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Abstract— A key concern in network observability is to quan-
tify performance and robustness limitations for state estimation
from noisy sensors in terms of its dynamical properties and
sensor architecture. We develop performance bounds for the
robust H∞ filter, a generalization of the Kalman filter. Utilizing
an eigenvalue bound on the observability Gramian, we derive
a related eigenvalue bound on the estimation error covariance
matrix from the generalized Riccati equation of the H∞ filter.
As a special case, we obtain estimation performance bounds
on the Kalman Filter. The bounds reflect the cardinality of the
network and sensor set, the stability of the network, and the
number and specific set of states to be estimated. We illustrate
our results with numerical analysis on a regular network
showing how the bounds change with system parameters.

I. INTRODUCTION

A key concern in network observability is to quantify
performance and robustness limitations for state estimation
from noisy sensors in terms of its dynamical properties and
sensor architecture. Various algebraic and structural metrics
for network observability and controllability have been pro-
posed to quantify these properties. Such metrics can guide
the design of network control architectures, by evaluating
possible sensor and actuator configurations in the network.
Examples include structural Kalman rank [1]–[5], Gramians
[6]–[10] analysing optimal or robust performance [11]–[19].
Certain metrics allow for suboptimality guarantees for sensor
and actuator placement algorithms (using concepts such as
submodularity and supermodularity) [19]–[21]. Other metrics
lacking these properties still show acceptable performance
for most real-world systems under greedy algorithms [14] but
do not guarantee performance. These point to fundamental
difficulties in network controllability and observablity.

Recent research [14], [22] has focused on performance
bounds of fixed-size sensor observability and actuator con-
trollability using the recursion of the Kalman Filter and LQR
optimization problem respectively and the corresponding
Gramian. Other research focuses have expanded on the
Kalman Filter to study properties such as resilience [18],
[23], [24]. Application-based research on the robust approach
to estimation under the H∞ filter [25]–[27] has focused
on exploiting specific structure and system properties and
restricts the algorithms developed to guarantees of feasibility.
We aim to close the gap to quantitative metrics evaluating
robust estimation in parallel to our work on robust control. 1
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We propose a generalized quantitative metric for the robust
network observability with a fixed-size sensor set using a
game framework of the H∞ filter and the Observability
Gramian. We define performance bounds as the lower bound
on the largest eigenvalue of the error covariance matrix. For
a feasible filter, this value is finite. The contributions of this
paper are:
• We derive a bound on the minimum eigenvalue of the

Observability Gramian based on the system parameters
(Theorem 1), analogous to a bound derived for the
controllability Gramian in [6].

• We then derive the performance bounds on the error
covariance matrix from the Riccati equation of the H∞
filter via a dynamic game framework (Theorem 2). As a
special case, we obtain estimation performance bounds
on the Kalman Filter.

• We illustrate the results with numerical experiments. We
highlight the significance of the scale of the network
and the diminishing returns of increasing the number
of sensors, the importance of positions of sensors, the
choice and relative weights of states to be estimated
and the value of information on the disturbances to the
system. This is covered in Section IV.

Notation: We define Sn++ ⊂ Sn+ ⊂ Rn×n to represent
the set of positive definite and positive semidefinite matrices
respectively. The identity matrix in Rn×n is represented by
In×n. For a matrix A, its transpose is A>. We have ‖x‖2A =
x>Ax. The set of eigenvalues or the spectrum of matrix A
is denoted by spec(A). The condition number of matrix A
is denoted by cond(A).

II. ROBUST STATE ESTIMATION IN NETWORKS

We begin by describing the network and filter structure,
the estimation cost function and key system parameters. The
network dynamics and measurements are modeled by a time-
invariant discrete-time linear system evolving on a graph G =
(V, E) as

xk+1 = Fxk + wk yk = HKxk + vk zk = Lxk (1)

where xk ∈ Rn is the state vector, yk ∈ Rm is the mea-
surement vector, and zk ∈ Rl is a vector of quantities to be
estimated. Each state is associated with a node in the graph
G with the matrix F denoting the dynamics of the network
derived from the weighted adjacency matrix of the graph, and
such that a set of sensors that measure node state values can
be placed in the network. Thus, the set of available sensors
H = {e1, ..., eM} is associated with M ≤ n canonical row
vectors of Rn (i.e., ei ∈ R1×n). The rows of the sensor
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measurement matrix HK = [e>1 . . . e
>
|K|]
> ∈ R|K|×n are

formed by a subset of sensors K ⊆ H. The process noise
and the measurement noise are denoted by wk ∈ Rn and
vk ∈ R|K|, respectively.

