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Abstract— Robust stability and stochastic stability have sep-
arately seen intense study in control theory since its inception.
In this work we establish relations between these properties
for discrete-time systems. Specifically, we examine a robustness
framework which models the inherent uncertainty and variation
in the system dynamics which arise in model-based learning
control methods such as adaptive control and reinforcement
learning. We provide results which guarantee mean-square
stability margins in terms of multiplicative noises which affect
the nominal dynamics, as well as connections to prior work
which together imply that robust stability and mean-square
stability are, in a certain sense, equivalent.

I. INTRODUCTION

The study of systems with multiplicative noise, also known
as systems with stochastic parameters, has a long history
in control theory [1], [2], [3]. In contrast with the well-
known additive noise setting, multiplicative noise captures
linear dependence of the noise on the state and control
input, which occurs intrinsically in diverse modern control
systems such as robotics [4], [5], networked systems with
noisy communication channels [6], modern power networks
with high penetration of intermittent renewables [7], turbulent
fluid flow [8], biological movement systems [9] and finance
[10]. For proper and safe operation of such systems, it is
critical to ensure certain types of stochastic stability which
ensure distributions of random states converge over time.
Furthermore, multiplicative noise models can be used as a
device for representing inherently stochastic uncertainty in
dynamic model parameters that are estimated from noisy
trajectory data. These models can then inform the design of
controllers that are robust to structured parametric uncertainty
[11], and they can complement alternative non-parametric
models of uncertainty traditionally used in H∞ control [12].

Although linear systems with multiplicative noise are
simple enough to admit closed-form expressions for stability
and optimal control via generalized Lyapunov and Riccati
equations, it may be convenient or advantageous in certain
contexts to certify or design controllers to achieve robust
stability under static perturbations of the system from the
nominal dynamics. Tools for design and certification of
robustly stable linear systems have been developed and
extensively tested, including H∞ control design, which treats
modeling error as a worst-case or adversarial disturbance
[13], [14], and robust optimization over parametric state-
space uncertainty sets using shared Lyapunov functions via
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convex semidefinite programming [15], [16], [17], low-order
control structures [18], and System Level Synthesis [19].

In this paper we consider a fundamental question:

What is a set of multiplicative noise distributions for which
a stochastic system can be guaranteed mean-square stable,
given knowledge only of the nominal system dynamics and

robust stability within bounded static perturbations?

To the best of our knowledge, this question has not been
examined explicitly heretofore in the literature. The answer to
this question, as developed within the present work, represents
results that are complementary and converse to our prior
companion work [20], which like [21] showed that robustness
could be achieved via stochastic stability in the discrete-time
setting, similar to [22], [5] for the continuous-time setting.

In this paper we make the following contributions:
1) We demonstrate that robust stability under paramet-

ric perturbations implies mean-square stability under
stochastic time-varying multiplicative noise (Theorem 1
and Corollary 4) with computationally tractable margins.

2) We show that Corollary 4 yields mean-square stability
margins whose maximum size increases monotonically
with the robust stability perturbations and collapse to
zero when the allowable perturbation approaches zero.

3) Taken together with the results in [20], we demonstrate
that mean-square stability and robust stability under
parametric perturbations are “equivalent” in the sense
that each implies the other with appropriate bounds on
variations of the system matrices (§IV).

We introduce preliminary concepts in §II, develop the main
result in §III, develop an equivalence relation in §IV, give a
numerical example in §V, and conclude in §VI.

II. NOTATION AND PRELIMINARIES

Rn×m Space of real-valued n×m matrices.
Sn Space of symmetric real-valued n×n matrices.
Sn
++ (Sn

+) Space of symmetric real-valued positive
(semi)definite n×n matrices.

ρ(M) Spectral radius (greatest magnitude of an
eigenvalue) of a square matrix M.

‖M‖ Spectral norm (greatest singular value) of a
matrix M.

M⊗N Kronecker product of matrices M and N.
vec(M) Vectorization of matrix M by stacking its

columns.
M � (�) 0 Matrix M is positive (semi)definite.
M � (�) N Matrix M succeeds matrix N in a positive

(semi)definite sense i.e. M−N � (�)0.
In Identity matrix of size n×n.



