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Abstract— Transverse wall oscillations are a sensor-free con-
trol strategy that can suppress kinetic energy and reduce
skin-friction drag in wall-bounded shear flows. However, the
success of wall oscillations is tied to the appropriate selection
of their amplitude and frequency. We evaluate the robust
performance of this flow control strategy to imperfections in the
amplitude and phase of oscillations. These imperfections, which
are modeled as stochastic parametric uncertainties, appear
as multiplicative uncertainties in the linearized dynamics. We
adopt an input-output approach to analyze the mean-square
stability and frequency response of the flow subject to additive
and multiplicative sources of uncertainty and provide a compu-
tationally efficient method for computing the energy spectrum
of velocity fluctuations around the uncertain base state.

Index Terms— Sensor-free flow control, stability analysis, sto-
chastically forced Navier-Stokes, structured uncertainty, time-
periodic systems, vibrational control.

I. INTRODUCTION

Carefully designed transverse wall oscillations have been
shown to reduce the receptivity of wall-bounded flows to
exogenous disturbances, suppress energy of velocity fluc-
tuations, and reduce skin-friction drag by 40%. However,
experimental [1], [2], numerical [3], [4], and theoretical
studies [5]–[7] have demonstrated that the efficacy of this
flow control strategy depends on a critical selection of
design parameters, e.g., amplitude and frequency [6]. This
motivates the development of a complementary framework
for analyzing the robust performance of such vibrational
control strategies that are prone to parametric uncertainties
resulting from implementation and modeling imperfections.

The linearized Navier-Stokes (NS) equations have been
shown to capture structural and statistical features of tran-
sitional [8]–[11] and turbulent [12]–[15] shear flows. This
success has paved the way for the model-based design of
passive flow control strategies for suppressing turbulence
or reducing drag [6], [7], [16], [17]. In these studies, ad-
ditive stochastic excitation is used to model the effect of
background disturbances or to obtain the statistical response
of the linearized dynamics. On the other hand, uncertainty
in system parameters and coefficients enter the linearized
dynamics multiplicatively and in a structured manner. For a
small number of deterministic and set-valued uncertainties,
the structured singular value can be used to provide a
robust stability theory for uncertain dynamics [18]. However,
implementation deficiencies often results in unpredictable

Dhanushki Hewawaduge, Tyler Summers, and Armin Zare are with
the Department of Mechanical Engineering, University of Texas at
Dallas, Richardson, TX 75080, USA. E-mails: {dhanushki.hewawaduge,
tyler.summers, armin.zare}@utdallas.edu.

time-varying parametric variations. Herein, we model time-
varying parametric variations in the amplitude and phase of
wall oscillations as white-in-time stochastic signals that enter
the linearized NS equations as multiplicative uncertainties.

In the absence of stochastic parametric uncertainties, the
linearized dynamics of channel flow over harmonic wall
oscillations are time-periodic. In this case, the H2 norm of
the Linear Time-Periodic (LTP) system can be expressed
in terms of the solution to the harmonic Lyapunov equa-
tion [19] and perturbation analysis can be used to solve such
equations efficiently [20]. Parametric uncertainties introduce
multiplicative sources of stochasticity into the coefficients of
the otherwise LTP system resulting in Stochastic Differential
Equations (SDEs) whose treatment requires an appropriate
stochastic calculus. We rewrite the SDEs as a feedback
interconnection of LTP dynamics and structured stochastic
uncertainties and build on the developments of [21] to
provide specialized conditions for the Mean-Square Stability
(MSS) of the uncertain dynamics. The H2 norm of the SDEs
that quantifies the receptivity of fluctuations to additive and
multiplicative sources of excitation can be expressed in terms
of the solution to a generalized Lyapunov equation [22]. We
show how perturbation analysis can be used to obtain the
solution of this generalized Lyapunov equation from a set of
ordered smaller-size Lyapunov equations.

