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Learning Optimal Controllers for Linear Systems
with Multiplicative Noise via Policy Gradient

Benjamin Gravell, Peyman Mohajerin Esfahani, and Tyler Summers

Abstract—The linear quadratic regulator (LQR) problem has
reemerged as an important theoretical benchmark for reinforce-
ment learning-based control of complex dynamical systems with
continuous state and action spaces. In contrast with nearly
all recent work in this area, we consider multiplicative noise
models, which are increasingly relevant because they explicitly
incorporate inherent uncertainty and variation in the system
dynamics and thereby improve robustness properties of the
controller. Robustness is a critical and poorly understood issue in
reinforcement learning; existing methods which do not account
for uncertainty can converge to fragile policies or fail to converge
at all. Additionally, intentional injection of multiplicative noise
into learning algorithms can enhance robustness of policies, as
observed in ad hoc work on domain randomization. Although
policy gradient algorithms require optimization of a non-convex
cost function, we show that the multiplicative noise LQR cost has
a special property called gradient domination, which is exploited
to prove global convergence of policy gradient algorithms to the
globally optimum control policy with polynomial dependence on
problem parameters. Results are provided both in the model-
known and model-unknown settings where samples of system
trajectories are used to estimate policy gradients.

Index Terms—Reinforcement learning, optimal control, gradi-
ent methods, stochastic systems, uncertain systems, noise.

I. INTRODUCTION

REINFORCEMENT learning-based control has recently
achieved impressive successes in games [1] and simula-

tors [2]. But these successes are significantly more challenging
to translate to complex physical systems with continuous
state and action spaces, safety constraints, and non-negligible
operation and failure costs that demand data efficiency. An
intense and growing research effort is creating a large array of
models, algorithms, and heuristics for approaching the myriad
of challenges arising from these systems. To complement a
dominant trend of more computationally focused work, the
canonical linear quadratic regulator (LQR) problem in control
theory has reemerged as an important theoretical benchmark
for learning-based control [3], [4]. Despite its long history,
there remain fundamental open questions for LQR with un-
known models, and a foundational understanding of learning
in LQR problems can give insight into more challenging
problems.

Almost all recent work on learning in LQR problems has
utilized either deterministic or additive noise models [3]–[14],
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but here we consider multiplicative noise models. In control
theory, multiplicative noise models have been studied almost
as long as their deterministic and additive noise counterparts
[15], [16], although this area is somewhat less developed
and far less widely known. We believe the study of learning
in LQR problems with multiplicative noise is important for
three reasons. First, this class of models is much richer than
deterministic or additive noise while still allowing exact solu-
tions when models are known, which makes it a compelling
additional benchmark [17]–[19]. Second, they explicitly incor-
porate model uncertainty and inherent stochasticity, thereby
improving robustness properties of the controller. Robustness
is a critical and poorly understood issue in reinforcement learn-
ing; existing methods which do not account for uncertainty
can converge to fragile policies or fail to converge at all [18],
[20], [21]. Additionally, intentional injection of multiplicative
noise into learning algorithms is known to enhance robustness
of policies from ad hoc work on domain randomization [22].
Third, in emerging difficult-to-model complex systems where
learning-based control approaches are perhaps most promising,
multiplicative noise models are increasingly relevant; exam-
ples include networked systems with noisy communication
channels [23], [24], modern power networks with large pen-
etration of intermittent renewables [25], [26], turbulent fluid
flow [27], and neuronal brain networks [28].

A. Related literature

Multiplicative noise LQR problems have been studied in
control theory since the 1960s [15]. Since then a line of
research parallel to deterministic and additive noise has devel-
oped, including basic stability and stabilizability results [17],
semidefinite programming formulations [29]–[31], robustness
properties [16], [19], [32]–[34], and numerical algorithms [35].
This line of research is less widely known perhaps because
much of it studies continuous time systems, where the heavy
machinery required to formalize stochastic differential equa-
tions is a barrier to entry for a broad audience. Multiplicative
noise models are well-poised to offer data-driven model un-
certainty representations and enhanced robustness in learning-
based control algorithms and complex dynamical systems and
processes. A related line of research that has seen recent
activity is on learning optimal control of Markovian jump
linear systems with unknown dynamics and noise distributions
[36], [37], which, under certain assumptions, is a special case
of the multiplicative noise system we analyze in this work.

In contrast to classical work on system identification and
adaptive control, which has a strong focus on asymptotic
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results, more recent work has focused on non-asymptotic anal-
ysis using newly developed mathematical tools from statistics
and machine learning. There remain fundamental open prob-
lems for learning in LQR problems, with several addressed
only recently, including non-asymptotic sample complexity
[4], [10], regret bounds [8], [11], [13], and algorithmic con-
vergence [5]. Alternatives to reinforcement learning include
other data-driven model-free optimal control schemes [38],
[39] and those leveraging the behavioral framework [40],
[41]. Subspace identification methods offer a model-based
generalization to the output feedback setting [42].

B. Our contributions

In §II we formulate the multiplicative noise LQR problem
and motivate its study via a connection to robust stability.
We then give several fundamental results for policy gradient
algorithms on linear quadratic problems with multiplicative
noise. Our main contributions are as follows, which can be
viewed as a generalization of the recent results of Fazel et al.
[5] for deterministic LQR to multiplicative noise LQR:
• In §III we show that although the multiplicative noise

LQR cost is generally non-convex, it has a special
property called gradient domination, which facilitates its
optimization (Lemmas 3.1 and 3.3).

• In particular, in §IV the gradient domination property is
exploited to prove global convergence of three policy gra-
dient algorithm variants (namely, exact gradient descent,
“natural” gradient descent, and Gauss-Newton/policy it-
eration) to the globally optimum control policy with a
rate that depends polynomially on problem parameters
(Theorems 4.1, 4.2, and 4.3).

• Furthermore, in §V we show that a model-free policy
gradient algorithm, where the gradient is estimated from
trajectory data rather than computed from model parame-
ters, also converges globally (with high probability) with
an appropriate exploration scheme and sufficiently many
samples (polynomial in problem data) (Theorem 5.1).

In comparison with the deterministic dynamics studied by [5],
we make the following novel technical contributions:
• We quantify the increase in computational burden of pol-

icy gradient methods due to the presence of multiplicative
noise, which is evident from the bounds developed in
Appendices A and B. The noise acts to reduce the step
size and thus convergence rate, and increases the required
number of samples and rollout length in the model-free
setting.

• A covariance dynamics operator FK is established for
multiplicative noise systems with a more complicated
form than the deterministic case. This necessitated a more
careful treatment and novel proof by induction and term
matching argument in the proof of Lemma A.4.

• Several restrictions on the algorithmic parameters which
are necessary for convergence, which were neglected by
[5], are established and treated.

• An important restriction on the support of the multiplica-
tive noise distribution, which is naturally absent in [5], is
established in the model-free setting.

• A matrix Bernstein concentration inequality is stated
explicitly and used to give explicit bounds on the algo-
rithmic parameters in the model-free setting in terms of
problem data.

• We provide much more extensive numerical results and
discussion, including an open-source code implementa-
tion and the use of backtracking line search.

• When the multiplicative variances αi, βj are all zero,
the assertions of Theorems 4.1, 4.2, 4.3, 5.1 recover the
same step sizes and convergence rates of the deterministic
setting reported by [5].

Thus, policy gradient algorithms for the multiplicative noise
LQR problem enjoy the same global convergence properties as
deterministic LQR, while significantly enhancing the resulting
controller’s robustness to variations and inherent stochasticity
in the system dynamics, as demonstrated by our numerical
experiments in §VI.

To our best knowledge, the present paper is the first work to
consider and obtain global convergence results using reinforce-
ment learning algorithms for the multiplicative noise LQR
problem. Our approach allows the explicit incorporation of
a model uncertainty representation that significantly improves
the robustness of the controller compared to deterministic and
additive noise approaches.

II. OPTIMAL CONTROL OF LINEAR SYSTEMS WITH
MULTIPLICATIVE NOISE AND QUADRATIC COSTS

We consider the infinite-horizon linear quadratic regulator
problem with multiplicative noise (LQRm)

minimize
π∈Π

C(π) : = E
x0,{δti},{γtj}

∞∑
t=0

(xᵀtQxt + uᵀtRut), (1)

subject to xt+1 = (A+

p∑
i=1

δtiAi)xt + (B +

q∑
j=1

γtjBj)ut,

where xt ∈ Rn is the system state, ut ∈ Rm is the control
input, the initial state x0 is distributed according to P0 with
covariance Σ0 : =Ex0 [x0x

ᵀ
0 ], Σ0 � 0, and Q � 0 and R � 0.

The dynamics are described by a dynamics matrix A ∈ Rn×n
and input matrix B ∈ Rn×m and incorporate multiplicative
noise terms modeled by the i.i.d. (across time), zero-mean,
mutually independent scalar random variables δti and γtj ,
which have variances αi and βj , respectively. The matrices
Ai ∈ Rn×n and Bi ∈ Rn×m specify how each scalar noise
term affects the system dynamics and input matrices. Alterna-
tively, suppose Ā and B̄ are zero-mean random matrices with
a joint covariance structure1 over their entries governed by
the covariance matrices ΣA : =E[vec(Ā)vec(Ā)ᵀ] ∈ Rn2×n2

and ΣB : =E[vec(B̄)vec(B̄)ᵀ] ∈ Rnm×nm. Then it suffices
to take the variances αi and βj and matrices Ai and Bj as
the eigenvalues and (reshaped) eigenvectors of ΣA and ΣB ,
respectively, after a projection onto a set of orthogonal real-
valued vectors [43]. The goal is to determine a closed-loop
state feedback policy π∗ with ut = π∗(xt) from a set Π of
admissible policies which solves the optimization in (1).

1We assume Ā and B̄ are independent for simplicity, but it is straightfor-
ward to include correlations between the entries of Ā and B̄ into the model.