a) Robust Estimation via a Dynamic Game: We con-
sider a problem of robust state estimation, where zk is to
be estimated from a sequence of output measurements, and
the initial state, process noise, and measurement noise are
treated as adversarial disturbances. The cost function to be
optimized is given by
J = −θ2‖x0 − x̂0‖2P−1

0
+

N−1∑
k=0

(
‖zk − ẑk‖2Sk

−θ2
(
‖wk‖2Q−1

k

+ ‖vk‖2R−1
k

))
.

where Sk ∈ Sl+ is a weight on the state estimation error,
and here P0 ∈ Sn++, Qk ∈ Sn++, and Rk ∈ S|K|++ are
interpreted as penalties on the adversarial initial state, process
noise, and sensor noise, respectively. There are no bounds on
the external disturbances but they are penalized in the cost
function. The parameter θ > 0 designates this penalty. For
given dynamics parameters, there exists a value of θ defining
a minimum penalty on the external disturbances below which
estimation error covariance is unbounded.

The optimal robust cost is defined as J∗ = min
ẑ

max
wk,vk,x0

J ,

i.e., we seek to minimize worst case estimation error. Using
(1) and defining S = L>SL, the optimal cost function can
be written as J∗ = min

x̂
max

wk,yk,x0

J with

J = −θ2‖x0−x̂0‖2P−1
0

+

N−1∑
k=0

[
‖xk − x̂k‖2S

− θ2
(
‖wk‖2Q−1 + ‖yk −HKxk‖2R−1

)]
.

(2)

The solution to this H∞ robust filtering problem can
be computed using a constrained Lagrangian optimization
approach. Let Pk be the estimation error covariance and Kk

be the estimation gain at time step k. The optimal solution
of the H∞ filter with the above cost function is recursively
given by

Kk = Pk
[
I− θ−2SPk +H>KR

−1HKPk
]−1

H>KR
−1

x̂k+1 = Fx̂k + FKk(yk −HKx̂k)

Pk+1 = F
[
P−1k − θ−2S +H>KR

−1HK
]−1

F> +Q, (3)

provided that P−1k − θ−2S +H>KR
−1HK � 0.

The given system has time invariant dynamics F , a fixed
sensor set K, constant interest matrix L, estimation weight
matrix S, state cost Q and measurement cost R. If P−1 −
θ−2S+H>KR

−1HK � 0 and the error covariance converges,
the infinite horizon error covariance P satisfies

P = F
[
P−1 − θ−2S +H>KR

−1HK
]−1

F> +Q. (4)

b) Observability Gramian: We define OK,T to be the
Observability Gramian for a sensor set K ⊆ H with the
measurement matrix HK over a time horizon T . We denote
the eigenvector decomposition of the dynamics matrix by

V −1FV =

[
F1 0
0 F2

]
= Λ; HKV =

[
HK1 HK2

]
= C.

For a given value of µ ∈ R≥0 and nµ := |{λ : λ ∈
spec(F ), |λ| ≤ µ}|, F1 ∈ Rnµ×nµ and F2 are both
symmetric diagonal matrices with spec(F1) = {λ : λ ∈
spec(F ), |λ| ≤ µ}. Similarly, HK1 and HK2 are partitions
of HK of suitable size. The eigen-decomposition of the
Observability Gramian ÕK,T is given by

OK,T =

T−1∑
τ=0

(F>)τH>KHKF
τ = V >

T−1∑
τ=0

ΛτC>CΛτ︸ ︷︷ ︸
ÕK,T

V.
(5)

In this paper, we focus on unstable open-loop dynamics
with |λmax(F )| > 1. This requires a non-trivial solution to
the finite horizon steady state average-cost filtering problem
(since for stable systems, any finite state estimate yields finite
steady state error), and leads to performance limits for robust
estimation in networks.