A. Problem formulation

Three-dimensional pressure-driven channel flow of incom-
pressible Newtonian fluid is governed by the NS equations

ut = − (u · ∇) u − ∇P +
1

R
∆u

0 = ∇ · u
(1)

where u and ut are the velocity vector and its time derivative,
P is pressure, ∇ is the gradient, ∆ = ∇·∇ is the Laplacian,
and R = Ūh/ν is the Reynolds number defined in terms
of the centerline velocity Ū , channel half-height h, and
kinematic viscosity ν. Figure 1(a) shows the geometry of a
channel for which the streamwise, wall-normal, and spanwise
coordinates are represented by x, y, and z, respectively.

In addition to the driving streamwise pressure gradient Px,
we assume the flow to be subject to lower-wall transverse
sinusoidal oscillations of amplitude α and frequency ωt that
take the form 2α (1 + γα) sin(ωt t + γθ); see Fig. 1(b).
Here, the amplitude of wall oscillations is multiplied by 2 for
convenience of algebraic manipulations, and γα(t) and γθ(t)
represent independent sources of white-in-time stochastic
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Fig. 1. (a) Pressure driven channel flow; and (b) channel flow subject to
transverse wall oscillations with amplitude and phase imperfections.

uncertainty with mean and variance given by {µα, σ2
α} and

{µθ, σ2
θ}, respectively. These parametric uncertainties model

imperfections in the amplitude and phase of oscillations and
effectively result in random lower-wall oscillations.

While the streamwise and wall-normal components of
the three-dimensional velocity field satisfy no-slip/no-
penetration boundary conditions at both walls, the spanwise
component adopts a harmonic boundary condition at the
lower-wall that is contaminated with stochastic parameters
γα and γθ. Solving the NS equations subject to the described
boundary conditions with different realizations of uncertain
parameters is computationally expensive. This motivates the
development of a framework for studying the influence of
structured stochastic uncertainty on the stability and recep-
tivity of NS equations using low-complexity models.

B. Paper outline

In Section II, we determine the base velocity of channel
flow over transverse wall oscillations with amplitude/phase
uncertainty, and obtain the linearized NS equations. In Sec-
tion III, we rewrite the linearized dynamics as a feedback
interconnection between nominal dynamics and sources of
stochastic uncertainty, and use this representation to pro-
vide MSS conditions. In Section IV, we exploit the time-
periodicity of the nominal dynamics to characterize the
frequency response, and provide a computationally efficient
method for determining the energy spectrum of velocity fluc-
tuations. In Section V, we examine the MSS of channel flow
over random wall oscillations and discuss the influence of
parametric uncertainty on suppressing the energy of velocity
fluctuations. We provide concluding remarks in Section VI.

II. DYNAMICS OF VELOCITY FLUCTUATIONS

In the presence of the transverse wall oscillations descri-
bed in Section I-A, the base flow ū = [U V W ]T can be
obtained by solving Eqs. (1) in steady-state subject to

U(±1) = V (±1) = Vy(±1) = W (1) = 0

W (−1) = 2α (1 + γα) sin(ωtt + γθ).
(2)

Due to these boundary conditions, the equations that govern
the dynamics of the base flow can be simplified into a pair
of decoupled partial differential equations

0 = −P̄x + (1/R)Uyy

Wt = (1/R)Wyy

(3)

where P̄x = −2/R denotes the nominal pressure gradient
in Poiseuille flow. The steady-state solution to (2) and (3) is

given by ū := [U(y) 0 W (y, t) ]T , with

U(y) = 1 − y2 (4a)

W (y, t) = α
[
(1 + γ+1)W+1(y) eiωtt

+ (1 + γ−1)W−1(y) e−iωtt
]
. (4b)

Here, γ±1 := (1 + γα) e±iγθ−1 are white-in-time stochastic
uncertainties that capture the effects of γα and γθ on the base
state with means and variances [23, Appendix B]

µ±1 = E[γ±1] = (1 + µα) e±iµθ +σ2
θ/2 − 1,

σ2
±1 = e±2 iµθ +σ2

θ

(
σ2
αeσ

2
θ + (1 + µα)2(eσ

2
θ − 1)

)
.