3

We assume that the problem data A, B, αi, Ai, βj , and
Bj permit existence and finiteness of the optimal value of
the problem, in which case the system is called mean-square
stabilizable and requires mean-square stability of the closed-
loop system [17], [44]. The system in (1) is called mean-
square stable if limt→∞ Ex0,δ,γ [xtx

ᵀ
t ] = 0 for any given

initial covariance Σ0, where for brevity we notate expectation
with respect to the noises E{δti},{γtj} as Eδ,γ . Mean-square
stability is a form of robust stability, implying stability of the
mean (i.e., limt→∞ Ext = 0 ∀ x0) as well as (in the absence
of additive noise) almost-sure stability (i.e., limt→∞ xt = 0
almost surely) [17]. Mean-square stability requires stricter
and more complicated conditions than stabilizability of the
nominal system (A,B) [17], which are discussed in the sequel.
This essentially can limit the size of the multiplicative noise
covariance [18], which can be viewed as a representation
of uncertainty in the nominal system model or as inherent
variation in the system dynamics.

A. Control Design with Known Models: Value Iteration
Dynamic programming can be used to show that the optimal

policy π∗ is linear state feedback ut = π∗(xt) = K∗xt,
where K∗ ∈ Rm×n denotes the optimal gain matrix. When
the control policy is linear state feedback ut = π(xt) = Kxt,
with a very slight abuse of notation the cost becomes

C(K) = Ex0,{δti},{γtj}

∞∑
t=0

xᵀt (Q+KᵀRK)xt

Dynamic programming further shows that the result-
ing optimal cost is quadratic in the initial state, i.e.,
C(K∗) = Ex0

xᵀ0Px0 = Tr(PΣ0), where P ∈ Rn×n is a
symmetric positive definite matrix [21]. Note that the optimal
controller does not directly observe the noise variables δti, γtj .
When the model parameters are known, there are several ways
to compute the optimal feedback gains and corresponding
optimal cost. The optimal cost is given by the solution of
the generalized algebraic Riccati equation (GARE)

P = Q+AᵀPA+

p∑
i=1

αiA
ᵀ
i PAi (2)

−AᵀPB(R+BᵀPB +

q∑
j=1

βjB
ᵀ
j PBj)

−1BᵀPA.

This is a special case of the GARE for optimal static output
feedback given in [19] and can be solved via the value iteration

Pk+1 = Q+AᵀPkA+

p∑
i=1

αiA
ᵀ
i PkAi

−AᵀPkB(R+BᵀPkB +

q∑
j=1

βjB
ᵀ
j PkBj)

−1BᵀPkA,

with P0 = Q, or via semidefinite programming formulations
[29]–[31], or via more exotic iterations based on the Smith
method and Krylov subspaces [45], [46]. The associated
optimal gain matrix is

K∗ = −
(
R+BᵀPB +

q∑
j=1

βjB
ᵀ
j PBj

)−1

BᵀPA.

It was verified in [17] that existence of a positive definite
solution to the GARE (2) is equivalent to mean-square stabi-
lizability of the system, which depends on the problem data
A, B, αi, Ai, βj , and Bj ; in particular, mean-square stability
generally imposes upper bounds on the variances αi and βj
[18], though these may be infinite depending on the structure
of A, B, Ai, Bj [17]. At a minimum, uniqueness and existence
of a solution to the GARE (2) requires the standard conditions
for uniqueness and existence of a solution to the standard ARE,
namely of (A,B) stabilizable and (A,Q1/2) detectable.

Although (approximate) value iteration can be implemented
using sample trajectory data, policy gradient methods have
been shown to be more effective for approximately optimal
control of high-dimensional stochastic nonlinear systems, e.g.,
those arising in robotics [47]. This motivates our following
analysis of the simpler case of stochastic linear systems
wherein we show that policy gradient indeed facilitates a data-
driven approach for learning optimal and robust policies.

B. Control Design with Known Models: Policy Gradient

Consider a fixed linear state feedback policy ut = Kxt.
Defining the stochastic system matrices Ã = A+

∑p
i=1 δtiAi ,

and B̃ = B+
∑q
j=1 γtjBj , the (deterministic) nominal closed-

loop state transition matrix AK = A + BK, the stochastic
closed-loop state transition matrix ÃK = Ã + B̃K, and
the closed-loop state-cost matrix QK = Q + KᵀRK, the
closed-loop dynamics become xt+1 = ÃKxt. A gain K is
mean-square stabilizing if the closed-loop system is mean-
square stable. Denote the set of mean-square stabilizing K
as K. If K ∈ K, then the cost can be written as C(K) =
Ex0x

ᵀ
0PKx0 = Tr(PKΣ0), where PK is the unique positive

semidefinite solution to the generalized Lyapunov equation

PK = QK +Aᵀ
KPKAK (3)

+

p∑
i=1

αiA
ᵀ
i PKAi +

q∑
j=1

βjK
ᵀBᵀ

j PKBjK.

We define the state covariance matrices as Σt : =Ex0,δ,γ [xtx
ᵀ
t ]

and the infinite-horizon aggregate state covariance matrix
ΣK : =

∑∞
t=0 Σt. If K ∈ K then ΣK also satisfies a dual

generalized Lyapunov equation

ΣK = Σ0 +AKΣKA
ᵀ
K (4)

+

p∑
i=1

αiAiΣKA
ᵀ
i +

q∑
j=1

βjBjKΣKK
ᵀBᵀ

j .

Vectorization and Kronecker products can be used to convert
(3) and (4) into systems of linear equations. Alternatively,
iterative methods have been suggested for their solution [45],
[46]. The state covariance dynamics are captured by two
closed-loop finite-dimensional linear operators which operate
on a symmetric matrix X:

TK(X) : = E
δ,γ

∞∑
t=0

ÃtKXÃ
ᵀt

K ,

FK(X) : = E
δ,γ
ÃKXÃ

ᵀ
K = AKXA

ᵀ
K
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+

p∑
i=1

αiAiXA
ᵀ
i +

q∑
j=1

βjBjKX(BjK)ᵀ.

Thus FK (without an argument) is a linear operator whose
matrix representation is

FK : =AK ⊗AK +

p∑
i=1

αiAi ⊗Ai +

q∑
j=1

βj(BjK)⊗ (BjK).

The Σt evolve according to the dynamics

Σt+1 = FK(Σt) ⇔ vec(Σt+1) = FK vec(Σt)

We define the t-stage of FK(X) as

F tK(X) := FK(F t−1
K (X)) with F0

K(X) = X,

which gives the natural characterization

ΣK = TK(Σ0) =

∞∑
t=0

F tK(Σ0). (5)

We then have the following lemma:
Lemma 2.1 (Mean-square stability): A gain K is mean-

square stabilizing if and only if the spectral radius ρ(FK) < 1.
Proof: Mean-square stability implies lim

t→∞
E[xtx

ᵀ
t ] = 0,

which for linear systems occurs only when ΣK is finite, which
by (5) is equivalent to ρ(FK) < 1.

Recalling the definition of C(K) and (4), along with the
basic observation that K /∈ K induces infinite cost, gives the
following characterization of the cost:

C(K) =

{
Tr(QKΣK) = Tr(PKΣ0) if K ∈ K
∞ otherwise.

The evident fact that C(K) is expressed as a closed-form
function, up to a Lyapunov equation, of K leads to the
idea of performing gradient descent on C(K) (i.e., policy
gradient) via the update K ← K − η∇C(K) to find the
optimal gain matrix. However, two properties of the LQR cost
function C(K) complicate a convergence analysis of gradient
descent. First, C(K) is extended valued since not all gain
matrices provide closed-loop mean-square stability, so it does
not have (global) Lipschitz gradients. Second, and even more
concerning, C(K) is generally non-convex in K (even for
deterministic LQR problems, as observed by Fazel et al. [5]),
so it is unclear if and when gradient descent converges to the
global optimum, or if it even converges at all. Fortunately,
as in the deterministic case, we show that the multiplicative
LQR cost possesses further key properties that enable proof
of global convergence despite the lack of Lipschitz gradients
and non-convexity.

C. From Stochastic to Robust Stability

Additional motivation for designing controllers which stabi-
lize a stochastic system in mean-square is to ensure robustness
of stability of a nominal deterministic system to model param-
eter perturbations. Here we state a condition which guarantees
robust deterministic stability for a perturbed deterministic
system given mean-square stability of a stochastic single-state
system with multiplicative noise where the noise variance and
parameter perturbation size are related.

Example 2.2 (Robust stability): Suppose the stochastic
closed-loop system

xt+1 = (a+ δt)xt (6)

where a, xt, δt are scalars with E[δ2
t ] = α is mean-square

stable. Then, the perturbed deterministic system

xt+1 = (a+ φ)xt (7)

is stable for any constant perturbation |φ| ≤
√
a2 + α− |a|.

Proof: By the bound on φ and triangle inequality we have
ρ(a+φ) = |a+φ| ≤ |a|+ |φ| ≤

√
a2 + α. From Lemma 2.1,

mean-square stability of (6) implies
√
ρ(F) =

√
a2 + α < 1

and thus ρ(a+ φ) < 1, proving stability of (7).
Although this is a simple example, it demonstrates that the
robustness margin increases monotonically with the multi-
plicative noise variance. We also see that when α = 0 the
bound collapses so that no robustness is guaranteed, i.e., when
|a| → 1. This result can be extended to multiple states, inputs,
and noise directions, but the resulting conditions become
considerably more complex [19], [34]. We now proceed with
developing methods for optimal control.

III. GRADIENT DOMINATION AND OTHER PROPERTIES
OF THE MULTIPLICATIVE NOISE LQR COST

In this section, we demonstrate that the multiplicative noise
LQR cost function is gradient dominated, which facilitates op-
timization by gradient descent. Gradient dominated functions
have been studied for many years in the optimization literature
[48] and have recently been discovered in deterministic LQR
problems by [5]. Proofs of the technical results are condensed
here for brevity, but are available in more verbose form in our
paper [49].

A. Multiplicative Noise LQR Cost is Gradient Dominated

First, we give the expression for the policy gradient of the
multiplicative noise LQR cost. For brevity define

RK : =R+BᵀPKB +

q∑
j=1

βjB
ᵀ
j PKBj

EK : =RKK +BᵀPKA.