A. Generalized eigenvalues and semidefiniteness

Consider A ∈ Sn and B ∈ Sn
++. If λmax is the maximum

generalized eigenvalue which solves the generalized eigen-
value problem (GEVP) Av = λBv, then λmaxB � A. This is
a standard result which follows e.g. because the maximum
generalized eigenvalue can be expressed as the generalized
Rayleigh quotient [23], [24]

λmax = max
y 6=0∈Rn

yᵀAy
yᵀBy

≥ xᵀAx
xᵀBx

for any x 6= 0 ∈ Rn,

so

λmaxxᵀBx≥ xᵀAx for any x ∈ Rn,

which shows indeed λmaxB� A.

B. System concepts

We consider an autonomous discrete-time linear system or
linear difference inclusion of the form

xt+1 = Atxt (1)

where xt ∈ Rn is the state and At ∈Ωt ⊆ Rn×n is the system
matrix. The subset Ωt represents the possible At which may be
realized at time t. If Ωt =Ω is a constant singleton, i.e. At =A
for all t = 0,1, . . . , then the system is linear time-invariant
(LTI), and otherwise linear time-varying (LTV). If Ωt is a
(possibly time-varying) singleton, then At follows a prescribed
sequence of matrices and the system is deterministic, whereas
if Ωt is non-singleton and At are random matrices, then the
system is stochastic.

The initial state is assumed to be a random vector
distributed as x0∼X0. A deterministic initial state is a special
case where X0 is a degenerate distribution with all probability
density concentrated at a single point.

C. Stability concepts

The system (1) is (asymptotically) stable if all realized state
sequences {xt}∞

t=0 converge to zero as t→∞ regardless of the
realized initial state x0. It is almost-surely stable if {xt}∞

t=0
converges to zero as t→ ∞ almost surely. It is quadratically
stable if there exists a matrix P∈ Sn

++ such that the quadratic
Lyapunov function V (x)= xᵀPx decreases along any trajectory
of the system, i.e. for all t = 0,1, . . . and all At ∈Ωt

V (xt+1)−V (xt) = xᵀt+1Pxt+1− xᵀt Pxt

= xᵀt (A
ᵀ
t PAt −P)xt < 0,

equivalent to satisfaction of the Lyapunov inequality [16]

P� Aᵀ
t PAt for all At ∈Ωt .

Quadratic stability is sufficient for stability [16]. Quadratic
stability is closely related to the notions of the joint spectral
radius and simultaneous contractability of Ωt , whose study
has a long history in mathematics [25], [26], [27], [28] and
is important in the field of switched linear systems.

The system (1) is k-moment stable if the kth statistical
moment of the state converges to zero as t→∞ regardless of
the initial state distribution X0. The special case of interest
in this work is mean-square-stability (ms-stability) (k = 2)

so limt→∞E[xtx
ᵀ
t ] = 0. Ms-stability of (1) is sufficient for

both mean stability (k = 1) and almost-sure stability (since
there is no additive noise) [16]. A stochastic linear system
with a time-invariant distribution of system matrices that are
independent across time may be decomposed as

xt+1 =
(
A+∑

p
i=1 γt,i∆i

)
xt

where A = E[At ] and γt =
[
γt,1 · · · γt,p

]ᵀ is a random
vector independent across time with E[γt ] = 0 and E[γtγ

ᵀ
t ] =

diag(σ2
1 , · · · ,σ2

p), where σ2
i and ∆i are the p ≤ n nonzero

eigenvalues and eigenvectors of the covariance of At , respec-
tively. In this form, it is apparent that the γt,i∆i are state-
multiplicative noises, the scalars σi represent the noise levels,
and the pattern matrices ∆i represent the noise directions.
In this form, ms-stability is equivalent to the existence of
a matrix P ∈ Sn

++ that satisfies the generalized Lyapunov
inequality [16]

P� AᵀPA+∑
p
i=1 σ

2
i ∆

ᵀ
i P∆i (2)

If the system is LTI, then all the mentioned notions of stability
are equivalent, and further equivalent to ρ(A)< 1.