Furthermore, W±1(y) are solutions to the system of ordinary
differential equations

W ′′+1(y) = iωtRW+1(y), W ′′−1(y) = −iωtRW−1(y)

W+1(1) = W−1(1) = 0, W±1(−1) = ∓ i (5)

where W ′′±1(y) denote second derivatives with respect to y;
see [23, Appendix C] for a solution to Eqs. (5). In Eq. (4b),
γα=γθ=0 yields the nominal velocity

W̄ (y, t) = α
[
W1(y)eiωtt + W−1(y)e−iωtt

]
. (6)

The dynamics of velocity v = [u v w ]T and pressure p
fluctuations around the base flow ū = [U(y) 0 W (y, t) ]T

and P̄x are governed by the linearized NS equations,

vt = − (ū · ∇) v − (v · ∇) ū −∇p +
1

R
∆v + f

0 = ∇ · v
(7)

Here, f is a zero-mean white-in-time stochastic forcing that
represents three-dimensional exogenous excitations to the
fluctuation dynamics. The uncertain base flow ū enters the
linearized Eqs. (7) as a coefficient that multiplies the vector
of velocity fluctuations v. While ū includes multiplicative
sources of uncertainty γ±1, it remains constant in x and z
and includes temporal harmonics of period T = 2π/ωt. Eli-
mination of pressure and application of the Fourier transform
in the spatially invariant directions x and z brings Eqs. (7)
into the evolution form

ψt(y,k, t) = A(k, t)ψ(y,k, t) + B(k)f(y,k, t)

v(y,k, t) = C(k)ψ(y,k, t)
(8)

where the state ψ := [ v η ]T contains the wall-normal
velocity v and vorticity η = ∂zu−∂xw, and k = [ kx kz ]T is
the vector of streamwise and spanwise wavenumbers. Equati-
ons (8) are SDEs that involve both additive and multiplicative
sources of stochastic uncertainty with operators A, B, and
C given in [6, Eq. (6)].

Following the structure of ū, the operator-valued matrix
A in the evolution model (8) can be decomposed as

A(k, t) = Ā(k) + α
[
γ+1A+1(k) eiωtt

+ γ−1A−1(k) e−iωtt
] (9)
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where

Ā(k, t) = A0(k) + α
(
(1 + µ+1)A1(k) eiωtt

+ (1 + µ−1)A−1(k) e−iωtt
) (10)

and expressions for A0, A1 and A−1 are provided in [23,
Appendix D]. Here, we have explicitly accounted for the
dynamic drift resulting from the mean values of uncertainties
γ±, i.e., µ±1, by including a constant modification to the co-
efficients of the otherwise purely time-periodic deterministic
dynamics Ā. In the remainder of the paper, we will consider
sources of multiplicative uncertainty γ±1 to have zero mean.

III. INPUT-OUTPUT FORMULATION AND MSS
CONDITIONS

The evolution of ψ in SDE (8) is affected by the presence
of both stochastic parametric uncertainties and additive for-
cing. While there is no ambiguity in the treatment of additive
noise in continuous-time systems, multiplicative noise is
not generally well-defined and its treatment calls for the
adoption of a suitable stochastic calculus (e.g., Itō [24] or
Stratonovich [25]). In this section, we provide an appropriate
interpretation for the multiplicative uncertainty, extract these
sources using a linear fractional transformation, and establish
an input-output relation between stochastic sources and the
output velocity fluctuations of system (8). Building on this
representation, we examine conditions for MSS in the pre-
sence of multiplicative stochastic uncertainty.