Lemma 3.1 (Policy Gradient Expression):
The policy gradient is given by

∇KC(K) = 2EKΣK = 2(RKK +BᵀPKA)ΣK

Proof: Substituting the RHS of the generalized Lyapunov
equation (3) into the cost C(K) = Tr(PKΣ0) yields

C(K) = Tr(QKΣ0) + Tr(Aᵀ
KPKAKΣ0)

+ Tr
( p∑
i=1

αiA
ᵀ
i PKAiΣ0

)
+ Tr

( q∑
j=1

βjK
ᵀBᵀ

j PKBjKΣ0

)
.
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Taking the gradient with respect to K and using the product
rule and rules for matrix derivatives we obtain

∇KC(K) = ∇K Tr(PKΣ0)

= ∇K̃
[

Tr(QK̃Σ0) + Tr(Aᵀ
K̃
PKAK̃Σ0)

+ Tr
( p∑
i=1

αiA
ᵀ
i PKAiΣ0

)
+ Tr

( q∑
j=1

βjK̃
ᵀBᵀ

j PKBjK̃Σ0

)]
+∇K̄

[
Tr(Aᵀ

KPK̄AKΣ0)

+ Tr
( p∑
i=1

αiA
ᵀ
i PK̄AiΣ0

)
+ Tr

( q∑
j=1

βjK
ᵀBᵀ

j PK̄BjKΣ0

)]
= 2(RKK +BᵀPKA)Σ0 +∇K̄ Tr(PK̄FK(Σ0))

= 2(RKK +BᵀPKA)Σ0 +∇K Tr(PKΣ1)

where the tilde on K̃ and overbar on K are used to de-
note the terms being differentiated. Applying this gradient
formula recursively to the last term in the last line (namely
∇K̄ Tr(PK̄Σ1)) and recalling the definition of ΣK completes
the proof. See [49] for detailed intermediate steps.

For brevity the gradient is implied to be with respect to the
gains K in the rest of this work, i.e., ∇K denoted by ∇. Now
we must develop some auxiliary results before demonstrating
gradient domination. Throughout ‖Z‖ and ‖Z‖F are the
spectral and Frobenius norms respectively of a matrix Z,
and σ(Z) and σ(Z) are the minimum and maximum singular
values of a matrix Z. The value function VK(x), evaluated at
the initial condition of the process xt (i.e., x0), is defined as

VK(x) : =Eδ,γ
∞∑
t=0

xᵀtQKxt given x0 = x,

which relates to the cost as C(K) = Ex0
VK(x0). The

advantage function is defined as

AK(x, u) : =xᵀQx+ uᵀRu+ E
δ,γ
VK(Ãx+ B̃u)− VK(x),

where the expectation is taken with respect to the variables Ã
and B̃. The advantage function can be thought of as the
difference in cost (“advantage”) when starting in state x
of taking an action u for one step instead of the action
generated by policy K. We also define the state, input, and
cost sequences

{xt}K,x : ={x, ÃKx, Ã2
Kx, ..., Ã

t
Kx, ...}

{ut}K,x : =K{xt}K,x
{ct}K,x : ={xt}ᵀK,xQK{xt}K,x.

Throughout the proofs we will consider pairs of gains K and
K ′ and their difference ∆ : =K ′ −K.

Lemma 3.2 (Value difference): Suppose K and K ′ gen-
erate the (stochastic) state, action, and cost sequences
{xt}K,x, {ut}K,x, {ct}K,x and {xt}K′,x, {ut}K′,x, {ct}K′,x.
Then the value difference and advantage satisfy

VK′(x)− VK(x) = E
δ,γ

∞∑
t=0

AK
(
{xt}K′,x, {ut}K′,x

)
AK(x,K ′x) = 2xᵀ∆ᵀEKx+ xᵀ∆ᵀRK∆x.

Proof: The proof follows the “cost-difference” lemma in
[5] exactly substituting versions of value and cost functions,
etc. which take expectation over the multiplicative noise.

Next, we see that the multiplicative noise LQR cost is
gradient dominated.

Lemma 3.3 (Gradient domination):
The LQR-with-multiplicative-noise cost C(K) satisfies the
gradient domination condition

C(K)− C(K∗) ≤ ‖ΣK∗‖
4σ(R)σ(Σ0)

2 ‖∇C(K)‖2F .

Proof: We start with the advantage expression

AK(x,K ′x) = 2xᵀ∆ᵀEKx+ xᵀ∆ᵀRK∆x

= 2 Tr[xxᵀ∆ᵀEK ] + Tr[xxᵀ∆ᵀRK∆].

Next we rearrange and complete the square:

AK(x,K ′x) = Tr
[
xxᵀ (∆ᵀRK∆ + 2∆ᵀEK)

]
= Tr

[
xxᵀ(∆ +R−1

K EK)ᵀRK(∆ +R−1
K EK)

]
− Tr

[
xxᵀEᵀ

KR
−1
K EK

]
.

Since RK � 0, we have

AK(x,K ′x) ≥ −Tr
[
xxᵀEᵀ

KR
−1
K EK

]
(8)

with equality only when ∆ = −R−1
K EK .

Let the state and control sequences associated with the
optimal gain K∗ be {xt}K∗,x and {ut}K∗,x respectively. We
now obtain an upper bound for the cost difference by writing
the cost difference in terms of the value function as

C(K)− C(K∗) = E
x0

[
V (K,x0)

]
− E
x0

[
V (K∗, x0)

]
= E
x0

[
V (K,x0)− V (K∗, x0)

]
.

Using the first part of the value-difference Lemma 3.2 and
negating we obtain

C(K)− C(K∗) = −E
x0

[ ∞∑
t=0

AK
(
{xt}K∗,x, {ut}K∗,x

)]

≤ E
x0

[ ∞∑
t=0

Tr

[
{xt}K∗,x{xt}ᵀK∗,xE

ᵀ
KR
−1
K EK

]]

= Tr

[
ΣK∗E

ᵀ
KR
−1
K EK

]
.

where the second step used the advantage inequality in (8).
Now using |Tr(Y Z)| ≤ ‖Y ‖|Tr(Z)| we obtain

C(K)− C(K∗) ≤ ‖ΣK∗‖Tr

[
Eᵀ
KR
−1
K EK

]
(9)

≤ ‖ΣK∗‖‖R−1
K ‖Tr

[
Eᵀ
KEK

]
,

where the first and second inequalities will be used later in
the Gauss-Newton and gradient descent convergence proofs
respectively. Combining ‖RK‖ ≥ ‖R‖ = σ(R) ≥ σ(R) with
‖Z−1‖ ≥ ‖Z‖−1 we obtain

C(K)− C(K∗) ≤ ‖ΣK
∗‖

σ(R)
Tr
[
Eᵀ
KEK

]
(10)
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which will be used later in the natural policy gradient descent
convergence proof. Now we rearrange and substitute in the
policy gradient expression 1

2∇C(K)(ΣK)−1 = EK

C(K)− C(K∗)

≤ ‖ΣK
∗‖

4σ(R)
Tr
[
(∇C(K)Σ−1

K )ᵀ(∇C(K)Σ−1
K )
]

≤ ‖ΣK
∗‖

4σ(R)
‖(Σ−1

K )ᵀΣ−1
K ‖Tr

[
∇C(K)ᵀ∇C(K)

]
≤ ‖ΣK∗‖

4σ(R)σ(ΣK)2
Tr
[
∇C(K)ᵀ∇C(K)

]
.

where the last step used the definition and submultiplicativity
of spectral norm. Using ΣK = E

x0

[
∑∞
t=0 xtx

ᵀ
t ] � E

x0

[x0x
ᵀ
0 ] =

Σ0 ⇒ σ(ΣK) < σ(Σ0) completes the proof.
The gradient domination property gives the following sta-

tionary point characterization.
Corollary 3.4: If ∇C(K) = 0 then either K = K∗ or

rank(ΣK) < n.
In other words, so long as ΣK is full rank, stationarity is
both necessary and sufficient for global optimality, as for
convex functions. Note that it is not sufficient to just have
multiplicative noise in the dynamics with a deterministic initial
state x0 to ensure that ΣK is full rank. To see this, observe
that if x0 = 0 and Σ0 = 0 then ΣK = 0, which is clearly rank
deficient. By contrast, additive noise is sufficient to ensure that
ΣK is full rank with a deterministic initial state x0, although
we will not consider this setting. Using a random initial state
with Σ0 � 0 ensures rank(ΣK) = n and thus ∇C(K) = 0
implies K = K∗.

Although the gradient of the multiplicative noise LQR cost
is not globally Lipschitz continuous, it is locally Lipschitz
continuous over any subset of K. Gradient domination is then
sufficient to show that policy gradient descent will converge
to the optimal gains at a linear rate (a short proof for globally
Lipschitz functions is given in [50]). We prove convergence of
policy gradient to the optimum feedback gain by bounding the
local Lipschitz constant in terms of the problem data, which
bounds the maximum step size and the convergence rate.

B. Additional Setup Lemmas

Lemma 3.5 (Almost-smoothness): The LQR-with-
multiplicative-noise cost C(K) satisfies the almost-
smoothness expression

C(K ′)− C(K) = 2 Tr
[
ΣK′∆

ᵀEK
]

+ Tr
[
ΣK′∆

ᵀRK∆
]
.

Proof: As in the gradient domination proof, we express
the cost difference in terms of the advantage by taking
expectation over the initial states to obtain

C(K ′)− C(K) = E
x0

[ ∞∑
t=0

AK
(
{xt}K′,x , {ut}K′,x

)]
.

From the value difference lemma for the advantage we have

AK(x,K ′x) = 2xᵀ∆ᵀEKx+ xᵀ∆ᵀRK∆x.

Noting that {ut}K′,x = K ′x we obtain C(K ′)− C(K) =

E
x0

[ ∞∑
t=0

2{xt}ᵀK′,x∆ᵀEK{xt}K′,x +

{xt}ᵀK′,x∆ᵀRK∆{xt}K′,x
)]
.

Using the definition of ΣK′ completes the proof.
Lemma 3.6 (Cost bounds): We always have

‖PK‖ ≤
C(K)

σ(Σ0)
and ‖ΣK‖ ≤

C(K)

σ(Q)
.

Proof: The proof follows that in [5] exactly.

