block diagonal matrix Λ ∈ R2nm×2nm

asΛ := diag(Ā1, Ā2, . . . , Ām), where Āk is defined according
to (9). The gain matrices that jointly stabilize the topologies are
found by solving

Λ = argmax
akij , b

k
ij

λ1(−Λ)

subject to AkN = 0 ∀k∈Nm

trace(Λ) = constant

A(Λ) = 0. (73)
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Here, akijand bkij are entries ofAk, the first constraint ensures that
N is the kernel of all gain matrices, and the second constraint
ensures that the problem is bounded. The expression A(Λ) =
0 encapsulates the constraints that enforce the block diagonal
structure of Λ and ensure agents with identical set of neighbors
in two (or more) topologies have the same set of gains.

In a manner similar to problem (10), the objective of (73) aims
to jointly maximize the smallest eigenvalues of−Ā1, . . . ,−Ām
matrices (note that eigenvalues of a block diagonal matrix consist
of the eigenvalues of each diagonal block). We note that as
Λ is block diagonal and therefore sparse; leveraging sparsity
makes (73) solvable, even for moderately largem. The universal
rigidity of a sensing graph is necessary and sufficient to ensure
existence of a stabilizing gain matrix (see Remark 1). However,
to ensure a group of gain matrices is jointly stabilizing additional
sensing is required. A sufficient condition under which joint
stabilizability is guaranteed is provided in our prior work [37,
Th. 4], which depends on the number and topology of the sensing
graphs. Although it may not be possible to obtain jointly stabiliz-
ing gains for the set of all rigid sensing graphs among n agents,
the sufficient condition in [37] is not overly conservative and
empirically ensures existence of such gains for a large number
of graphs. In practice, the number of graphs to consider depends
on the hardware setup and the sensing mechanism. For example,
if relative sensing is obtained via a peer-to-peer communication
scheme (e.g., in [42]), then the number of sensing graphs vary
based on the number of peers that an agent can communicate
to. Reducing this number is advantageous, as it improves the
computational complexity of (73).

While the focus of this work is formation control without
interagent communication, we point out that in scenarios where
communication is possible, other techniques can be leveraged
to handle switching topologies. For example, the gains can
be found online for each topology via solving (10) using a
distributed ADMM technique [54], which requires interagent
communication to converge. Ultimately, the appropriate method
for handling a switching scenario depends on the hardware and
communication constraints.

Last, we emphasize that the result of Theorem 12 is based on
the single-integrator dynamics. Due to the convergence proper-
ties of control for unicycle and car dynamics in a fixed topology,
under suitable assumptions that switching is slow enough (i.e.,
large dwell time), convergence of unicycles and cars to the de-
sired formation in the switching case can be expected. Deriving
a lower bound for the dwell time will be a topic of future work.

C. Scale Adjustment

To fix the scale of the final formation, control law (2) can be
augmented by a bounded smooth map f : R → R as

ui =
∑
j∈Ni

Aij (qj − qi) + f(dij − d∗ij) (qj − qi) (74)

where dij := ‖qj − qi‖ denotes the distance between agents i
and j, d∗ij ∈ R is its desired value, and f is chosen such that
x f(x) > 0 for x �= 0, and f(0) = 0. Possible choices for f are
f : x �→ 1

k arctan(x) or f : x �→ 1
k tanh(x), where k > 0 is an

arbitrary constant. The role of f in (74) is to pull agents toward
their neighbors when the distance between them is larger than the
desired value, and vice versa. For agents with single-integrator
dynamics, we have shown that agents almost globally converge
to the desired formation [39]. The study of global asymptotic
stability for agents with higher order dynamics is a topic of
future research.

D. 3-D Formations

The proposed control approach, together with the conver-
gence and robustness properties, can be extended to 3-D for-
mations. This extension has been done in our recent work [41],
where experimental validations on a fleet of Crazyflie quadrotors
are performed to demonstrate the strategy.

VIII. SIMULATIONS

To validate the proposed approach, we present several simu-
lations for planar formation of quadrotors, unicycles, and cars.
Links to simulation code and videos are provided in the supple-
mentary materials linked in the footnote on page 1.