A. Stochastic feedback interconnection

In input-output form, SDE (8) can be rewritten as[
v(k, t)
z(k, t)

]
=

∫ t

0

M(k, t − τ)

[
f(k, τ)
r(k, τ)

]
dτ

r(k, t) = D(γ(t)) z(k, t) (11)

which extracts the role of multiplicative uncertainties by
rearranging the dynamics as a feedback connection bet-
ween the nominal dynamics and the structured uncertainty
D(γ(t)) := diag{γ−1(t)I, γ1(t)I}. In (11), M denotes the
finite-dimensional approximation to the impulse response
operator, v is the output velocity vector, and z is computed
from the state ψ. Moreover, exogenous stochastic input f ,
uncertain feedback signal r, and sources of parametric un-
certainty γi are white processes that are defined as derivatives
of Wiener processes (or Brownian motion) [26], i.e.,

γi(t) :=
dγ̃i(t)

dt
; f(k, t) :=

df̃(k, t)

dt
; r(k, t) :=

dr̃(k, t)

dt
.

Here, γ̃i(t) are zero-mean Wiener processes with variance
σ2
i and f̃ is a zero-mean vector-valued Wiener process

with instantaneous covariance E(f̃(k, t) f̃∗(k, t)) = Ω(k)t,
in which Ω(k) = Ω∗(k) � 0 is the spatial covariance
matrix. We assume that γ̃i and f̃ are uncorrelated for all
time, adopt the Itō interpretation, and assume that r(t) has
temporally independent increments [21], i.e., its differentials
(dr(t1),dr(t2)) are independent for t1 6= t2. Given this

M
[

dγ̃−1I

dγ̃1I

]

df̃

dr̃

v

z

Fig. 2. Linear fractional transformation of an LTI system subject to both
additive and multiplicative stochastic disturbances (Eqs. (13)). Here, df̃ and
dγ̃i represent differentials of Wiener processes that model additive and
multiplicative sources of stochastic uncertainty, respectively.

mathematical interpretation, the differential form of Eqs. (11)
are given by[

v(k, t)
z(k, t)

]
=

∫ t

0

M(k, t − τ)

[
df̃(k, τ)
dr̃(k, τ)

]
dr̃(k, t) = D(dγ̃(t)) z(k, t) (12)

and are described by the block diagram in Fig. 2. A corre-
sponding state-space representation is given by

M :


dψ(t) = Ā(t)ψ(t)dt + B0(t) dr̃(t) + B df̃(t)

z(t) = C0(t)ψ(t)

v(t) = C ψ(t)

dr̃(t) = D(dγ̃(t)) z(t) (13)

where the dependence of vectors and matrices on the hori-
zontal wavenumber pair k has been omitted for brevity, Ā
is the nominal time-periodic dynamic matrix (Eq. (10)), and

B0 :=
[
I I

]
, C0 :=

[
A−1e−iωtt

A+1e+iωtt

]
.

B. Mean-square stability conditions

Mean-square stability is a strong form of stability that
implies stability of the mean and convergence of all trajec-
tories of the stochastic dynamical system (in the absence
of persistent exogenous excitation) to zero with probability
one [27], [28]. The MSS of the causal LTI system (13)
certifies that for all differential inputs, [ df̃ dr̃ ]T , with
independent increments and uniformly bounded variance, the
output process, [ v z ]T , has a uniformly bounded variance;
see, e.g., [29]. Following [21, Theorem 2], the necessary
and sufficient conditions for the MSS of (13) are: (i) Ā is
Hurwitz; and (ii) the spectral radius of the loop gain operator

L(R̄) := Γ ◦
(∫ ∞

0

M22(τ) R̄M †
22(τ)dτ

)
is strictly less than 1, i.e., ρ(L) < 1. Here, Γ is the mutual
correlation matrix of γ̃i, i.e., Γ := E(γ̃i(t) γ̃

∗
j (t)), ◦ is

the Hadamard product, M22 is the impulse response of the
subsystem M22 : dr̃→ z, which is given by

M22(k, t) = C0(k) eĀ(k,t)tB0(k)

and † denotes the adjoint of an operator, which is determined
with respect to the inner products corresponding to the
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underlying function spaces; see, e.g., [10].
The loop gain operator propagates the steady-state cova-

riance of dr̃ denoted by R̄ through the feedback configura-
tion in Fig. 2. Equivalently, we have

L(R̄) = Γ ◦ (C0X C†
0)

where X is the solution to the algebraic Lyapunov equation

ĀX + X Ā† = −B0 R̄B†
0.