IV. GLOBAL CONVERGENCE OF POLICY GRADIENT IN
THE MODEL-BASED SETTING

In this section we show that the policy gradient algorithm
and two important variants for multiplicative noise LQR
converge globally to the optimal policy. In contrast with [5],
the policies we obtain are robust to uncertainties and inherent
stochastic variations in the system dynamics. We analyze three
policy gradient algorithm variants:
Gradient: Ks+1 = Ks − η∇C(Ks)
Natural Gradient: Ks+1 = Ks − η∇C(Ks)Σ

−1
Ks

Gauss-Newton: Ks+1 = Ks − ηR−1
Ks
∇C(Ks)Σ

−1
Ks

The more elaborate natural gradient and Gauss-Newton
variants provide superior convergence rates and simpler proofs.
A development of the natural policy gradient is given in [5]
building on ideas from [51]. The Gauss-Newton step with
step size 1/2 is identical to policy iteration, first studied for
deterministic LQR in [52]. This was extended to a model-
free setting using policy iteration and Q-learning in [6]. For
multiplicative noise LQR, we have the following results, which
are not optimized for tightness; step sizes satisfying the bounds
can become too small to be practically useful. Rather our goal
is to find algorithm settings that give guaranteed convergence.
In practice, much less conservative constant and adaptive step
sizes can be used, as shown in §VI.

A. Gauss-Newton Descent

Theorem 4.1 (Gauss-Newton convergence): Using the
Gauss-Newton step

Ks+1 = Ks − ηR−1
Ks
∇C(Ks)Σ

−1
Ks

with step size 0 < η ≤ 1
2 gives global convergence to the

optimal gain matrix K∗ at a linear rate described by

C(Ks+1)− C(K∗)

C(Ks)− C(K∗)
≤ 1− 2η

σ(Σ0)

‖ΣK∗‖
.

Proof: The next-step gain matrix difference is

∆ = Ks+1 −Ks = −ηR−1
Ks
∇C(Ks)Σ

−1
Ks

= −2ηR−1
Ks
EKs

.

Using the almost-smoothness Lemma 3.5 and substituting
in the next-step gain matrix difference we obtain

C(Ks+1)− C(Ks)

= 2 Tr
[
ΣKs+1

∆ᵀEKs

]
+ Tr

[
ΣKs+1

∆ᵀRKs
∆
]

= 2 Tr
[
ΣKs+1

(−2ηR−1
Ks
EKs

)ᵀEKs

]
+ Tr

[
ΣKs+1

(−2ηR−1
Ks
EKs

)ᵀRKs
(−2ηR−1

Ks
EKs

)
]

= 4(−η + η2) Tr
[
ΣKs+1

Eᵀ
Ks
R−1
Ks
EKs

]
.
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By hypothesis we require 0 ≤ η ≤ 1
2 so we have

C(Ks+1)− C(Ks) ≤ −2ηTr
[
ΣKs+1E

ᵀ
Ks
R−1
Ks
EKs

]
≤ −2ησ(ΣKs+1) Tr

[
Eᵀ
Ks
R−1
Ks
EKs

]
≤ −2ησ(Σ0) Tr

[
Eᵀ
Ks
R−1
Ks
EKs

]
.

Recalling and substituting in (9) we obtain

C(Ks+1)− C(Ks) ≤ −2η
σ(Σ0)

‖ΣK∗‖
(
C(Ks)− C(K∗)

)
.

Adding C(Ks)− C(K∗) to both sides and rearranging com-
pletes the proof.

B. Natural Policy Gradient Descent

Theorem 4.2 (Natural policy gradient convergence): Using
the natural policy gradient step

Ks+1 = Ks − η∇C(Ks)Σ
−1
Ks

(11)

with step size 0 < η ≤ cnpg where

cnpg : =
1

2

(
‖R‖+

(
‖B‖2 +

q∑
j=1

βj‖Bj‖2
)C(K0)

σ(Σ0)

)−1

gives global convergence to the optimal gain matrix K∗ at a
linear rate described by

C(Ks+1)− C(K∗)

C(Ks)− C(K∗)
≤ 1− 2η

σ(R)σ(Σ0)

‖ΣK∗‖
.

Proof: First we bound the one-step progress, where the
step size depends explicitly on the current gain Ks. Using the
update (11), the next-step gain matrix difference is

∆ = Ks+1 −Ks = −η∇C(Ks)Σ
−1
Ks

= −2ηEKs .

Using Lemma 3.5 and substituting we obtain

C(Ks+1)− C(Ks)

= 2 Tr
[
ΣKs+1

∆ᵀEKs

]
+ Tr

[
ΣKs+1

∆ᵀRKs
∆
]

= 2 Tr
[
ΣKs+1(−2ηEKs)ᵀEKs

]
+ Tr

[
ΣKs+1

(−2ηEKs
)ᵀRKs

(−2ηEKs
)
]

= −4ηTr
[
ΣKs+1E

ᵀ
Ks
EKs

]
+ 4η2 Tr

[
ΣKs+1E

ᵀ
Ks
RKsEKs

]
≤ 4(−η + η2‖RKs

‖) Tr
[
ΣKs+1

Eᵀ
Ks
EKs

]
.

If we choose step size 0 < η ≤ 1
2‖RKs‖

, then

C(Ks+1)− C(Ks) ≤ −2ηTr
[
ΣKs+1E

ᵀ
Ks
EKs

]
≤ −2ησ(ΣKs+1

) Tr
[
Eᵀ
Ks
EKs

]
≤ −2ησ(Σ0) Tr

[
Eᵀ
Ks
EKs

]
.

Recalling and substituting (10) we obtain

C(Ks+1)− C(Ks)

≤ −2ησ(Σ0)
σ(R)

‖ΣK∗‖
(
C(Ks)− C(K∗)

)
.

Adding C(Ks)− C(K∗) to both sides and rearranging gives
the one step progress bound

C(Ks+1)− C(K∗)

C(Ks)− C(K∗)
≤ 1− 2η

σ(R)σ(Σ0)

‖ΣK∗‖
. (12)

Next, using the cost bound in Lemma 3.6, the triangle inequal-
ity, and submultiplicativity of spectral norm we have

1

‖RK‖
=

1

‖R+BᵀPKB +
∑q
j=1 βjB

ᵀ
j PKBj‖

≥ 1

‖R‖+ (‖B‖2 +
∑q
j=1 βj‖Bj‖2)‖PK‖

≥ 1

‖R‖+ (‖B‖2 +
∑q
j=1 βj‖Bj‖2) C(K)

σ(Σ0)

.

Accordingly, choosing the step size as 0 < η ≤ cnpg ensures
(12) holds at the first step. This ensures that C(K1) ≤ C(K0)
which in turn ensures

η ≤ 1

‖R‖+ (‖B‖2 +
∑q
j=1 βj‖Bj‖2)C(K0)

σ(Σ0)

≤ 1

‖R‖+ (‖B‖2 +
∑q
j=1 βj‖Bj‖2)C(K1)

σ(Σ0)

≤ 1

‖RK1‖

which allows (12) to be applied at the next step as well.
Proceeding inductively by applying (12) at each successive
step completes the proof.

C. Policy Gradient Descent

Theorem 4.3 (Policy gradient convergence): Using the pol-
icy gradient step

Ks+1 = Ks − η∇C(Ks)

with step size 0 < η ≤ cpg gives global convergence to the
optimal gain matrix K∗ at a linear rate described by

C(Ks+1)− C(K∗)

C(Ks)− C(K∗)
≤ 1− 2η

σ(R)σ(Σ0)
2

‖ΣK∗‖
where cpg is a polynomial in the problem data A, B, αi, βj ,
Ai, Bj , Q, R, Σ0, K0 given in the proof in Appendix A.

Proof: The proof is developed in Appendix A.
The proofs for these results explicitly incorporate the ef-

fects of the multiplicative noise terms δti and γtj in the
dynamics. For the policy gradient and natural policy gradient
algorithms, we show explicitly how the maximum allowable
step size depends on problem data and in particular on the
multiplicative noise terms. Compared to deterministic LQR,
the multiplicative noise terms decrease the allowable step
size and thereby decrease the convergence rate; specifically,
the state-multiplicative noise increases the initial cost C(K0)
and the norms of the covariance ΣK∗ and cost PK , and
the input-multiplicative noise also increases the denominator
term ‖B‖2 +

∑q
j=1 βj‖Bj‖2. This means that the algorithm

parameters for deterministic LQR in [5] may cause failure
to converge on problems with multiplicative noise. Moreover,
even the optimal policies for deterministic LQR may actually
destabilize systems in the presence of small amounts of
multiplicative noise uncertainty, indicating the possibility for
a catastrophic lack of robustness; observe the results of the
example in §VI-A. The results and proofs also differ from
that of [5] because the more complicated mean-square stability
must be accounted for, and because generalized Lyapunov
equations must be solved to compute the gradient steps, which
requires specialized solvers.
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V. GLOBAL CONVERGENCE OF POLICY GRADIENT IN
THE MODEL-FREE SETTING

The results in the previous section are model-based; the
policy gradient steps are computed exactly based on knowl-
edge of the model parameters. In the model-free setting, the
policy gradient is estimated to arbitrary accuracy from sample
trajectories with a sufficient number of sample trajectories
nsample of sufficiently long horizon length ` using gain matrices
randomly selected from a Frobenius-norm ball around the
current gain of sufficiently small exploration radius r. We
show for multiplicative noise LQR that with a finite number of
samples polynomial in the problem data, the model-free policy
gradient algorithm still converges to the globally optimal
policy, despite small perturbations on the gradient.

In the model-free setting, the policy gradient method pro-
ceeds as before except that at each iteration Algorithm 1 is
called to generate an estimate of the gradient via the zeroth-
order optimization procedure described by Fazel et al. [5].