A. Quadrotors

Based on the quadrotor dynamics described in Example 2,
a simulation with nine quadrotors and a scale-free square grid
desired formation is performed. Although the control design is
based on the linearized dynamics about the quadrotor’s hover
point, the original nonlinear quadrotor dynamics given in (27) is
used for the simulation. To demonstrate robustness to switches
in the interagent sensing topology, the sensing graph is switched
among the topologies illustrated in Fig. 8 based on a randomly
generated switching signal shown in the figure. We further
performed simulations in which the topology changes are based
on the robots’ proximity. Since performance was similar to the
results presented here, we do not report the results, however,
they can be viewed in the supplemental video available at
https://youtu.be/3IcikoWBZJE. The control gains associated
with the desired formation are computed from Algorithm
1, where we used (73) to obtain gains that jointly stabi-
lize all topologies. The nonzero eigenvalues of computed
A1, . . . , A4 ∈ R18×18 matrices range from −0.035 to −0.497.
The control law used for each quadrotor is chosen according to
(26), where gains are set as k0 = 2, k1 = 2, k2 = 3, and k3 =
3 to make the closed-loop state matrix Ā stable for all topologies.
Using these gains, the real part of the nonzero eigenvalues of
Ā matrices range from −0.038 to −2.0. To avoid collision
among quadrotors, the distributed collision avoidance strategy in
Algorithm 2 with dc = 8 and r = 4 units of length is employed.

Fig. 9(a)–(e) shows the top view of quadrotors at different time
instances. The sensing graph among agents is shown by gray
lines connecting the quadrotors. This sensing graph switches
throughout the simulation according to Fig. 8. The initial po-
sitions of the quadrotors are chosen randomly, and are shown
in Fig. 9(a). As can be seen in Figs. 9(b)–(e), the proposed
control strategy brings the agents to the desired formation.
Note that when the distance between two quadrotors becomes
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Fig. 9. Simulation of nine quadrotors with a square grid desired formation (actual size of vehicles increased by a factor of 1.5 for better visibility). (a) Top view
at t = 0 s. (b) t = 4 s. (c) t = 8 s. (d) t = 21 s. (e) t = 80 s.

Fig. 10. Simulation of nine unicycles with a square grid desired formation (actual size of vehicles increased by a factor of 1.5 for better visibility). (a) Top view
at t = 0 s. (b) t = 17 s. (c) t = 25 s. (d) t = 45 s. (e) t = 80 s.

less than 8 units of length, the collision avoidance strategy is
engaged to rotate the control direction outside of the collision
cone. Consequently, none of the quadrotors collide during the
simulation. Further notice that since the control only uses the
local relative position measurements, the desired formation is
achieved up to a rotation and translation. That is, the orientation
of the square formation is not controlled.

We point out that in the quadrotor Example 2, the inputs
are uxanduy and the outputs are the x–y positions (since we
are concerned with planar formations). The input ua affects the
x–y positions through R due to the coupled dynamics, and the
zero dynamics consists of the state variables z, ψ, ωz , which
are unobservable from the outputs, however, are asymptotically
stable. The theoretical convergence guarantees of the proposed
control are based on the assumption of input-to-state feedback
linearizability. Nonetheless, as can be seen from the simulation
results, which are based on the original nonlinear dynamics,
the quadrotors achieve the desired formation. This suggests
potential applicability of the proposed control to systems with
asymptotically stable zero dynamics, which can be expected due
to the robustness properties.

B. Unicycles

The control strategy (38) for agents with unicycle dynamics
is considered in a simulation with nine unicycles and a square
grid desired formation. The unicycle dynamics (47) are used to
test the performance of control in the presence of unmodeled
dynamics, where values of parameters a, b, c, and d are chosen

randomly for each agent with uniform distribution in the interval
[5, 10]. All linear and angular velocities are saturated by the
maximum allowed velocities of vmax = 3 units of length per
second and ωmax = π/4 rad/s, respectively. The control gain
matrices designed for quadrotors in the previous section are used
for unicycle agents, showing that the control gains found from
Algorithm 1 can be used for vehicles with a variety of dynamics
to achieve the same desired formation.

To allow a better comparison between trajectories of agents
with different dynamics, the unicycle agents start from the same
initial condition as quadrotors, as can be seen in Fig. 10(a),
and the sensing topology among them switches according to
Fig. 8. The position of agents at other time instances is shown in
Fig. 10(b)–(e), where by using the collision avoidance strategy in
Algorithm 2 with dc = 8 and r = 4 units of length, no collisions
occur as the unicycles converge to the desired formation. Similar
to quadrotors, the desired formation is scale-free and achieved up
to a rotation and translation with respect to the global coordinate
frame that is unknown to the agents.