III. PERFORMANCE BOUNDS OF ROBUST ESTIMATION

In this section, we develop a bound on the largest eigen-
value of the error covariance of the H∞ filter. To prove the
result, we first establish bounds on the smallest eigenvalue
of the Observability Gramian.

A. Bounds on smallest eigenvalue of Observability Gramian

We begin with the following result that bounds the smallest
eigenvalue of the Observability Gramian in terms of the sys-
tem dynamics and the sensor set. This theorem is analogous
to Theorem 3.1 in [6] on the Controllability Gramian.

Theorem 1: Consider an undirected network G = (V, E)
with |V| = n, weighted adjacency matrix F with eigenvector
matrix V and observer set K sensors of sensor set H. Let
λmin(F ) < 1 and for any µ ∈ [λmin(F ), 1), nµ , |{λ :

λ ∈ spec(F ), |λ| ≤ µ}|. Let αV , cond2(V )
‖V ‖22
‖V −2‖22

. For all
T ∈ N>0, it holds for the Observability Gramian O that

λmin(OK,T ) ≤ αV
µ2(d nµ|K| e−1)

1− µ2
. (6)

Proof: The proof follows Theorem 3.1 in [6]. The dif-
ference between the Controllability Gramian in the reference
and the Observability Gramian used here is accounted for the
in the scaling factor αV .

This result is used to derive performance bounds on robust
estimation for the H∞ filter.

B. Performance bounds of robust estimation

The following result provides a performance bound on
the H∞ filter in terms of the maximum eigenvalue of the
estimation error covariance matrix.

Theorem 2: Consider a network G = (V, E) with dynam-
ics matrix F , state measurement matrix HK of sensor set
K ⊆ H available sensors, process noise wk, measurement
noise vk and cost bound θ. Suppose that F is Schur unstable
and let λmax(F ) > 1 denote the eigenvalue of F with max-
imum magnitude. Suppose further that F is diagonalizable
by the eigenvector matrix V and for any η ∈ (1, λmax(F )],
define nη = |{λ : λ ∈ spec(F ), |λ| ≥ η}|. Then, for P∞,



the error covariance of the H∞ filter calculated from the
infinite-horizon algebraic Riccati equation (4), we have For
all η ∈ (1, λmax(F )], it holds

λmax(P∞) ≥ 1

αV

η2 − 1[
η−2d

nη
|K| e − θ−2

(
η
−2d nη

|KL|
e

+ η2−1
αV

ΛS

)] .(7)

where |KL| is the number of states in the interest vector,
αV = cond2(V )

‖V ‖22
‖V −2‖22

and ΛS , λmin(S) for z = Lx for
diagonal matrix L.

Proof: Consider the system dynamics with H∞ filter
described in (1). Without loss of generality, we assume
that symmetric measurement noise covariance R = I and
estimation weights S = I as the values can be absorbed into
the HK matrix and L matrix respectively. We assume a small
Q cost matrix and that Pk >> Q as time-steps increase.
Inverting the Riccati equation (3), we get

P−1k+1 = F−>
[
P−1k − θ−2S +H>KHK

]−1
F−1.

We define Xk , P−1k − θ−2S +H>KHK. From the initial
values at time k = 0, we have X0 = P−10 −θ−2S+H>KHK.
Using the same equation, we also define a new recursion
Xk+1 = F−>XkF

−1 − θ−2S + H>KHK. We now get the
N -step value as

XN =

N∑
k=0

[
(F−>)kH>KHK(F−1)k

]
︸ ︷︷ ︸

XN

− θ−2
N∑
k=0

[
(F−>)kS(F−1)k

]
︸ ︷︷ ︸

X̃N

+ (F−>)NP−10 (F−1)N︸ ︷︷ ︸
P̃

= XN − θ−2X̃N + P̃ .

Using Weyl’s Inequality for matrices, we have eigenvalue
bounds on the matrices as

λmin(XN ) ≤ λmin(XN ) + λmax(−θ−2X̃N + P̃ )

≤ λmin(XN )− θ−2λmin(X̃N ) + λmax(P̃ ). (8)

Under the constraints of the Riccati equation, we have a
feasible sensor set. So XN � 0 =⇒ λmin(XN ) > 0.