III. MEAN-SQUARE STABILITY VIA ROBUST STABILITY

We now give our most general result, which answers the
fundamental question posed in the introduction §I.

Theorem 1: Suppose the LTI system

xt+1 = (A+µi∆i)xt (3)

is stable for any static bounded perturbation µi such that
|µi| ≤ ηi for i = 1, . . . , p for some positive scalars ηi > 0.
Then there exist computable scalars βi ∈ (0,∞) such that the
stochastic system

xt+1 =
(
A+∑

p
i=1 γt,i∆i

)
xt (4)

is ms-stable for any distribution of the independent across time
random vector γt =

[
γt,1 · · · γt,p

]ᵀ that satisfies E[γt ] = 0
and E[γtγ

ᵀ
t ] = diag(σ2

1 , · · · ,σ2
p) where σi ≤ βi for i = 1, . . . , p.

Proof: Fix matrices Ri � 0 and Si � 0 for i = 1, . . . , p
and define the matrix-valued functions Mi(θi) and Ni(θi) that
solve the Lyapunov equations

Mi(θi) = Ri +(A+θi∆i)
ᵀMi(θi)(A+θi∆i), (5)

Ni(θi) = Si +(A−θi∆i)
ᵀNi(θi)(A−θi∆i), (6)

which are well-defined and positive definite for any |θi| ≤
ηi by the stability assumption on (3). Define the sum and
difference matrices

Pi(θi) :=
1
2
(Mi(θi)+Ni(θi)) , (7)

Di(θi) :=
1
2
(Mi(θi)−Ni(θi)) , (8)

Qi :=
1
2
(Ri +Si) , (9)

and the weighted average matrix P(θ) as

P(θ) :=
p

∑
i=1

w2
i Pi(θi) (10)



where θ = [θ1 · · · θp]
ᵀ. Let scalars φi ∈ (0,ηi], which are

collected in the vector φ =
[
φ1 · · · φp

]ᵀ, and ψi ∈ (0,∞)
satisfy, for i = 1, . . . , p,

Qi +φi
[
AᵀDi(φi)∆i +∆

ᵀ
i Di(φi)A

]
� 0, (11)

∆
ᵀ
i Pi(φi)∆i � ψ

2
i ∆

ᵀ
i P(φ)∆i. (12)

We first demonstrate that such scalars exist. Following
arguments similar to [29], by vectorization,

vec(Mi(θi))=[(A+θi∆i)
ᵀ⊗(A+θi∆i)

ᵀ]vec(Mi(θi))+vec(Ri)

vec(Ni(θi))=[(A−θi∆i)
ᵀ⊗(A−θi∆i)

ᵀ]vec(Ni(θi))+vec(Si).

The eigenvalues of

Gi(θi) := In⊗ In− (A+θi∆i)
ᵀ⊗ (A+θi∆i)

ᵀ,

Hi(θi) := In⊗ In− (A−θi∆i)
ᵀ⊗ (A−θi∆i)

ᵀ,

are, respectively,

{1−λi(A+θi∆i)λ j(A+θi∆i) : i, j = 1, . . . ,n},
{1−λi(A−θi∆i)λ j(A−θi∆i) : i, j = 1, . . . ,n},

and all have magnitude less than 1 by the stability assumption
on (3). Therefore Gi(θi) and Hi(θi) are invertible, so

vec(Mi(θi)) = Gi(θi)
−1 vec(Ri),

vec(Ni(θi)) = Hi(θi)
−1 vec(Si).

By Cramer’s rule, Mi(θi) and Ni(θi), as well as the sum
and difference matrices P(θ), Pi(θi), and Di(θi), are rational
functions of polynomials in θi and thus real analytic functions
of θ , and thus continuous in θ . If φi = 0 then (11) is satisfied
since Qi � 0 by construction. Likewise, if φi = 0 then (12)
is satisfied with ψ2

i = 1 since Pi(0) = P(0). Therefore, by
continuity of the singular values of the expressions of (11)
and (12) in φ , there exist some φi > 0 for i = 1, . . . , p for
which (11) and (12) hold.