Algorithm 1 Model-Free policy gradient estimation
Input: Gain matrix K, number of samples nsample, rollout

length `, exploration radius r
1: for i = 1, . . . , nsample do
2: Generate a sample gain matrix K̂i = K + Ui, where

Ui is drawn uniformly at random over matrices with
Frobenius norm r

3: Generate a sample initial state x(i)
0 ∼ P0

4: Simulate the closed-loop system for ` steps according
to the stochastic dynamics in (1) starting from x

(i)
0 with

u
(i)
t = K̂ix

(i)
t , yielding the state sequence {x(i)

t }t=`t=0

5: Collect the empirical finite-horizon cost estimate
Ĉi : =

∑`
t=0 x

(i)
t

ᵀ
(Q+ K̂ᵀ

i RK̂i)x
(i)
t

6: end for
Output: Gradient estimate ∇̂C(K) : = 1

nsample

∑nsample
i=1

mn
r2 ĈiUi

Theorem 5.1 (Model-free policy gradient convergence): Let
ε and µ be a given small tolerance and probability respectively
and N be the number of gradient descent steps taken. Suppose
that the distribution of the initial states is bounded such that
x0 ∼ P0 implies ‖xi0‖ ≤ L0 almost surely for any given
realization xi0 of x0. Suppose additionally that the distribution
of the multiplicative noises is bounded such that the following
inequality is satisfied almost surely for any given realized
sequence xit of xt with a positive scalar z ≥ 1:

`−1∑
t=0

(
xit

ᵀ
Qxit + uit

ᵀ
Ruit

)
≤ z E

δ,γ

[
`−1∑
t=0

(
xᵀtQxt + uᵀtRut

)]
under the closed-loop dynamics with any gain such that
C(K) ≤ 2C(K0). Suppose the step size η is chosen according
to the restriction in Theorem 4.3 and at every iteration the
gradient is estimated according to the finite-horizon procedure
in Algorithm 1 where the number of samples nsample, rollout
length `, and exploration radius r are chosen according to
the fixed polynomials of the problem data A, B, αi, βj , Ai,
Bj , Q, R, Σ0, K0, L0 and z which are all defined in the
proofs in Appendix B. Then, with high probability of at least

1−µ, performing gradient descent results in convergence to the
global optimum over all N steps: at each step, either progress
is made at the linear rate

C(Ks+1)− C(K∗)

C(Ks)− C (K∗)
≤ 1− ησ(R)σ(Σ0)2

‖ΣK∗‖
.

or convergence has been attained with C(Ks)− C(K∗) ≤ ε.
Proof: The proof is developed in Appendix B.

From a sample complexity standpoint, it is notable that the
number of samples nsample, rollout length `, and exploration
radius r in Theorem 5.1 are polynomial in the problem data
A, B, αi, βj , Ai, Bj , Q, R, Σ0, C(K0). The constant z
imposes a bound on the multiplicative noise, which is naturally
absent in [5]. Note that z ≥ 1 since any upper bound of
a scalar distribution with finite support must be equal to or
greater than the mean. In general, this implicitly requires
the noises to have bounded support. Such an assumption is
qualitatively the same as the condition imposed on the initial
states. These assumptions are reasonable; in a practical setting
with a physical system the initial state and noise distributions
will have finite support. There is no restriction on how large
the support is, only that it not be unbounded. Also note that the
rate is halved compared with the model-based case of Theorem
4.3; this is because the “other half” is consumed by the error
between the estimated and true gradient.

VI. NUMERICAL EXPERIMENTS

In this section we present results for three systems:

A. Shows that “optimal” control that ignores actual multi-
plicative noise can lead to loss of mean-square stability,

B. Shows the efficacy of the policy gradient algorithms on
a networked system,

C. Shows the increased difficulty of estimating the gradient
from sample data in the presence of multiplicative noise.

All systems we consider permit a solution to the GARE (2).
The bounds on the step size, number of rollouts, and rollout
length given by the theoretical analysis can be rather conserva-
tive. For practicality, we selected the constant step size, num-
ber of rollouts, rollout length, and exploration radius according
to a grid search over reasonable values. Additionally, we
investigated the use of backtracking line search to adaptively
select the step size; see e.g. [53]. Throughout the simulations,
we computed the baseline optimal cost C(K∗) by solving the
GARE (2) to high precision via value iteration. Python code
which implements the algorithms and generates the figures
reported in this work can be found in the GitHub repository
at https://github.com/TSummersLab/polgrad-multinoise/. The
code was run on a desktop PC with a quad-core Intel i7 6700K
4.0GHz CPU, 16GB RAM; no GPU computing was utilized.

A. Importance of Accounting for Multiplicative Noise

We first considered an open-loop mean-square unstable
system with four states and one input representing an active

https://github.com/TSummersLab/polgrad-multinoise/
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two-mass suspension converted from continuous to discrete
time using a standard bilinear transformation, with parameters:

A =


+0.261 +0.315 +0.093 −0.008
−2.955 +0.261 +0.373 −0.033
+1.019 +0.255 −0.853 +0.011
−3.170 −0.793 −4.902 −0.146

, B =


0.133
0.532
0.161
2.165

,
Q = I4, R = I1, [Ai]y,z =

{
1 if z = i,

0 otherwise,
B1 = 14×1,

{αi} = {0.017, 0.017, 0.017, 0.017}, β1 = 0.035.

We performed model-based policy gradient descent; at each
iteration gradients were calculated by solving generalized
Lyapunov equations (3) and (4) using the problem data. The
gains Km and K` represent iterates during optimization of
(“training” on) the LQRm and LQR cost (with the multiplica-
tive noise variances set to zero), respectively. We performed
the optimization starting from the same feasible initial gain,
which was generated by perturbing the exact solution of the
generalized algebraic Riccati equation such that the LQRm
cost under the initial control was approximately 10 times
that of the optimal control. The step size was chosen via
backtracking line search. The optimization stopped once the
Frobenius norm of the gradient fell below a small threshold.
The plot in Fig. 1 shows the “testing” cost of the gains at
each iteration evaluated on the LQRm cost (with multiplicative
noise). From this figure, it is clear that Km minimized the
LQRm as desired. When there was high multiplicative noise,
the noise-ignorant controller K` actually destabilized the sys-
tem in the mean-square sense; this can be seen as the LQRm
cost exploded upwards to infinity after iteration 10. In this
sense, the multiplicative noise-aware optimization is generally
safer and more robust than noise-ignorant optimization, and
in examples like this is actually necessary for mean-square
stabilization.

Fig. 1. Relative LQRm cost error C(K)−C(K∗)
C(K∗) vs. iteration during policy

gradient descent on the 4-state, 1-input suspension example system.

B. Policy Gradient Methods Applied to a Network

Many practical networked systems can be approximated
by diffusion dynamics with losses and stochastic diffusion
constants (edge weights) between nodes; examples include
heat flow through uninsulated pipes, hydraulic flow through
leaky pipes, information flow between processors with packet
loss, electrical power flow between generators with resistant
electrical power lines, etc. A derivation of the discrete-time

dynamics of this system is given in [43]. We considered a
particular 4-state, 4-input system and open-loop mean-square
stable with the following parameters:

A =


0.795 0.050 0.100 0.050
0.050 0.845 0.050 0.050
0.100 0.050 0.695 0.150
0.050 0.050 0.150 0.745

 ,
B = Q = R = Σ0 = I4,

{αi} = {0.005, 0.015, 0.010, 0.015, 0.005, 0.020},
{βj} = {0.050, 0.150, 0.050, 0.100},

[Ai]y,z =


+1 if {ci=y & di=y} or {ci=z & di=z},
−1 if {ci=z & di=y} or {ci=y & di=z},
0 otherwise.

[Bj ]y,z =

{
+1 if j = y = z,

0 otherwise.

{(ci, di)} = {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)}.

This system is open-loop mean-square stable, so we initialized
the gains to all zeros for each trial. We performed policy
optimization using the model-free gradient, and the model-
based gradient, model-based natural gradient, and model-based
Gauss-Newton step directions on 20 unique problem instances
using two step size schemes:
Backtracking line search: Step sizes η were chosen adap-
tively at each iteration by backtracking line search with pa-
rameters α = 0.01, β = 0.5 (see [53] for a description), except
for Gauss-Newton which used the optimal constant step-size
of 1/2. Model-free gradients and costs were estimated with
100,000 rollouts per iteration. We ran a fixed number, 20,
of iterations chosen such that the final cost using model-free
gradient descent was no more than 5% worse than optimal.
Constant step size: Step sizes were set to constants chosen as
large as possible without observing infeasibility or divergence,
which on this problem instance was η = 5 × 10−5 for
gradient, η = 2 × 10−4 for natural gradient, and η = 1/2
for Gauss-Newton step directions. Model-free gradients were
estimated with 1,000 rollouts per iteration. We ran a fixed
number, 20,000, of iterations chosen such that convergence
was achieved with all step directions.

In both cases sample gains were chosen for model-free
gradient estimation with exploration radius r = 0.1 and the
rollout length was set to `=20. The plots in Fig. 2 show the
relative cost over the iterations; for the model-free gradient
descent, the bold centerline is the mean of all trials and the
shaded region is between the 10th and 90th percentile of all
trials. Using backtracking line search, it is evident that in
terms of convergence the Gauss-Newton step was extremely
fast, and both the natural gradient and model-based gradient
were slightly slower, but still quite fast. The model-free policy
gradient converged to a reasonable neighborhood of the min-
imum cost quickly, but stagnated with further iterations; this
is a consequence of the inherent gradient and cost estimation
errors that arise due to random sampling and the multiplicative
noise. Using constant stepsizes, we were forced to take small
steps due to the steepness of the cost function near the
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initial gains, slowing overall convergence using the gradient
and natural gradient methods. Here we observed that Gauss-
Newton again converged most quickly, followed by natural
gradient and lastly the gradient methods. The smaller step
size also allowed us to use far fewer samples in the model-
free setting, where we observed somewhat faster initial cost
decrease with eventual stagnation around 10−2, or 1%, relative
error, which represents excellent control performance. All
algorithms exhibited convergence to the optimum, confirming
the asserted theoretical claims.

(a) Backtracking line search (except Gauss-Newton, which uses a con-
stant optimal step-size of 1/2).

(b) Constant step sizes.

Fig. 2. Relative cost error C(K)−C(K∗)
C(K∗) vs. iteration during policy gradient

methods on a 4-state, 4-input lossy diffusion network with multiplicative noise
using a) backtracking line search and b) constant step sizes.