The spectral radius of L can be numerically calculated using
the power iteration algorithm in [23, Section III.B].

IV. FREQUENCY RESPONSE OF UNCERTAIN DYNAMICS

We build on the input-output representation provided in
Section III and exploit the time-periodicity of the nominal
dynamics to characterize the frequency response of the
system subject to additive and multiplicative uncertainties.
We show that the energy spectrum of velocity fluctuations
can be obtained from the solution of a generalized Lyapunov
equation. For small-amplitude wall oscillations, we employ
a perturbation analysis to achieve computational efficiency
in solving the generalized Lyapunov equation.

A. Frequency response

The impulse response M in (12) corresponding to the
state-space representation (13) takes the form

M(k, t) :=

[
C(k)
C0(k)

]
eĀ(k,t)t

[
B(k) B0(k)

]
and inherits the time-periodicity of the nominal dynamics Ā
(cf. (10)). Due to this time-periodicity, response vectors v
and z of system (13) subject to stationary white processes
df̃ and dr̃ are cyclo-stationary processes [30], i.e., their
statistical properties are periodic in time. As a result, the
auto-correlation operator of ψ is given by

X(k, t) = E (ψ(k, t)ψ∗(k, t)) (14)

= X0(k) + X1(k) eiωtt + X†
1(k) e−iωtt

+ X2(k) ei2ωtt + X†
2(k) e−i2ωtt + . . .

Moreover, the average effect of additive and multiplicative
sources of excitation (over one period of wall oscillations T )
is determined by the operator X0, i.e.,

1

T

∫ T

0

X(k, t) dt = X0(k) (15)

and the energy spectrum of velocity fluctuations is given by

E(k) = trace (X0(k)) . (16)

When f and γi are zero-mean white-in-time processes
with covariance matrix Ω and variance σ2

i , the frequency
representation of the auto-correlation operator of state ψ is
a self-adjoint bi-infinite block-Toeplitz operator of the form

X (k) = Toep
{
. . . , X†

2 , X
†
1 , X0 , X1, X2, . . .

}
(17)

that can be obtained from the generalized Lyapunov equation

F̄ X + X F̄† +
∑
i=±1

σ2
i Fi X F

†
i = −BΩB† (18a)

F̄ := Ā − E(0) (18b)

Fi := Ai (18c)

which is parameterized over wavenumber pairs k. Here, B,
Ω, and E are bi-infinite block-diagonal operators,

B(k) := diag {B(k)}n∈Z
Ω(k) := diag {Ω(k)}n∈Z

E(θ) := diag {i (θ + nωt) I}n∈Z
where θ ∈ [0, ωt) is the angular frequency, and Ā and Ai are
bi-infinite block-Toeplitz operators that represent the lifted
variants of the nominal and uncertain components of the
dynamics (cf. Eqs. (9) and (10)), respectively, i.e.,

Ā := Toep
{
. . . , 0, α (1 + µ1)A1, A0 , α (1 + µ−1)A−1, 0, . . .

}
A1 := Toep

{
. . . , 0, αA1, 0 , 0, . . .

}
A−1 := Toep

{
. . . , 0, 0 , αA−1, 0, . . .

}
At any wavenumber pair k, a discretization of the linearized
NS equations together with a truncation of the bi-infinite
operator-valued matrices would require solving a large-scale
generalized Lyapunov equation. We follow [7] in considering
small-amplitude oscillations α and utilizing a perturbation
analysis to achieve computational efficiency in obtaining
the energy spectrum. This choice is also motivated by the
observation that large-amplitude oscillations can become
prohibitively expensive to generate and result in a negative
net efficiency for our flow control strategy [5], [7].