Fix a set of p weights wi ∈ (0,1] such that ∑
p
i=1 w2

i = 1.
Now, by definition,

P(φ) = ∑
p
i=1 w2

i Pi(φi) = ∑
p
i=1 w2

i ·
1
2
[Mi(φi)+Ni(φi)]

= ∑
p
i=1 w2

i ·
1
2
[Ri +(A+φi∆i)

ᵀMi(φi)(A+φi∆i)

+Si +(A−φi∆i)
ᵀNi(φi)(A−φi∆i)]

= ∑
p
i=1 w2

i
[
Qi +AᵀPi(φi)A+φ

2
i ∆

ᵀ
i Pi(φi)∆i

+φi
(
AᵀDi(φi)∆i +∆

ᵀ
i Di(φi)A

)]
= AᵀP(φ)A+∑

p
i=1 w2

i
[
φ

2
i ∆

ᵀ
i Pi(φi)∆i +Qi

+φi
(
AᵀDi(φi)∆i +∆

ᵀ
i Di(φi)A

)]
� AᵀP(φ)A+∑

p
i=1 w2

i φ
2
i ∆

ᵀ
i Pi(φi)∆i (by (11))

� AᵀP(φ)A+∑
p
i=1 w2

i ψ
2
i φ

2
i ∆

ᵀ
i P(φ)∆i. (by (12))

Since P(φ) is the sum of positive definite matrices, P(φ)� 0,
and the claim follows with βi = wiψiφi by (2).

Regarding interpretation of the assumptions and claim of
Theorem 1, we have the following facts. The system matrix
A+µi∆i of system (3) is a member of a cross-shaped subset
of Rn×n defined by the directions ∆i and sized by the bounds

ηi. By contrast, the random system matrices of system (4)
are generally not restricted to any subset of Rn×n i.e. the
distribution of γt may have unbounded support and {∆i}p

i=1
may span all of Rn×n if p≥ n. It is permissible for the system
(3) to be time-varying and stochastic, as static perturbations
µi are simply a special case. The diagonal (auto)covariance
E[γtγ

ᵀ
t ] = diag(σ2

1 , · · · ,σ2
p) means that the γt,i are uncorrelated

across index i. If the system (3) cannot be certified as robustly
stable, i.e. ηi = 0 for some i= 1, . . . , p, then the assumption of
Theorem 1 fails and stochastic system (4) cannot be certified
as ms-stable.

Regarding selection of the scalar parameters, we have
the practical Algorithm 1. Note that, for sufficiently small
tolerance ε , the bisection in line 3 will terminate with φi > 0
after a finite number of computations due to the existence
of φi > 0 shown in the proof of Theorem 1. Likewise the
GEVP in line 9 is well-posed because Pi(φi)� 0. The GEVP
in line 9 ensures Pi(φi)� ψ2

i P(φ), which implies (12) holds
as required. We make no claim that this algorithm produces
the largest margins βi = wiψiφi, which would require a joint
search over ψ and φ which appear together in (12).

Algorithm 1 Margin computation for Theorem 1

Input: System matrix A, perturbation directions ∆i and
robustness bounds ηi for i = 1, . . . p, bisection tolerance
ε > 0, penalty skew scale ζ > 0.

1: for i = 1, . . . p do
2: Fix Ri = ζ In, Si = (1/ζ )In, Qi = (Ri +Si)/2.
3: Find φi > 0 that satisfies (11) via bisection [30] starting

from the interval [t−, t+] = [0,1] with tolerance ε:
4: while t+− t− > ε do
5: tm = (t++ t−)
6: if (11) holds with φi = tmηi then
7: t−← tm

8: else
9: t+← tm

10: Set φi = t−.
11: Compute matrix Pi(φi) from (7).
12: Compute matrix P(φ) from (10).
13: for i = 1, . . . p do
14: Solve the GEVP of P(φ)v= λPi(φi)v for the maximum

generalized eigenvalue λmax.
15: Set ψi = 1/

√
λmax.

16: Set wi = 1/
√

p.
Output: Scalars βi = wiψiφi for i = 1, . . . p.