Consider a discrete-time LTI system with the system-
measurement pair (F−1, HK). The Observability Gramian
of this system over an N -step horizon is

XN =

N∑
k=0

[
(F−>)kH>KHK(F−1)k

]
.

If λmax(F ) > 1, then λmin(F−1) < 1. Let V be the
eigenvector matrix of F (and F−1). For µ ∈ (λmin(F−1), 1],
we define nµ , |{λ : λ ∈ spec(F−1), |λ| < µ}|. For the
sensor set K with cardinality |K|, we use (6) to state

λmin(XN ) ≤ αV
µ2(d nµ|K| e−1)

1− µ2
. (9)

If this system is N-step observable, then XN � 0.

We similarly interpret

X̃N =

N∑
k=0

[
(F−>)kS(F−1)k

]
=

N∑
k=0

[
(F−>)kL>L(F−1)k

]
as the N -step Observability Gramian for the system-
measurement pair (F−1, L). Applying (6), with |KL| to be
the number of states measured by L, we get the eigenvalue
relationship

λmin(X̃N ) ≤ αV
µ
2
(
d nµ
|KL|

e−1
)

1− µ2
. (10)

Substituting the relations (9) and (10) in the eigenvalue
bounds from Weyl’s inequality (8) we get

λmin(XN )

≤ αV

µ2(d nµ|K| e−1)

1− µ2
− θ−2µ

2
(
d nµ
|KL|

e−1
)

1− µ2

+ λmax(P̃ ).

If 1 < λmin(F ), then λ(P̃ ) → 0 over time. This can
be interpreted as the case where the observability depends
purely on the feasibility of a sensor set. If 1 > λmin(F ),
(F−1)N has significant unstable eigenvalues along some
eigenvectors. Sensors are not needed for these stable nodes
of F which converge asymptotically to the origin over time
and the model can be reduced to only consider the unstable
dynamics.

From the definition of Xk, the constraint on the Riccati
equation in (3) and as Pk � 0 by definition, we have

λmin(P−1∞ ) ≤ λmin(X∞)− θ2λmin(S)

1

λmax(P∞)
≤ αV

[
µ2(d nµ|K| e−1)

1− µ2

−θ−2
µ
2
(
d nµ
|KL|

e−1
)

+ 1−µ2

αV
λmin(S)

1− µ2

 .
We invert this expression, substitute ΛS , λmin(S) and for
η = 1

µ , we define nη , |{λ : λ ∈ spec(F ), |λ| ≥ η}| to get
(7).

As θ → ∞, we obtain an analogous performance bound
for the Kalman filter.

Corollary 1: The Kalman Filter is a special case of the
H∞ filter where the parameter θ → ∞. In this case, the
bound on the error covariance is given by

λmax(P∞) ≥ 1

αV

1− µ2

µ2d nµ|K| e
. (11)

Discussion: An Observability Gramian with strictly posi-
tive eigenvalues indicates a feasible filter for estimation. The
magnitude of these eigenvalues indicates the energy or effort
required for estimation. The result bounds the minimum
effort required for estimation along the eigenvector that is
most difficult to estimate.

We see the dependence of the error covariance matrix on
the dynamics of the system through the parameters η and
nη . For η close enough to 1, nη is the number of unstable



eigenvalues of the dynamics. We see that the performance
bound increases exponentially with nη for a fixed size sensor
set. Similarly, we would require a proportional increase in the
number of sensors |K| to maintain a constraint on the worst-
case estimation performance. We see a similar observation
for the performance bounds in terms of the matrix L in
|KL| and the sensor selection set |K|. We also see that
reducing θ, which corresponds to increasing the effects of the
adversarial disturbances (or equivalently, increasing model
error), increases the performance lower bound, indicating
increasing difficulty in state estimation.