B. Perturbation analysis

Following [20], the solution to (18) can be efficiently
computed using a perturbation analysis in α. Specifically, the
operator F̄ in (18) can be decomposed into a block diagonal
operator F̄0 and an operator F̄1 that contains the first upper
and lower block sub-diagonals

F̄ = F̄0 + α F̄1 (19)

F̄0 = diag {A0 − inωtI}

F̄1 = Toep
{
. . . , 0, (1 + µ1)A1, 0 , (1 + µ−1)A−1, 0, . . .

}
Moreover, operators F±1 take the block-Toeplitz form

F1 = Toep
{
. . . , 0, A1, 0 , 0, . . .

}
(20)

F−1 = Toep
{
. . . , 0, 0 , A−1, 0, . . .

}
For sufficiently small α, the solution X of (18) can be
expanded using the same perturbation series,

X = X0 + αX1 + α2 X2 + . . . (21)
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Substituting (19)-(21) into (18) and collecting powers of α
yields

α0 : F̄0 X0 + X0 F̄†
0 = −BΩB†

αn : F̄0 Xn + Xn F̄†
0 = −

(
F̄1 Xn−1 + Xn−1 F̄†

1

)
+ [δ(n− 1)− 1]

∑
i=±1

σ2
i Fi Xn−2 F†

i

where δ(n) is the discrete delta function. Given the structures
of F̄0, F̄±1, and F±1, we can determine the block structure
of the self-adjoint operators Xi in (21) as

X0 := Toep
{
. . . , 0, X0,0 , 0, . . .

}
X1 := Toep

{
. . . , 0, X†

1,1, 0 , X1,1, 0, . . .
}

X2 := Toep
{
. . . , 0, X†

2,2, 0, X2,0 , 0, X2,2, 0, . . .
}

where the first and second indices of the sub-matrices
correspond to the perturbation order and harmonic number,
respectively. The structure identified for the auto-correlation
operators in conjunction with (15) and (17) results in the
following perturbation series for X0:

X0(k) = X0,0(k) + α2X2,0(k) + O(α4). (22)

Finally, the operators X0,0 and X2,0 are obtained by solving
the following set of Lyapunov equations

A0X0,0 + X0,0A
†
0 = −BΩB†

(A0 + iωtI)X1,1 + X1,1A
†
0 = −

(
(1 + µ−1)A−1X0,0

+ (1 + µ1)X0,0A
†
1

)
A0X2,0 + X2,0A

†
0 = −(1 + µ1) (A1X1,1 +X1,1A

†
1)

−(1 + µ−1) (A−1X1,1 +X1,1A
†
−1)

−
∑
i=±1

σ2
i AiX0,0A

†
i

whose individual size is equal to the size of each block
of the bi-infinite generalized Lyapunov equation (18). This
harmonic-based decoupling is used for efficient computaiton
of the second-order statistics of system (8). Finally, the
energy spectrum of velocity fluctuations (Eq. (16)) follows
a similar perturbation series as (22):

E(k) = E0(k) + α2E2(k) + O(α4) (23)

where E0(k) = trace(X0,0(k)) is the energy spectrum in the
absence of control, and E2(k) = trace(X2,0(k)) captures
the effect of boundary control at the level of α2.

V. CHANNEL FLOW WITH RANDOM WALL OSCILLATIONS

We study the influence of parametric uncertainty on the
MSS and variance of velocity fluctuations in channel flow
with R = 2000 over transverse wall oscillations. We employ
a pseudospectral scheme with Chebyshev polynomials [31]
to discretize the wall-normal dimension and obtain finite-
dimensional approximations of the differential operators in
the linearized NS dynamics. Mean-square stability and va-

σ
2 θ

σ2
α

Fig. 3. Stability curves for the dynamics of fluctuations in a channel flow
with R = 2000 and k = (0, 2) subject to random lower-wall oscillations
with nominal parameters: α = 0.01 and ωt = 8.8× 10−3 (◦); α = 0.01
and ωt = 5× 10−4 (+); α = 0.1 and ωt = 8.8× 10−3 (−−); α = 0.1
and ωt = 5× 10−4 (—).

riance amplification are analyzed for the special case of
streamwise-constant velocity fluctuations (kx = 0) that are
energetically dominant in the absence of control [8]–[10].