There is flexibility in choosing the weights wi; they may be
chosen equally as wi = 1/

√
p, or may be assigned relatively

greater weight in directions ∆i for which ms-stability under
greater noise variance is desired. As a special case when
p = 1, the greatest possible weight is wi = 1, in which
case ms-stability in only a single direction ∆i is guaranteed.
Likewise, there is flexibility in choosing the penalty matrices
Ri and Si; optimizing with respect to these matrices leads to
semidefinite programs discussed later after Corollaries 3 and
4. In Algorithm 1 we set Ri and Si to scaled identity matrices



with a single tunable skew scale parameter ζ to investigate
the effect of differing Ri and Si in the numerical experiments.

We now give specializations of Theorem 1 which offer
practical utility and theoretical insight.

Corollary 2: Suppose the LTI system

xt+1 =
(
A+∑

p
i=1 µi∆i

)
xt (13)

is stable for any static bounded perturbations µi such that
|µi| ≤ ηi for i = 1, . . . , p. Then the claim of Theorem 1 holds.

Proof: The claim follows immediately from Theorem 1
since A+µ j∆ j = A+∑

p
i=1 µi∆i when µi = 0 for all i 6= j.

In Corollary 2, the system (13) is a polytopic linear
difference inclusion (PLDI) in the language of e.g. [16],
meaning that the system matrix A+∑

p
i=1 µi∆i is always a

member of a convex polytope. We assume the special form
of a symmetric box polytope for convenience when obtaining
the ms-stability result by means of Theorem 1.

Corollary 3: Consider the notation and assumption (3) of
Theorem 1. Suppose additionally that there exist matrices Ri
and Si such that the solutions of (5), (6), (7) are equal at ηi
for each index i = 1, . . . , p individually:

Mi(ηi) = Ni(ηi) = Pi(ηi).

Then the stochastic system (4) is ms-stable for any noise
levels σi ≤ βi with βi = wiψiηi for i = 1, . . . , p.

Proof: By assumption, from the definition (8) we have
Di(ηi) = 0 for i= 1, . . . , p so φi =ηi is valid in (11) as Qi� 0,
and the claim follows.

Corollary 4: Consider the notation and assumption (3) of
Corollary 3. Suppose additionally that there exist matrices
Ri and Si such that, such that the solutions of (5), (6), (7),
(10) are equal at ηi,η j for any pair of indices i, j = 1, . . . , p
simultaneously:

Mi(ηi) = Ni(ηi) = M j(η j) = N j(η j) = P(η). (14)

Then the stochastic system (4) is ms-stable for any noise
levels σi ≤ βi with βi = wiηi for i = 1, . . . , p.

Proof: By assumption, ψi = 1 suffices and makes (12)
hold with equality, and the claim follows.

The conditions of Corollaries 3 and 4 may be cast as
linear matrix inequality (LMI) constraints in a feasibility
semidefinite program (SDP). For example, the assumption of
Corollary 4 is equivalent to quadratic stability of (13), which
may be equivalently posed as the SDP

find P ∈ Sn
++ (15)

such that P�

(
A+

p

∑
i=1

siηi∆i

)ᵀ

P

(
A+

p

∑
i=1

siηi∆i

)
(16)

for i = 1, . . . , p, for any si ∈ {1,−1}. (17)

This is a standard method for certifying robust stability of
linear systems in a convex polytope of state-space matrices
[16]. If the SDP (16) solves successfully, then the ms-stability
claim of Corollary 4 follows immediately, and the matrix P
is called a shared quadratic Lyapunov matrix. Thus the SDP
(16) may be considered an alternative to Algorithm 1.

Corollary 5: Assume only that the the spectral norm robust
stability condition ∥∥A+∑

p
i=1 µi∆i

∥∥< 1

holds for any bounded perturbations µi such that |µi| ≤ ηi
for i = 1, . . . , p. Then the claim of Corollary 4 holds.

Proof: Fix a matrix P � 0 arbitrarily. Fix the sign
scalars si ∈ {1,−1} for i = 1, . . . , p arbitrarily, and define the
associated system matrix A′ := A+∑

p
i=1 siηi∆i. Then

P−A′ᵀPA′ � P−‖A′‖2P =
(
1−‖A′‖2)P� 0

where the final inequality follows by assumption. This shows
that P = P(η) satisfies the assumption (14) in Corollary 4,
and the claim follows.