C. Cars

The control strategy (60) for agents with front-wheel drive
car dynamics is considered in a simulation with nine cars and a
square grid desired formation. The car dynamics (68) are used
to test the performance of control in the presence of unmodeled
dynamics, where values of parameters a, b, c, and d are chosen
as the same values for unicycle agents to allow a better compar-
ison. The driving and steering velocities of cars are saturated by
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Fig. 11. Simulation of nine cars with a square grid desired formation (actual size of vehicles increased by a factor of 1.5 for better visibility). (a) Top view at
t = 0 s. (b) t = 18 s. (c) t = 29 s. (d) t = 43 s. (e) t = 80 s.

the maximum allowed velocities of vmax = 3 units of lengths
per second and ωmax = π/4 rad/s, respectively. Furthermore,
all steering angles are confined to the interval of [−π/4, π/4]
radians to model the practical bounds on the steering angle of
wheels in cars. The control gain matrices used for quadrotors
and unicycles are used in the simulation.

The sensing topology switches according to Fig. 8, and the
initial position of cars is shown in Fig. 11(a), which is the
same as quadrotors and unicycles to allow a better comparison.
The position of cars at other instances of time is shown in
Fig. 11(b)–(e), where by using the collision avoidance strategy
with dc = 8 and r = 4 units of length, no collisions occur as the
cars converge to the desired formation. Note that the attained
square grid formation is with respect to the front axle’s center of
each car, i.e., the origin of car’s local coordinate frame in Fig. 6.
Furthermore, the heading of the cars at the final formation is not
specified and can take an arbitrary value.

IX. EXPERIMENTAL RESULTS

In this section, we validate the proposed control strategies
experimentally on a distributed multirobot platform. Our exper-
imental study is limited to the cases of single-integrator and
unicycle dynamics, as we do not have a fleet of autonomous
cars. A link to the implementation code and technical details is
provided in the supplementary materials linked in the footnote
on page 1.

A. Experimental Platform

Our experimental platform consists of the Sphero 2.0 robots,
laptop computers with Bluetooth adapters to control the robots,
and Logitech C920 webcams to provide vision feedback. As
illustrated in Fig. 12 , a group of Sphero robots is placed
in an arena that is overseen by webcams. The video stream
provided by each webcam is used in an image processing script
to detect and track the Spheros via blob detection [55, Sec.13.1].
The coordinates of each robot are estimated by mapping the
pixel position of the robot in the image to the x–y Euclidean
coordinates on the arena floor. This is done by initially placing
a checkerboard at an arbitrary location on the floor and using
PnP algorithm [56] to estimate the relative orientation of the
ground plane in the camera’s coordinate frame. The coordinates

Fig. 12. Schematic of the experimental setup.

Fig. 13. Schematic of a Sphero robot.

Fig. 14. Trajectories of robots estimated from webcam images (a) under
single-integrator control, (b) under unicycle control. Units are in millimeter.

are then given by finding the intersection of the ray through the
robot image and the ground plane generated by PnP.

The estimated coordinates of Spheros are used by each
computer to calculate the control according to the specified
distributed formation control strategy. The desired control ac-
tion is then communicated to each robot over Bluetooth. The
experimental setup is distributed in the sense that each computer
is responsible for controlling a subset of robots, and computers
do not communicate during the experiment. Furthermore, the
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Fig. 15. Snapshots of experiment for triangle formation at different instances of time.

control computed by each computer respects the sensing graph
specified by the user and does not use any additional information
that may be available.

The schematic of a Sphero robot is shown in Fig. 13. The
robot consists of a differential-wheeled internal platform that is
enclosed in a spherical shell. Rotation of the internal wheels in-
duces a roll motion of the outer shell. To test the control strategy
proposed for single-integrator agents, a low-level PID controller
is employed to first orient the internal platform along the desired
direction, and then roll the robot forward at the desired speed.
For the unicycle agents, the low-level PID controller adjusts the
wheel velocities such that the internal differential drive platform
has the desired angular and linear velocities.

B. Triangle Formation

Our first set of experiments correspond to an equilateral
triangle formation with six robots. For this experiment only two
computers are used, where the first computer controls robots
numbered 1 to 3, and the remaining robots are controlled by
the second computer. The sensing topology among the robots is
illustrated by gray lines in Fig. 14 and is fixed throughout the
experiment. Nonzero eigenvalues of the computed gain matrix
A ∈ R12×12 range from −1.52 to −0.22. Collision avoidance
strategy in Algorithm 2 is used with the activation threshold
dc = 400 mm and r = 100 mm. The speed of each robot is
bounded to 1/3 of its upper limit, which gives the maximum
speed of around 200 mm/s.