C. Gradient Estimation

Multiplicative noise can significantly increase the variance
and sample complexity of cost gradient estimates relative to
the noiseless case, which is novelly reflected in the theoretical
analysis for the number of rollouts and rollout length. To
demonstrate this empirically, we evaluated the relative gradient
estimation error vs. number of rollouts for the system

xt+1 =

([
0.8 0.1
0.1 0.8

]
+ δt

[
0 1
1 0

]
+

[
1
0

]
K

)
xt (13)

with K = 0, Q = Σ0 = I2, R = 1, δt ∼ N (0, 0.1), rollout
length l = 40, exploration radius r = 0.2, averaged over
10 gradient estimates. The results are plotted in Figure 3. To
achieve the same gradient estimate error of 10%, the system
with multiplicative noise required 200× the number of rollout
samples (108) as when there was no noise (5× 105).

Fig. 3. Relative gradient estimation error vs. number of rollouts for (13).

VII. CONCLUSIONS

We have shown that policy gradient methods in both model-
based and model-free settings give global convergence to the
globally optimal policy for LQR systems with multiplicative
noise. These techniques are directly applicable for the design
of robust controllers of uncertain systems and serve as a bench-
mark for data-driven control design. Our ongoing work is
exploring ways of mitigating the relative sample inefficiency of
model-free policy gradient methods by leveraging the special
structure of LQR models and Nesterov-type acceleration, and
exploring alternative system identification and adaptive control
approaches. We are also investigating other methods of build-
ing robustness through H∞ and dynamic game approaches.
Another extension relevant to networked control systems is
enforcing sparse structure constraints on the gain matrix via
projected policy gradient as suggested in [54].

APPENDIX A
MODEL-BASED POLICY GRADIENT DESCENT

Throughout the proofs, please see the supplemental doc-
ument [49] for additional details. The proof of convergence
using gradient descent proceeds by establishing several techni-
cal lemmas, bounding the infinite-horizon covariance ΣK , then
using that bound to limit the step size, and finally obtaining a
one-step bound on gradient descent progress and applying it
inductively at each successive step.

We begin with a bound on the induced operator norm of
TK :

Lemma A.1: (TK norm bound) The following bound holds
for any mean-square stabilizing K:

‖TK‖ : = sup
X

‖TK(X)‖
‖X‖

≤ C(K)

σ(Σ0)σ(Q)
.

Proof: The proof follows that given in [5] using our
definition of TK .

Lemma A.2: (FK perturbation) Consider a pair of mean-
square stabilizing gain matrices K and K ′. The following FK
perturbation bound holds:

‖FK′ −FK‖ ≤ 2‖A+BK‖‖B‖‖∆‖+ hB‖B‖‖∆‖2

where hB : = ‖B‖−1(‖B‖2 +

q∑
j=1

βj‖Bj‖2
)
.
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Proof: Let ∆′ = −∆. For any matrix X we have

(FK −FK′)(X) = E
δ,γ

[
ÃKXÃ

ᵀ
K − ÃK′XÃ

ᵀ
K′

]
= E
δ,γ

[
ÃKX(B̃∆′)ᵀ + (B̃∆′)XÃᵀ

K − (B̃∆′)X(B̃∆′)ᵀ
]

= AKX(B∆′)ᵀ + (B∆′)XAᵀ
K − E

γtj

[
(B̃∆′)X(B̃∆′)ᵀ

]
= AKX(B∆′)ᵀ + (B∆′)XAᵀ

K

− (B∆′)X(B∆′)ᵀ −
q∑
j=1

βj(Bj∆
′)X(Bj∆

′)ᵀ. (14)

The operator norm ‖FK′ −FK‖ is

‖FK′ −FK‖ = ‖FK −FK′‖ = sup
X

‖(FK −FK′)(X)‖
‖X‖

Applying submultiplicativity of spectral norm to (14) and
noting that ‖∆′‖ = ‖∆‖ completes the proof.

Lemma A.3 (TK perturbation): If K and K ′ are mean-
square stabilizing and ‖TK‖‖FK′ −FK‖ ≤ 1

2 then

‖(TK′ − TK)(Σ)‖ ≤ 2‖TK‖‖FK′ −FK‖‖TK(Σ)‖
≤ 2‖TK‖2‖FK′ −FK‖‖Σ‖.

Proof: The proof follows [5] using our modified defini-
tions of TK and FK .

Lemma A.4 (ΣK trace bound): If ρ(FK) < 1 then

Tr (ΣK) ≥ σ(Σ0)

1− ρ(FK)
.

Proof: We have by (5) that

Tr(ΣK) = Tr(TK(Σ0)) =

∞∑
t=0

Tr(F tK(Σ0)).

Since Σ0 � σ(Σ0)I we know the tth term satisfies the
inequality F tK(Σ0) ≥ σ(Σ0)F tK(I), so we have

Tr(ΣK) ≥ σ(Σ0)

∞∑
t=0

Tr(F tK(I)). (15)

We have a generic inequality for a sum of n matrices Mi:

Tr

[
n∑
i

MiM
ᵀ
i

]
=

n∑
i

Tr [MiM
ᵀ
i ] =

n∑
i

‖Mi‖2F (16)

=

n∑
i

‖Mi ⊗Mi‖F ≥

∥∥∥∥∥
n∑
i

Mi ⊗Mi

∥∥∥∥∥
F

where the last step is due to the triangle inequality. Recalling
the definitions of F tK(I) and F tK we see they are of the form
of the LHS and RHS in (16) with all terms matched between
F tK(I) and F tK so that the inequality in (16) holds; this can be
seen by starting with t = 1 and incrementing t up by 1 which
will give (1 + p+ q)t terms which are all matched. Thus,

Tr[F tK(I)] ≥ ‖F tK‖F ≥ ρ(FK)t.

Continuing from (15) we have

Tr(ΣK) ≥ σ(Σ0)

∞∑
t=0

ρ(FK)t.

By hypothesis ρ(FK) < 1, and taking the sum of the
geometric series completes the proof.

Lemma A.5 (ΣK perturbation): If K is mean-square stabi-
lizing and ‖∆‖ ≤ h∆(K) where h∆(K) is the polynomial

h∆(K) : =
σ(Q)σ(Σ0)

4hBC(K) (‖AK‖+ 1)
,

then the associated state covariance matrices satisfy

‖ΣK′−ΣK‖ ≤ 4

(
C(K)

σ(Q)

)2 ‖B‖(‖AK‖+ 1)

σ(Σ0)
‖∆‖ ≤ C(K)

σ(Q)
.

Proof: First, since K is mean-square stabilizing and
‖∆‖ ≤ h∆(K) then K ′ is also mean-square stabilizing. This
follows from an analogous argument in [5] by characterizing
mean-square stability in terms of ρ(FK) rather than ρ(AK)
and using Lemma A.4. The rest of the proof follows [5] by
using the condition on ‖∆‖, ‖ΣK‖ ≥ σ(Σ0), and Lemmas 3.6,
A.1, and A.3. Details are available in [49].

Now we bound the one step progress of policy gradient
where we allow the step size to depend explicitly on the
current gain matrix iterate Ks.

Lemma A.6 (Gradient descent, one-step): Using the policy
gradient step update Ks+1 = Ks − η∇C(Ks) with step size

0 < η ≤ 1

16
min

{ (
σ(Q)σ(Σ0)
C(K)

)2

hB‖∇C(K)‖(‖AK‖+ 1)
,

σ(Q)

C(K)‖RK‖

}
gives the one step progress bound

C(Ks+1)− C(K∗)

C(Ks)− C(K∗)
≤ 1− 2η

σ(R)σ(Σ0)
2

‖ΣK∗‖
.

Proof: The gradient update yields ∆ = −2ηEKs
ΣKs

.
Putting this into Lemma 3.5 gives

C(Ks+1)− C(Ks)

= 2 Tr
[
ΣKs+1

∆ᵀEKs

]
+ Tr

[
ΣKs+1

∆ᵀRKs
∆
]

≤ −4ηTr
[
ΣKs

ΣKs
Eᵀ
Ks
EKs

]
+ 4η

‖ΣKs+1
− ΣKs

‖
σ(ΣKs

)
Tr
[
Σᵀ
Ks
Eᵀ
Ks
EKs

ΣKs

]
+ 4η2‖ΣKs+1

‖‖RKs
‖Tr

[
ΣKs

ΣKs
Eᵀ
Ks
EKs

]
≤ −η

(
1−
‖ΣKs+1

− ΣKs
‖

σ(Σ0)
− η‖ΣKs+1

‖‖RKs
‖
)

× 4
σ(R)σ(Σ0)

2

‖ΣK∗‖
(C(Ks)− C(K∗)).

where the last step is due to σ(Σ0) ≤ σ(ΣKs
) and Lemma

3.3. Note that the assumed condition on the step size ensures
the gain matrix difference satisfies the condition for Lemma
A.5 as follows:

‖∆‖ = η‖∇C(Ks)‖

≤ 1

16

(
σ(Q)σ(Σ0)

C(Ks)

)2 ‖∇C(Ks)‖
hB‖∇C(Ks)‖(‖AKs‖+ 1)

≤ 1

4

(
σ(Q)σ(Σ0)

C(Ks)

)2
1

hB(‖AKs
‖+ 1)

≤ h∆(K)



12

where the last inequality is due to Lemma 3.6. Thus we can
indeed apply Lemma A.5, by which we have

‖ΣKs+1 − ΣKs‖
σ(Σ0)

≤ 4C(Ks)
2

σ(Q)2σ(Σ0)2
‖B‖(‖AKs

‖+ 1)‖∆‖ ≤ 1

4

where the last inequality is due to using the substitution
‖∆‖ = η‖∇C(Ks)‖ and the hypothesized condition on η.
Using this and Lemma 3.6 we have

‖ΣKs+1‖ ≤ ‖ΣKs+1 − ΣKs‖+ ‖ΣKs‖

≤ σ(Σ0)

4
+
C(Ks)

σ(Q)
≤
‖ΣKs+1

‖
4

+
C(Ks)

σ(Q)
.

Solving for ‖ΣKs+1
‖ gives ‖ΣKs+1

‖ ≤ 4
3
C(Ks)
σ(Q) , so

1−
‖ΣKs+1

− ΣKs
‖

σ(Σ0)
− η‖ΣKs+1‖‖RKs‖

≥ 1− 1

4
− η 4

3

C(Ks)

σ(Q)
‖RKs‖ ≥ 1− 1

4
− 4

3
· 1

16
=

2

3
≥ 1

2

where the second-to-last inequality used the hypothesized
condition on η. Therefore

C(Ks+1)− C(Ks)

C(Ks)− C(K∗)
≤ −2η

σ(R)σ(Σ0)
2

‖ΣK∗‖
.