A. MSS in channel channel flow with (kx, kz) = (0, 2)

In the absence of control, the energy spectrum of velocity
fluctuations in channel flow with R = 2000 can be shown to
peak at kx = 0 and kz ≈ 1.78, see, e.g., [10]. For (kx, kz) =
(0, 2) and various nominal wall oscillation parameters (α and
ωt), we evaluate the MSS of the controlled flow dynamics in
the presence of zero-mean parametric uncertainties γα and
γθ. We note that the first MSS condition, i.e., Ā is Hurwitz, is
satisfied no matter the uncertainty level. However, the second
condition can be violated as the variances of zero-mean
parametric uncertainties γα and γθ grow. Figure 3 shows
the regions of MSS in the presence of such uncertainties. It
is evident that stability properties of the channel are more
susceptible to parametric uncertainty entering in the phase
of wall oscillations and that nominally larger oscillation
amplitudes and periods are less robust.

B. Variance amplification

We now study the effect of parametric uncertainties on
the performance of our flow control strategy in reducing
the energy of velocity fluctuations. We consider the case of
lower-wall spanwise wall oscillations with α = 0.01 and
ωt = 8.8 × 10−3 that are contaminated with zero-mean
parametric uncertainties γα and γθ of variance 0.06 and
0.2, respectively. Note that at this low level of uncertainty
the linear dynamics remain mean-square stable (cf. Fig. 3).
Given zero-mean uncertainties with instantaneous normal
distributions, such variances ensure that the sources of
uncertainty γα and γθ predominantly reside in the ranges
[−0.5, 0.5] and [−π/2, π/2], respectively.

Figure 4 shows the effect of lower-wall spanwise oscil-
lations on the energy of streamwise-constant fluctuations
at the level of α2 (E2 in Eq. (23)). Results from the
perturbation analysis of Section IV-B show that relative to the
nominal curve (black solid line) uncertainty in the oscillation
amplitude (γα) has a negative (albeit relatively small) effect
on performance and that uncertainty in the phase (γθ) has a
positive effect on performance, i.e., it can increase variance
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Fig. 4. (a) Energy suppression in streamwise-constant fluctuations due to
lower-wall oscillations with ωt = 8.8× 10−3 at the level of α2 (E2(kz))
in the absence (solid black line) and presence of zero-mean parametric
uncertainty: γα = 0 and σ2

θ = 0.2 (blue triangles); σ2
α = 0.06 and γθ = 0

(black circles); σ2
α = 0.06 and σ2

θ = 0.2 (solid blue line). (b) Magnified
views of E2(kz) capture the variations caused by uncertainty γα.

attenuation. Moreover, the parametric uncertainties maintain
the significance of kz ≈ 2 as the spanwise wavenumber
associated with the largest energy suppression. The dominant
influence of γθ roots in the dependence of the mean drift
µ±1 on σ2

θ , which directly affects the nominal dynamics
Ā (Eq. (10)) and enters as a coefficient to the right-hand-
side of the Lyapunov equations of Section IV-B. Our results
demonstrate that random phase distortion can indeed improve
the ability of small-amplitude wall oscillations to attenuate
the energy of velocity fluctuations in channel flows.

VI. CONCLUDING REMARKS

We have shown that stochastic parametric imperfections
in the amplitude and phase of wall oscillations have the
potential to change the dynamical properties of the linearized
equations and thereby influence MSS of velocity fluctuati-
ons and the performance of this flow control strategy. We
have adopted an input-output approach to characterize the
frequency response of the channel flow subject to uncertain
wall oscillations and provided conditions for MSS. Our ana-
lysis shows that despite a clear dependence on the nominal
amplitude and frequency of oscillations, velocity fluctuations
remain mean-square stable for relatively high levels of un-
certainty, which is in agreement with parametric studies on
the effect of oscillation amplitude, e.g., [6]. Moreover, our
analysis shows that introducing random distortions to the
phase of lower-wall oscillations results in a notable increase
in energy suppression. Our approach paves the way for the
robustness analysis of other control strategies that modify the
base state and are prone to parametric uncertainties.