The trajectories of robots under the single-integrator control
strategy (2) are shown in Fig. 14(a). These trajectories are
reconstructed from the images provided by the first webcam.
The sensing topology among robots is illustrated by gray lines
in the figure. At their initial position, the robots roughly form a
line. Starting from this initial position, they achieve the desired
formation as can be further seen from the snapshots of the
experiment video at different instances of time in Fig. 15.

In a similar experiment with robots starting roughly from the
same initial positions, the unicycle control strategy (38) is used
to achieve the desired formation. The estimated trajectories of
robots under this control strategy are shown in Fig. 14(b). As
the robots get closer to the desired formation, the magnitude of
their control vectors become smaller. Once the desired speed is
small enough, the floor friction prevents the robots from moving
further. This can cause an small steady-state error, which can be
observed in Fig. 14. Note that no collisions occur as the robots
converge to the desired formation.

Fig. 16. Trajectories of robots estimated from webcam images (a) under
single-integrator control, (b) under unicycle control. Units are in millimeter.

C. Hexagon Formation

Using the same experimental setup for the triangle formation,
we repeat a new set of experiments with the desired formation
defined as a hexagon. The interagent sensing topology is chosen
as a cyclic graph, as illustrated by gray lines in Fig. 16, and is
fixed throughout the experiment. The nonzero eigenvalues of
matrix A for this desired formation range from −2 to −1. The
reconstructed trajectories from webcam images are shown in
Fig. 16(a) for the single-integrator control, and in Fig. 16(b)
for the unicycle control. Snapshots of the experiment video
corresponding to the single-integrator controller are shown in
Fig. 17. As can be seen from the figures, starting from the initial
positions, agents converge to the desired formation.

D. Square-Grid Formation

In our last set of experiments, we consider a square-grid
desired formation of nine robots with the sensing topology
chosen as a complete graph and fixed throughout the experiment.
Here, three computers are used to control the robots, where
the first computer controls robots numbered 1 to 3, the second
computer controls robots 4 to 6, and the third computer controls
the remaining robots. The parameters used for the collision
avoidance strategy and the maximum allowed speed of the robots
remain the same as in previous experiments.

The trajectories of robots reconstructed from the images of the
first webcam are shown in Fig. 19(a) for the single-integrator
control strategy, and snapshots of experiment video is shown
in Fig. 18. If the distance between two robots is less than
the collision avoidance threshold dc, the collision avoidance
strategy rotates the control direction outside of the collision
cones. However, if the required rotation is more than ±90◦
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Fig. 17. Snapshots of experiment for hexagon formation at different instances of time.

Fig. 18. Snapshots of experiment for square-grid formation at different instances of time.

Fig. 19. Trajectories of robots estimated from webcam images (a) under
single-integrator control, (b) under unicycle control. Units are in millimeter.

of the original control direction, the control is set to zero and
the robot stops until a feasible direction becomes available.
The effect of collision avoidance strategy is most notable for
robot 2, which is initially surrounded by robots 1, 3, and 4.
Consequently, due to the lack of a feasible direction, robot 2
remains stationary initially until the surrounding robots move
further and a feasible direction becomes available. Similar ex-
periments are performed by using the unicycle control strategy,
where the reconstructed trajectories of the robots are shown in
Fig. 19(b). Due to using different PID gains for the low-level
controllers implemented on robots 4 to 9, their trajectories
are more distinguished than their corresponding trajectories
in Fig. 19(a).

X. CONCLUSION

In this article, we presented a distributed formation control
strategy for a team of agents with a variety of dynamics to
autonomously achieve a desired planar formation. Under the
assumption that the sensing graph is undirected and universally
rigid, we showed that formation control gains can be designed by
solving a SDP problem. This design enjoyed several robustness
properties, such as robustness to positive scaling and rotation
(up to ±90◦) of the control vector, saturations in the input, and
switches in the sensing topology. The control was extended
to agents with higher order linear (or linearizable) holonomic
dynamics, such as quadrotors, followed by further extension

to agents with nonholonomic unicycle and car dynamics. An
important outcome of this work was to show that under the
proposed control the convergence and robustness guarantees
hold for agents with more complex dynamics. Further, a fully
distributed collision avoidance algorithm emerged naturally
from the robustness properties. To typify the control, simula-
tions for vehicles with different dynamics were presented, and
experiments on a distributed robotic platform where performed.

Future work includes investigating additional requirements,
such as interagent communication, to guarantee that the collision
avoidance algorithm can overcome gridlock scenarios. More-
over, interagent communication can be exploited in a distributed
optimization scheme to solve the SDP problem in a decentralized
way. Other possible research avenues include formation control
of heterogeneous vehicles and time-varying formations.
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