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Abstract: We consider a problem of information structure design in team decision problems and
team games. We propose simple, scalable greedy algorithms for adding a set of extra information
links to optimize team performance and resilience to non-cooperative and adversarial agents.
We show via a simple counterexample that the set function mapping additional information
links to team performance is in general not supermodular. Although this implies that the
greedy algorithm is not accompanied by worst-case performance guarantees, we illustrate
through numerical experiments that it can produce effective and often optimal or near optimal
information structure modifications.
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1. INTRODUCTION

Future critical infrastructures, including electric power,
transportation, water, etc., are emerging as cyber-physical
networks that will feature cooperative autonomous deci-
sion making agents equipped with embedded sensing, com-
putation, communication, and actuation capabilities. A
key challenge in the analysis and design of these networks
is decentralization of information: each decision making
agent must act based on partial information measured
or received locally to optimize network operation. More-
over, with growing concerns over cyber-physical security
Cardenas et al. (2008); Zhu et al. (2011a,b); Pasqualetti
et al. (2013); Sandberg et al. (2015), each agent must not
only coordinate its actions with team members, but must
also counter against teams of malicious agents to mitigate
attack impacts and provide resiliency. The information
structure – who knows what and when – is a basic compo-
nent in formal analyses of these issues and plays a crucial
role in determining optimal strategies and computational
tractability Radner (1962); Witsenhausen (1971); Ho and
Chu (1972); Basar (1978); Ho (1980); Rotkowitz and Lall
(2006); Nayyar et al. (2013); Yüksel and Başar (2013);
Başar (2014); Lessard and Lall (2015).

While the importance of information structure is widely
recognized in team decision theory, decentralized control,
and game theory, the vast majority of the literature
focuses on designing decision and control strategies for
a given information structure. The design of information
structures – who should know what and when – has been
recognized as an important problem since the earliest work
on team decision theory Marschak (1955); Radner (1962),
but has received very little formal attention. Radner notes
the emphasis on analysis of strategies for given information
structures in a seminal paper on team decision theory:
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An important organizational problem is the
determination of what statistical information
shall be made available to the various decision
makers in the organization. Implicit in the
solution of such a problem is the determination
of the best use that can be made of any given
structure of information, i.e., the best decision
functions. The results to be presented here are
concerned with this latter problem.

This emphasis on analysis of given fixed information
structure has followed in much of the related work, and
has presented rich challenges for many decades.

We believe it is important to shift some focus to informa-
tion structure design, where one jointly optimizes the in-
formation structure together with decision strategies, espe-
cially in the context of emerging cyber-physical networks.
We consider problems of information structure design in
team decision problems and team games. We focus here on
static problems since no work to our knowledge has been
done even in this setting. We also focus on linear quadratic
problems since they are analytically tractable, admitting
closed-form equilibrium solutions that provide insight into
essential properties. In the non-cooperative game setting,
we focus on a specific class of games involving two teams
with decentralized information structure Colombino et al.
(2015), maintaining a sharp distinction between coopera-
tive and adversarial features.

The main contributions are as follows. We formulate sev-
eral information structure design problems as (finite, com-
binatorial) set function optimization problems. These can
be solved in principle by brute force enumeration, but
this approach is not feasible even for moderately sized
networks, and is certainly ineffective for the large net-
works of critical infrastructure that motivate this work. We
therefore propose simple greedy algorithms that provide
an effective and scalable heuristic. We show via a sim-
ple counterexample that the set function mapping addi-
tional information links to team performance is in general



not supermodular. Although this implies that the greedy
algorithm is not accompanied by theoretical worst-case
performance guarantees, we illustrate its effectiveness and
scalability through numerical experiments, showing that
it often produces optimal or near optimal information
structure modifications.

Our focus here is on a general mathematical framework,
but many emerging applications in cyber-physical net-
works feature distributed estimation and control problems
that can be formulated as team decision problems and
games. For example, information structure design in elec-
trical power networks includes optimal sensor placement
(e.g., phasor measurement units and other advanced me-
tering) and optimal communication design for wide area
monitoring and control. Furthermore, many large intercon-
nected power grids are operated by a set of independent
transmission system operators with objective functions
that are not necessarily aligned, and are susceptible to
influence by distributed attacking teams with adversar-
ial objectives. Similar distributed estimation and control
problems can be formulated in other critical infrastructure,
such as transportation networks.