IV. EQUIVALENCE OF MEAN-SQUARE AND ROBUST
STABILITY

We first state the following result for completeness, which
was proved in the authors’ prior work [20]:

Theorem 7 of [20] (paraphrase): Suppose

xt+1 =
(
A+∑

p
i=1 γt,i∆i

)
xt (18)

is ms-stable with E[γt ] = 0, E[γtγ
ᵀ
t ] = diag(σ2

1 , · · · ,σ2
p) where

σi > 0 for i = 1, . . . , p, and E[γtγ
ᵀ
τ ] = 0 for any t 6= τ . Then

there exist scalars ηi in the interval 0<ηi <
√

ζ 2
i +σ2

i −ζi≤
σi, where ζi are positive scalars, such that the LTI system

xt+1 =
(
A+∑

p
i=1 µiAi

)
xt (19)

is stable for any |µi| ≤ ηi by virtue of a shared quadratic
Lyapunov matrix.

With Corollary 4 of the present work and Theorem 7 of
[20] in hand, we have the following equivalence result.

Corollary 6: The following two statements are equivalent:
1) There exist scalars σi > 0 such that

xt+1 =
(
A+∑

p
i=1 γt,i∆i

)
xt

is ms-stable for any distribution of the independent across
time random vector γt =

[
γt,1 · · · γt,p

]ᵀ that satisfies
E[γt ] = 0 and E[γtγ

ᵀ
t ] = diag(σ2

1 , · · · ,σ2
p).

2) There exist scalars ηi > 0 such that

xt+1 =
(
A+∑

p
i=1 µiAi

)
xt

is stable for any |µi| ≤ ηi by virtue of a shared quadratic
Lyapunov matrix.

Moreover, the scalars σi > 0 and ηi > 0 may be computed
by solving semidefinite programs.

Proof: The claim follows immediately because
1) The assumptions of Corollary 4 of the present work and
the guarantee of Theorem 7 of [20] coincide.
2) The assumptions of Theorem 7 of [20] and the guarantee
of Corollary 4 of the present work coincide.

Corollary 6 shows that robust stability by virtue of a
shared quadratic Lyapunov matrix and ms-stability in the
same perturbation directions ∆i are “equivalent” in the precise
mathematical sense established here, analogous in spirit to the
“equivalence” of norms on finite-dimensional vector spaces.



However, in general some amount of the ms-stability and
robust stability margins captured by the scalars σi and ηi
respectively, are lost with each application of these results.
From Corollary 4 the σi are upper bounded by w2

i ηi ≤ ηi,
and likewise Theorem 7 of [20] the ηi are upper bounded
by
√

ζ 2
i +σ2

i − ζi ≤ σi. Although in certain special cases
the inequalities in the two bounds may hold with equality
e.g. the scalar case, a single uncertainty (p = 1), or special
alignments of A and ∆i, in general they are strict so that a
loss of margin occurs. Quantifying the general amount of
margin loss in a constructive mathematical way is difficult,
but becomes evident when computing the values required
to make each result hold for a particular problem instance.
Accordingly, care may be required in settings where these
results are applied multiple times or recursively.

Equivalence between stochastic stability and deterministic
stability was studied previously in the context of switched
linear systems with arbitrary switching signals by [28] where
it was found that, roughly speaking, k-moment stability
“converges” to deterministic stability for arbitrary switching
signals as k tends to infinity. Although related, this result
must be distinguished from Corollary 6 for two key reasons:
1) like all results based on joint spectral radius, [28] generally
requires boundedness of the switched system matrices, in con-
trast to the possibly unbounded support of the multiplicative
noise distributions considered in this paper, and 2) Corollary 6
involves only ms-stability, not the limit of k-moment stability
as k tends to infinity.