In this paper, the control system is described for a network
where the underlying adjacency matrix of the graph defines
the dynamics of the system. This allows edge weights to
be real-valued, not strictly non-negative. We may also define
stability and connectivity in terms of network characteristics.
The convenience of a network or graph based system helps
visualize actuator placement as a selection of nodes for
control inputs. In this work, the network topology is brought
into consideration through the dynamics matrix and its corre-
sponding eigenvector matrix. While our analysis here merely
uses the framework of the network, a valuable research
direction lies in studying the effect of network parameters
on actuator set selection.

Accounting for the relaxations under Weyl’s inequality and
the assumptions on the initial state estimation weights, these
performance bounds can be conservative. Further considera-
tions on the state space dynamics and sensor set could im-
prove the bound. In applications, the robust estimation metric
can guide the design of sensor architectures in networks.
In the following section, we explore how various quantities
affect robust estimation performance.

IV. NUMERICAL ANALYSIS

In this section, we illustrate the relationship between the
system parameters and the performance bounds of the sensor
set. The parameters are the cardinality of the sensor set,
the size and topology of the network and the bounds on
the cost function. Sensors are placed by a greedy algorithm
without replacement (order of complexity: O( n!

|K|! )), seeking
to minimize the trace of the error covariance matrix. We test
the parameter variations on a standard path graph with 21
nodes given by A and the scaling parameter ρ to adjust its
eigenvalues and hence open-loop autonomous stability.

A =
ρ

3
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Comparison of H∞ and Kalman Filter: We begin by
comparing the H∞ and Kalman filter for a fixed network
with change in number of sensors. Both filters operate under
the same cost matrices to estimate all states with equal
weight. The results are given in Fig. 1. We see from the
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Fig. 1. The top plot shows the variation in the minimum value of the
penalty parameter θ with increase in size of sensor set for the H∞ filter.
The bottom plot shows the variation in the error covariance plot for the
Kalman Filter and the H∞ filter evaluated at a fixed value of θ.

top graph that the maximum bounds on the error is reduced
under a larger sensor set as described in the bottom graph for
a fixed value of θ. We see that the H∞ filter results in higher
error as it is robust but not optimal. With a single sensor, its
error covariance is significantly higher than the Kalman filter
but difference reduces as the number of sensors increases.

Effect of network size: We compare the effect of network
size under limitation of a fixed sensor set on the smallest
bounds on the observer error function. We consider a path
graph of n = {5, 10, . . . , 40} nodes. A fixed sensor set
of |K| = 3 positioned in the middle of the network is
set to identify the states of the terminal nodes of the path
network, given by zk =

[
(xk)1 (xk)n

]>
. The results are

plotted in Fig. 2. From the top plot, we can see that the
minimum penalty increases with network size. This shows
that for a growing network with a fixed sensor set, external
disturbances have increased influence. From the bottom
graph, we can see that there is an exponential increase in
the error trace(P ) with increasing number of unstable nodes,
which is related to network size, for the fixed sensor set at
a fixed penalty parameter.

Effect of relative importance of interest states: In this
analysis, we fix the network model and randomly select a
subset of states to estimate. Then we compare the change
in error bound parameter θ and costs of partial estimation
of states by gradually increasing the number of states to
be estimated. The results are plotted in Fig. 3. We use
|S| to denote the number of states we are interested in
estimating, equivalently the number of equally weighted,
non-zero diagonal elements of the S matrix. From the top
graph, we see that increasing the number of states to be
estimated increases the minimum penalty placed on the
disturbances affecting error bounds on the system. For a fixed
sensor set, it is more accurate to measure states close to and
at the position of the sensors.
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Fig. 2. The top graph shows the variation in the minimum value of the
penalty parameter θ with the size of an unstable path network of size n for
a limited sensor set size. The bottom graph shows the change in the error
covariance matrix at a fixed value of θ.
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Fig. 3. The top graph shows the variation in the minimum value of the
penalty parameter θ with the number of significantly weighted states being
estimated |S|. The bottom graph shows the cost variation of the easiest and
hardest set of states to be estimated. The network is a 21 node path graph
with |K| = 3 randomly placed sensors.

V. CONCLUSION

We have derived a performance bound for robust estima-
tion in networks. A future direction for this research would
be to further understand the combined performance and cost
of actuator and sensor set optimization for different network
structures.
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