Adding 1 to both sides completes the proof.
Lemma A.7 (Cost difference lower bound): The following

cost difference inequality holds:

C(K)− C(K∗) ≥ σ(Σ0)

‖RK‖
Tr(Eᵀ

KEK).

Proof: The proof follows that for an analogous condition
located in the gradient domination lemma in [5].

Lemma A.8: The following inequalities hold:

‖∇C(K)‖ ≤ ‖∇C(K)‖F ≤ h1(K) and ‖K‖ ≤ h2(K).

where h0(K), h1(K), h2(K) are the polynomials

h0(K) : =

√
‖RK‖(C(K)− C(K∗))

σ(Σ0)
,

h1(K) : = 2
C(K)h0(K)

σ(Q)
, h2(K) : =

h0(K) + ‖BᵀPKA‖
σ(R)

.

Proof: The proof follows [5] with RK defined here.
We now give the parameter and proof of global convergence

of policy gradient descent in Theorem 4.3.
Theorem A.9 (Policy gradient convergence): Consider the

assumptions and notations of Theorem 4.3 and define

cpg : =
1

16
min

{ (
σ(Q)σ(Σ0)
C(K0)

)2

hBh1(‖A‖+h2‖B‖+1)
,

σ(Q)

C(K0)‖RK‖

}
h1 : = maxK h1(K) subject to C(K) ≤ C(K0),

h2 : = maxK h2(K) subject to C(K) ≤ C(K0),

‖RK‖ : = maxK ‖RK‖ subject to C(K) ≤ C(K0).

Then the claim of Theorem 4.3 holds.

Proof: We have by Weyl’s inequality for singular values
[49], submultiplicativity of spectral norm, and Lemma A.8 that

‖B‖‖∇C(K)‖(‖A+BK‖+ 1)

≤ ‖B‖‖∇C(K)‖(‖A‖+ ‖B‖‖K‖+ 1)

≤ ‖B‖h1(K)(‖A‖+ ‖B‖h2(K) + 1)

Thus by choosing 0 < η ≤ cpg we satisfy the requirements
for Lemma A.6 at s = 1, which implies that progress is made
at s = 1, i.e., that C(K1) ≤ C(K0) according to the rate in
Lemma A.6. Proceeding inductively and applying Lemma A.6
at each step completes the proof.

Remark A.10: The quantities h1, h2, and ‖RK‖ may be
upper bounded by quantities that depend only on problem data
and C(K0) e.g. using the cost bounds in Lemma 3.6, which
we omit for brevity, so a conservative minimum step size η
may be computed exactly.

APPENDIX B
MODEL-FREE POLICY GRADIENT DESCENT

This lemma shows that C(K) and ΣK can be estimated with
arbitrarily high accuracy as the rollout length ` increases.

Lemma B.1 (Approximating C(K) and ΣK with infinitely
many finite horizon rollouts): Suppose K gives finite C(K).
Define the finite-horizon estimates

Σ
(`)
K : =E

[
`−1∑
i=0

xix
ᵀ
i

]
, C(`)(K) : =E

[
`−1∑
i=0

xᵀiQxi + uᵀiRui

]
where expectation is with respect to x0, {δti}, {γtj}. Let ε be
an arbitrary small constant. Then the following hold:

` ≥ h`(ε) : =
n · C2(K)

εσ(Σ0)σ2(Q)
⇒ ‖Σ(`)

K − ΣK‖ ≤ ε

` ≥ h`(ε) : =h`(ε)‖QK‖ ⇒ |C(`)(K)− C(K)| ≤ ε.

Proof: The proof follows [5] exactly using suitably mod-
ified definitions of C(K), TK , FK .

Next we bound cost and gradient perturbations in terms of
gain matrix perturbations and problem data. Using the same
restriction as in Lemma A.5 we have Lemmas B.2 and B.3.

Lemma B.2 (C(K) perturbation): If ‖∆‖ ≤ h∆(K), then
the cost difference is bounded as

|C(K ′)− C(K)| ≤ hcost(K)C(K)‖∆‖

where hcost(K) is the polynomial

hcost(K) : =
4 Tr(Σ0)‖R‖
σ(Σ0)σ(Q)

(
‖K‖+

h∆(K)

2
+ ‖B‖‖K‖2

× (‖AK‖+ 1)
C(K)

σ(Σ0)σ(Q)

)
Proof: The proof follows [5] using suitably modified

definitions of C(K), TK , FK , however compared with [5] we
terminate the proof bound earlier so as to avoid a degenerate
bound in the case of K = 0, and we also correct typographical
errors. Note that ‖∆‖ has a more restrictive upper bound due
to the multiplicative noise.
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Lemma B.3 (∇C(K) perturbation): If ‖∆‖ ≤ h∆(K), then
the policy gradient difference is bounded as

‖∇C(K ′)−∇C(K)‖ ≤ hgrad(K)‖∆‖,
and ‖∇C(K ′)−∇C(K)‖F ≤ hgrad(K)‖∆‖F ,
where hgrad(K) : =

4

(
C(K)

σ(Q)

)[
‖R‖+ ‖B‖ (‖A‖+ hB(‖K‖+ h∆(K)))

×
(
hcost(K)C(K)

Tr(Σ0)

)
+ hB‖B‖

(
C(K)

σ(Σ0)

)]
+ 8

(
C(K)

σ(Q)

)2(‖B‖(‖AK‖+ 1)

σ(Σ0)

)
h0(K).

Proof: The proof generally follows [5] using Lemmas
A.5, B.2, and A.7 with RK and EK modified appropriately,
with details available in [49].

As in [5], in the model-free setting we apply Frobenius-
norm ball smoothing to the cost. Let Sr be the uniform
distribution over all matrices with Frobenius norm r (the
boundary of the ball), and Br be the uniform distribution over
all matrices with Frobenius norm at most r (the entire ball).
The smoothed cost is

Cr(K) = EU∼Br [C(K + U)]

where U is a random matrix with the same dimensions as K
and Frobenius norm r. The following lemma shows that the
gradient of the smoothed function can be estimated just with
an oracle of the function value.

Lemma B.4 (Zeroth-order gradient estimation): The gradient
of the smoothed cost is related to the unsmoothed cost by

∇Cr(K) =
mn

r2
EU∼Sr [C(K + U)U ].

Proof: The result is proved in Lemma 2.1 in [55].
Lemma B.4 shows that the gradient of the smoothed cost
can be found exactly with infinitely many infinite-horizon
rollouts. Much of the remaining proofs goes towards showing
that the error between the gradient of the smoothed cost and
the unsmoothed cost, the error due to using finite-horizon
rollouts, and the error due to using finitely many rollouts can
all be bounded by polynomials of the problem data. As noted
by [5] the reason for smoothing in a Frobenius norm ball
rather than over a Gaussian distribution is to ensure stability
and finiteness of the cost of every gain within the smoothing
domain, although now in the multiplicative noise case we must
be even more restrictive about our choice of perturbation on
K because we require not only mean stability, but also mean-
square stability.

We now give a Bernstein inequality for random matrices;
this allows us to bound the difference between the sample
average of a random matrix and its expectation.

Lemma B.5 (Matrix Bernstein inequality):
Let {Zi}Ni=1 be a set of N independent random
matrices of dimension d1 × d2 with E[Zi] = Z,
‖Zi − Z‖ ≤ RZ almost surely, and maximum variance
max (‖E(ZiZ

ᵀ
i )− ZZᵀ‖ , ‖E(Zᵀ

i Zi)− ZᵀZ‖) ≤ σ2
Z , and

sample average Ẑ := 1
N

∑N
i=1 Zi. Let a small tolerance ε ≥ 0

and small probability 0 ≤ µ ≤ 1 be given. If

N ≥ 2 min(d1, d2)

ε2

(
σ2
Z +

RZε

3
√

min(d1, d2)

)
log

[
d1 + d2

µ

]

then P
[∥∥∥Ẑ − Z∥∥∥

F
≤ ε
]
≥ 1− µ.

Proof: The lemma follows readily from the matrix Bern-
stein inequality in [56] by simple variable substitutions, rear-
rangement, and the bound ‖M‖F ≤

√
min(d1, d2)‖M‖.

Lemma B.6 (Estimating ∇C(K) with finitely many infinite-
horizon rollouts): Given an arbitrary tolerance ε and probabil-
ity µ suppose the exploration radius r is chosen as

r ≤ hr
( ε

2

)
: = min

{
h∆(K),

1

hcost(K)
,

ε

2hgrad(K)

}
and the number of samples nsample of Ui ∼ Sr is chosen as

nsample ≥ hsample

( ε
2
, µ
)

: =
8 min(m,n)

ε2

(
σ2
∇̂ +

R∇̂ε

6
√

min(m,n)

)
log

[
m+ n

µ

]
,

R∇̂ :=
2mnC(K)

r
+
ε

2
+ h1(K),

σ2
∇̂ :=

(
2mnC(K)

r

)2

+
( ε

2
+ h1(K)

)2

.

Then, with high probability of at least 1− µ the estimate

∇̂C(K) =
1

nsample

nsample∑
i=1

mn

r2
C (K + Ui)Ui

satisfies the error bound ‖∇̂C(K)−∇C(K)‖F ≤ ε.
Proof: First note that ‖K ′−K‖F = ‖∆‖F = ‖U‖F = r.

We break the difference between estimated and true gradient
∇̂C(K)−∇C(K) into two terms as(

∇Cr(K)−∇C(K)
)

+
(
∇̂C(K)−∇Cr(K)

)
. (17)

Since r ≤ h∆(K) we see that Lemmas B.2 and B.3 hold. By
enforcing the bound r ≤ 1

hcost(K) , by Lemma B.2 and noting
that ‖∆‖ ≤ ‖∆‖F we have

|C(K+U)− C(K)| ≤ C(K)→ C(K+U) ≤ 2C(K). (18)

This ensures stability of the system under the perturbed gains
so that C(K+U) is well-defined. For the first term ∇Cr(K)−
∇C(K), by enforcing r ≤ ε

2hgrad(K) , by Lemma B.3 we have

‖∇C(K + U)−∇C(K)‖F ≤
ε

2
.