V. NUMERICAL EXAMPLE

In this section we demonstrate how this result may be
applied in a practical setting. Consider the system with
nominal system matrix

A =

[
0.976 0.097
−0.477 0.937

]
and perturbation directions

∆1 =

[
0 0
1 0

]
, ∆2 =

[
0 0
0 1

]
,

which arises as a discrete-time model of a non-inverted
rigid pendulum with uncertain restoring constant and friction
constant. The perturbation bounds

η
max
1 = 0.3924, η

max
2 = 0.0400,

can be verified as valid to ensure stability of (3). Choosing
w2

1 = w2
2 = 0.5, we use Algorithm 1 and SDP (16) to compute

ms-stability margins according to Theorem 1 and Corollary 4.
We examine the relationship between the assumed robust
stability margins ηi and the ms-stability margins βi by
scaling the robust stability margins as ηi = aηmax

i for various
a ∈ (0,1]; each setting of a may be considered a new
problem instance. We also vary the skew scale parameter ζ

in Algorithm 1 to observe its effect. The results are plotted in
Figure 1. Since the assumption of Corollary 4 is stronger than
that of Theorem 1, the SDP (16) may be infeasible; in such
events we omit the data point from the plot, explaining why

the SDP path terminates much earlier than those of Algorithm
1. Theorem 1 claims that the system (4) is ms-stable for
σi ≤ βi, which is confirmed by checking the generalized
Lyapunov inequality (2) with the matrix P and noise levels
βi found by each method.

Several interesting phenomena can be observed. First, it
is clear that indeed useful nonzero ms-stability margins βi
are obtained, and are of the same order of magnitude as
(but lesser than) ηi. For example, for a = 1.0, ζ = 1 we
have η1 = 0.3924 and β1 = 0.05195, and η2 = 0.0400 and
β2 = 0.0370. Second, it is apparent that the margins from
Algorithm 1 do not monotonically increase in each component
with a; this is due to the bisection search over each component
φi individually and their interaction in (12). By contrast, the
ms-stability margins βi of SDP (16) are proportional to the
robustness margins ηi as βi = wiηi by Corollary 4, and thus
do increase linearly with a. Third, we observe that ζ has
a significant impact on the ms-stability margins found by
Algorithm 1; on this problem ζ = 1 happens to give larger
margins than ζ = 5 and ζ = 0.2. This suggests opportunities
for optimizing margins with respect to Ri and Si, which is left
to future work. Lastly, the inset plot reveals that all methods
yield similar ms-stability margins near the origin.
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Fig. 1: Certified ms-stability levels βi found by Algorithm 1
(thm1) and the SDP (16) (sdp4). As a varies linearly from
a = 0.001 to a = 1 paths are swept out from near the origin
to larger positive values.

VI. CONCLUSIONS AND FUTURE WORK

We developed guarantees of mean-square stability of a
stochastic system based solely on knowledge of nominal
system dynamics and robust stability under static parametric
perturbations. Further, we connected these results with
existing converse results which together show that mean-
square stability and robust stability are equivalent, up to a
diminishing scaling of the mean-square and robust stability
margins.

In principle, these results could be adapted for use in
designing ms-stabilizing controllers by designing robustly



stabilizing controllers that make the closed-loop system satisfy
the assumptions of e.g. Theorem 1, analogous to the robust
control design methods proposed in [20]. Indeed, many
design tools for robust control exist already e.g. via H∞

methods and dynamic game theory [31], [32] or system-
level synthesis [19]. However, such an approach would be
somewhat unsatisfying, as synthesis of optimal controllers
in the presence of multiplicative noise is already relatively
straightforward and tractable; see e.g. [2], [16], [33], [34]
in the state-feedback setting and [35] in the output-feedback
setting. However, in the setting where the nominal system
dynamics and multiplicative noise statistics of the true system
are not known a priori and must be estimated from data,
e.g. as in model-based methods in adaptive control and
reinforcement learning, such an approach may be effective.
To elaborate, one could use existing design methods to find a
controller which robustly stabilizes a set of presumptive LTI
systems contained in an empirical uncertainty set e.g. defined
by statistical bootstrap samples, then leverage Theorem 1 or
its corollaries to certify ms-stability of the true system. Such
applications will be examined in future work.

Future work will also explore ways to extend these results
and methods to continuous-time systems by using (mean-
square) stability-preserving transformations between contin-
uous and discrete time [36], [37] and Lyapunov equation
relations [38].
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