The rest of the paper is laid out as follows. In Section 2 we
formulate information structure design problems for single
team and multiple team decision problems. In Section 3
we present a greedy algorithm for information structure
design. Section 4 presents numerical experiments. Section
5 gives concluding remarks.

2. PROBLEM FORMULATION

We formulate two separate information structure design
problems. The first is a (cooperative) single team problem,
and the second is a two team problem, which has both
cooperative and non-cooperative/adversarial features.

2.1 Team Decision Problems

Fixed information structure. A team decision problem
involves coordinating the decisions of a team of N decision
making agents in a stochastic environment. The state
of the environment is assumed to be a normal random
vector x ∈ Rn with mean x̄ = Ex and covariance matrix
X = ExxT � 0, i.e., x ∼ N (x̄, X). It is assumed that every
agent knows the environment state statistics x̄ and X. In
addition, each agent of the team receives its own noisy
local information about the environment state x, which
we assume to be linear:

zi = Hix+ wi, i = 1, .., N (1)

where Hi ∈ Rpi×n and wi ∼ N (0, Ri) with Ri � 0.
Each row of Hi can represent information obtained from
a sensor or a communication link with another device
or agent in the team. For example, in a power network
each agent may be a local network monitoring station,
and Hi could include local measurements from phasor
measurement units or communicated information from
other parts of the network. We define the information
structure as a collection of the parameters specifying the
information for each agent

S0 = {(H1, R1), (H2, R2), ..., (HN , RN )}.

Each agent must select a decision function γi : Rpi → Rmi

from a set of Borel measurable functions that specifies its

decision ui = γi(zi) based on realizations of the random
variable zi. We define the team decision function γ =
(γ1, ..., γN ) and the associated team decision vector u =
[uT1 , ..., u

T
N ]T ∈ RΣimi , which may represent a distributed

parameter estimate or control action. The quadratic team
cost function is

J̄(u) = uTQx+
1

2
uTPu, (2)

where

Q =


Q1

Q2

...
QN

 , P =


P11 P12 · · · P1N

PT12 P22 · · · P2N

...
...

. . .
...

PT1N PT2N · · · PNN


with Q and P partitioned according to agent decision
dimensions, i.e., Qi ∈ Rmi×n, Pii ∈ Rmi×mi , and Pij ∈
Rmi×mj . The cost function is assumed to be strictly
convex in u, i.e., P � 0. For any given team decision
function γ we define the expected cost

J(γ, S0) = Ex(uTQx+ uTPu), ui = γi(zi(x)) (3)

The optimal value of the objective function under the
optimal team decision function is denoted by

J∗(S0) = min
γ
J(γ), γ∗ = arg min

γ
J(γ) (4)

Under the stated assumptions, the optimal decision func-
tions γ∗i are affine and can be computed by solving a set
of linear equations derived from stationarity conditions;
see Radner (1962), or for a more general multi-objective
game formulation Basar (1978). In particular, the optimal
solution consists of each agent forming the conditional
state estimate

x̂i = E[x | zi]
= x̄+XHT

i (HiXH
T
i +Ri)

−1(zi −Hix̄)
(5)

and using the affine decision function

ui = γi(zi) = Aix̄+Bi(x̂i − x̄), (6)

where Ai and Bi are the unique solutions to the linear
equations

PiiAi +
∑
j 6=i

PijAj = −Qj

PiiBi +
∑
j 6=i

PijBjXH
T
j (HjXH

T
j +Rj)

−1Hj = −Qj .

(7)

Information Structure Design. We now suppose that for
each agent there is a finite set of possible measurements
or communicated information about the environmental
state that could be added to its information; we let qi
denote the number of possible additional measurements
or communication links that could be added to agent i.
We collect the parameters defining these possibilities for
the whole team into the finite set

V = {(h11, r11), (h12, r12), ..., (h1q1 , r1q1),

(h21, r21), (h22, r22), ..., (h2q2 , r2q2)...,

(hN1, rN1), (hN2, rN2), ..., (hNqN , rNqN )}
(8)

where hij ∈ Rn represents the jth possible additional
measurement or communicated information about the en-
vironmental state that could be added to the information
of agent i, and rij ≥ 0 represents the associated variance.