Since ∇Cr(K) is the expectation of ∇C(K + U), by the
triangle inequality we have

‖∇Cr(K)−∇C(K)‖F ≤
ε

2
. (19)

For the second term ∇̂C(K) − ∇Cr(K), we work towards
using the matrix Bernstein inequality and adopt the notation
of the associated lemma. First note that by Lemma B.4 we
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have Z := ∇Cr(K) = E[∇̂C(K)]. Each individual sample
Zi :=

(
mn
r2

)
C(K + Ui)Ui has the bounded Frobenius norm

‖Zi‖F =
∥∥∥(mn

r2

)
C(K + Ui)Ui

∥∥∥
F

=
mnC(K + Ui)‖Ui‖F

r2

=
mnC(K + Ui)r

r2
=
mnC(K + Ui)

r
≤ 2mnC(K)

r
.

Next, from (19) and Lemma A.8 we have

‖Z‖F = ‖∇Cr(K)‖F ≤
ε

2
+ ‖∇C(K)‖F ≤

ε

2
+ h1(K)

so by the triangle inequality each sample difference has the
bounded Frobenius norm

‖Zi − Z‖F ≤ ‖Zi‖F + ‖Z‖F ≤
2mnC(K)

r
+
ε

2
+ h1(K).

Using (18) and ‖Ui‖F ≤ r, the variance of the differences is
likewise bounded as

‖E(ZiZ
ᵀ
i )− ZZᵀ‖ ≤ ‖E(ZiZ

ᵀ
i )‖F + ‖ZZᵀ‖F

≤ max
Zi

(‖Zi‖F )
2

+ ‖Z‖2F

≤
(

2mnC(K)

r

)2

+
( ε

2
+ h1(K)

)2

An identical argument holds for ‖E(Zᵀ
i Zi)− ZᵀZ‖ so the

assumed choice of σ2
∇̂

is valid. Thus, using the assumed
number of samples nsample ≥ hsample satisfies the condition of
the matrix Bernstein inequality, and thus with high probability
of at least 1− µ we have

‖∇̂C(K)− E[∇̂C(K)]‖F = ‖∇̂C(K)−∇Cr(K)‖F ≤
ε

2
.

Adding the bounds on the two terms in (17) and using the
triangle inequality completes the proof.

Lemma B.7 (Estimating ∇KC(K) with finitely many finite-
horizon rollouts): Given an arbitrary tolerance ε and probabil-
ity µ, suppose the exploration radius r is chosen as

r ≤ hr
( ε

4

)
= min

{
h∆(K),

1

hcost(K)
,

ε

4hgrad(K)

}
and the rollout length ` is chosen as

` ≥ h`
( rε

4mn

)
=

4mn2C2(K)
(
‖Q‖+ ‖R‖‖K‖2

)
rεσ(Σ0)σ2(Q)

.

Suppose that the distribution of the initial states is such that
x0 ∼ P0 implies ‖xi0‖ ≤ L0 almost surely for any given real-
ization xi0 of x0. Suppose additionally that the multiplicative
noises are distributed such that the following bound is satisfied
almost surely under the closed-loop dynamics with any gain
K + Ui where ‖Ui‖ ≤ r for any given realized sequence xit
of xt with a positive scalar z ≥ 1

`−1∑
t=0

(
xit

ᵀ
Qxit + uit

ᵀ
Ruit

)
≤ z E

δ,γ

[
`−1∑
t=0

(
xᵀtQxt + uᵀtRut

)]
.

Suppose the number nsample of Ui ∼ Sr is chosen as

nsample ≥ hsample,trunc

(
ε

4
, µ,

L2
0

σ(Σ0)
, z

)
: =

32 min(m,n)

ε2

(
σ2
∇ +

R∇̂ε

12
√

min(m,n)

)
log

[
m+ n

µ

]

where R∇̃ :=
2mnzL2

0C(K)

rσ(Σ0)
+
ε

2
+ h1(K)

σ2
∇̃ :=

(
2mnzL2

0C(K)

rσ(Σ0)

)2

+
( ε

2
+ h1(K)

)2

The finite-horizon estimate of the cost is defined as

Ĉ (K + Ui) : =

`−1∑
t=0

(
xit

ᵀ
Qxit + uit

ᵀ
Ruit

)
under the closed loop dynamics with gain K +Ui. Then with
high probability of at least 1− µ the estimated gradient

∇̃C(K) : =
1

nsample

nsample∑
i=1

mn

r2
Ĉ (K + Ui)Ui

satisfies the error bound ‖∇̃C(K)−∇C(K)‖F ≤ ε.
Proof: Similar to before, we break the difference between

estimated and true gradient into three terms as

∇̃C(K)−∇C(K) = (∇̃ − ∇′) + (∇′ − ∇̂) + (∇̂ − ∇)

where ∇′C(K) =
1

nsample

nsample∑
i=1

mn

r2
C(`) (K + Ui)Ui

and ∇̂C(K) is defined as in Lemma B.6. The third term is
handled by Lemma B.6. Notice that since ‖xi0‖ ≤ L0 we have
σ(Σ0) ≤ σ(Σ0) ≤ L2

0 so L2
0

σ(Σ0) ≥ 1. Similarly z ≥ 1, and thus

hsample,trunc

(
ε

4
, µ,

L2
0

σ(Σ0)
, z

)
≥ hsample

( ε
4
, µ
)
.

Therefore the choice of r and nsample satisfy the conditions of
Lemma B.6, so with high probability of at least 1− µ

‖∇̂C(K)−∇C(K)‖F ≤
ε

4
. (20)

For the second term, by using the choices ` ≥ h`
(
rε

4mn

)
and

C(K + Ui) ≤ 2C(K), Lemma B.1 holds and implies that∥∥∥C(`) (K + Ui)− C (K + Ui)
∥∥∥
F
≤ rε

4mn
.

By the triangle inequality, submultiplicativity, and ‖Ui‖F ≤ r∥∥∥∥∥ 1

nsample

nsample∑
i=1

mn

r2

[
C(`) (K + Ui)− C (K + Ui)

]
Ui

∥∥∥∥∥
F

= ‖∇′KC(K)− ∇̂C(K)‖F ≤
ε

4
. (21)

For the first term, ‖xi0‖ ≤ L0 implies L2
0

σ(Σ0)Σ0 � xi0x
i
0
ᵀ.

Applying this to the cost, summing over time and using the
assumed restriction on the multiplicative noise we have

2zL2
0C(K)

σ(Σ0)
≥ zL2

0

σ(Σ0)
C(K + Ui)

≥ z E
δ,γ

[ ∞∑
t=0

(
xit

ᵀ
Qxit + uit

ᵀ
Ruit

)]

≥
`−1∑
t=0

(
xit

ᵀ
Qxit + uit

ᵀ
Ruit

)
.
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Using this and an argument identical to Lemma B.6, each
sample Zi :=

(
mn
r2

)
Ĉ(K + Ui)Ui has bounded Frob. norm

‖Zi‖F =
∥∥∥(mn

r2

)
Ĉ(K + Ui)Ui

∥∥∥
F
≤ 2mnzL2

0C(K)

rσ(Σ0)
.

By (20) and (21) we have for Z := E[∇̃C(K)] = ∇′KC(K)

‖Z‖F = ‖∇′KC(K)‖F ≤
ε

4
+ ‖∇̂C(K)‖F

≤ ε

4
+
ε

4
+ ‖∇KC(K)‖F ≤

ε

2
+ h1(K)

Using arguments identical to Lemma B.6 we obtain the bounds
on the sample difference R∇̃ = ‖Zi − Z‖F and variance σ2

∇̃
given in the assumption. Thus the polynomial hsample,trunc is
large enough so the matrix Bernstein inequality implies

‖∇̃C(K)−∇′KC(K)‖F ≤
ε

4

with high probability 1 − µ. Adding the three terms together
and using the triangle inequality completes the proof.

We now give the parameters and proof of high-probability
global convergence in Theorem 5.1.

Theorem B.8 (Model-free policy gradient convergence):
Consider the assumptions and notations of Theorem 5.1 where
the number of samples nsample, rollout length `, and exploration
radius r are chosen according to the fixed quantities

r ≥ hr,GD : =hr

(
ε′

4

)
, ` ≥ h`,GD : =h`

(
rε′

4mn

)
,

nsample ≥ hsample,GD : =hsample,trunc

(
ε′

4
,
µ

N
,
L2

0

σ(Σ0)
, z

)

where ε′ : = min

{
σ(Σ0)2σ(R)

‖ΣK∗‖C(K0)hcost
· ε, h∆

η

}
,

hcost : = max
K

hcost(K) subject to C(K) ≤ 2C(K0)

h∆ : = min
K

h∆(K) subject to C(K) ≤ 2C(K0)

Then the claim of Theorem 5.1 holds.
Proof: The proof follows [5] using the polynomials

defined in our theorem. The last part of the proof is the
same as in Theorem 4.3. As noted by [5], the monotonic
decrease in the function value during gradient descent and
the choice of exploration radius r are sufficient to ensure that
all cost values encountered throughout the entire algorithm are
bounded by 2C(K0), ensuring that all polynomial quantities
used are bounded as well. We also require ε′ ≤ h∆

η in order
for ‖∆‖ = η‖∇̃C(K) −∇KC(K))‖ to satisfy the condition
of Lemma B.2, which was neglected by [5].

Remark B.9: As in Remark A.10, the quantities hcost and
h∆ may be upper (lower) bounded by quantities that depend
on problem data and C(K0), so a conservative minimum
exploration radius r, number of rollouts nsample, and rollout
length ` can be computed exactly in terms of problem data.
Looking back across the terms that feed into the step size,
number of rollouts, rollout length, and exploration radius,
we see C(K), ‖ΣK‖, ‖PK‖, and ‖B‖2 +

∑q
j=1 βj‖Bj‖2

are necessarily greater with state- and/or input-dependent
multiplicative noise, and thus the algorithmic parameters are
worsened by the noise.
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