REFERENCES

[1] K.-S. Choi, “Near-wall structure of turbulent boundary layer with
spanwise-wall oscillation,” Phys. Fluids, vol. 14, no. 7, pp. 2530–
2542, 2002.

[2] P. Ricco, “Modification of near-wall turbulence due to spanwise wall
oscillations,” J. Turbul., vol. 5, pp. 20–20, 2004.

[3] W. Jung, N. Mangiavacchi, and R. Akhavan, “Suppression of turbu-
lence in wall-bounded flows by high-frequency spanwise oscillations,”
Phys. Fluids A, vol. 4, no. 8, pp. 1605–1607, 1992.

[4] M. Quadrio and P. Ricco, “Critical assessment of turbulent drag
reduction through spanwise wall oscillations,” J. Fluid Mech., vol.
521, pp. 251–271, 2004.

[5] P. Ricco and M. Quadrio, “Wall-oscillation conditions for drag re-
duction in turbulent channel flow,” International Journal of Heat and
Fluid Flow, vol. 29, no. 4, pp. 891–902, 2008.

[6] M. R. Jovanovic, “Turbulence suppression in channel flows by small
amplitude transverse wall oscillations,” Phys. Fluids, vol. 20, no. 1, p.
014101 (11 pages), January 2008.

[7] R. Moarref and M. R. Jovanovic, “Model-based design of transverse
wall oscillations for turbulent drag reduction,” J. Fluid Mech., vol.
707, pp. 205–240, September 2012.

[8] B. F. Farrell and P. J. Ioannou, “Stochastic forcing of the linearized
Navier-Stokes equations,” Phys. Fluids A, vol. 5, no. 11, pp. 2600–
2609, 1993.

[9] B. Bamieh and M. Dahleh, “Energy amplification in channel flows
with stochastic excitation,” Phys. Fluids, vol. 13, no. 11, pp. 3258–
3269, 2001.

[10] M. R. Jovanovic and B. Bamieh, “Componentwise energy amplifica-
tion in channel flows,” J. Fluid Mech., vol. 534, pp. 145–183, July
2005.

[11] W. Ran, A. Zare, M. J. P. Hack, and M. R. Jovanovic, “Stochastic
receptivity analysis of boundary layer flow,” Phys. Rev. Fluids, vol. 4,
no. 9, p. 093901 (28 pages), September 2019.

[12] Y. Hwang and C. Cossu, “Linear non-normal energy amplification of
harmonic and stochastic forcing in the turbulent channel flow,” J. Fluid
Mech., vol. 664, pp. 51–73, 2010.

[13] A. Zare, M. R. Jovanovic, and T. T. Georgiou, “Completion of partially
known turbulent flow statistics,” in Proceedings of the 2014 American
Control Conference, 2014, pp. 1680–1685.

[14] A. Zare, M. R. Jovanovic, and T. T. Georgiou, “Colour of turbulence,”
J. Fluid Mech., vol. 812, pp. 636–680, February 2017.

[15] A. Zare, T. T. Georgiou, and M. R. Jovanovic, “Stochastic dynamical
modeling of turbulent flows,” Annu. Rev. Control Robot. Auton. Syst.,
vol. 3, pp. 195–219, May 2020.

[16] R. Moarref and M. R. Jovanovic, “Controlling the onset of turbulence
by streamwise traveling waves. part 1: Receptivity analysis,” J. Fluid
Mech., vol. 663, pp. 70–99, November 2010.

[17] W. Ran, A. Zare, and M. R. Jovanović, “Model-based design of riblets
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