We assume that each additional observation has an as-
sociated measurement noise that is independent of other
measurement noise variables. 1 In a power network, V may
represent, e.g., a set of additional phasor measurement
units or wide area communication links that could aug-
ment the information set of each agent.

For any subset S ⊆ V , we associate a modified information
structure by including the selected information links in the
appropriate agents’ information model. For example, the
information structure modification

S = {(h13, r13), (h32, r32), (h43, r43), (h45, r45)} ⊂ V
means that we add the third possible additional link to
agent 1, the second possible additional link to agent 3,
and the third and fifth possible additional links to agent
4, so that

z1 =

[
H1

hT13

]
x+

[
w1

w13

]
, z3 =

[
H3

hT32

]
x+

[
w3

w32

]
,

z4 =

 H4

hT43

hT45

x+

[
w4

w43

w45

]
,

(9)

where w13 ∼ N (0, r13), w32 ∼ N (0, r32), w43 ∼ N (0, r43),
and w45 ∼ N (0, r45) are independent of all other measure-
ment noise variables.

Let J∗(S) denote the optimal value of the team cost
function associated with the information structure mod-
ification S. Our first problem of interest is to select an
information structure modification of size k to minimize
the optimal value of the team decision problem using
the associated optimal decision functions for the modified
information structure. We can pose this as a cardinality
constrained set function optimization problem

min
S⊂V, |S|=k

J∗(S). (10)

2.2 Two Team Games

We now formulate an analogous problem for a two team
stochastic game. In this setting, there are two teams,
which we call blue and red, each of which consists of a
set of decision making agents interacting in a stochastic
environment. We assume again that the environment state
is a normal random vector x ∈ Rn with mean x̄ = Ex
and covariance matrix X = ExxT � 0 and that every
agent knows the environment state statistics x̄ and X.
The blue team has N decision making agents, and the
red team has M decision making agents. The blue team
may represent agents associated with a network operator,
while the red team may represent a set of non-cooperative
agents or malicious attackers. The difference here is that
each team has its own objective function, introducing a
non-cooperative or adversarial element to the problem
in addition to the cooperation required amongst team
members.

Fixed information structure. The blue team receives in-
formation

zi = Hix+ wi, i = 1, .., N (11)

1 It is straightforward to allow noise of additional observation to
be statistically dependent on other noise variables, but we assume
independence to simplify notation.

blue team

red team

environment
z

y

x

u

v

J1(�, �) J2(�, �)

Fig. 1. Illustration of the two team game setting. The
blue team receives measurements z and chooses a
distributed decision function u = γ(z) to optimize
J1(γ, λ), and the red team receives measurements y
and chooses a distributed decision function v = λ(y)
to optimize J2(γ, λ).

where Hi ∈ Rpi×n and wi ∼ N (0, Ri), and the red team
receives information

yj = Gjx+ tj , j = 1, ..,M (12)

where Gj ∈ Rlj×n and tj ∼ N (0, Tj). The information
structure for the blue team is

S0 = {(H1, R1), (H2, R2), ..., (HN , RN )},
and the information structure for the red team is

T0 = {(G1, T1), (G2, T2), ..., (GN , TN )}.

Each agent on the blue team must select a decision
function γi : Rpi → Rmi from a set of measurable
functions that specifies its decision ui = γi(zi), and each
agent on the red team must select a decision function
λj : Rlj → Rkj from a set of measurable functions that
specifies its decision vj = λj(yj).

In a non-cooperative two team game, each team has a
separate objective function that is neither directly aligned
nor misaligned with that of the opposing team. We define
the team decision functions γ = (γ1, ..., γN ) and λ =
(λ1, ..., λM ) and the associated team decision vectors u =
[uT1 , ..., u

T
N ]T ∈ RΣimi and v = [vT1 , ..., v

T
N ]T ∈ RΣjkj . The

blue team cost function is

J̄1(u, v) = uTQ1x+
1

2
(uTP 1u+ vTR1u), (13)

and the red team seeks to optimize a cost function

J̄2(u, v) = vTQ2x+
1

2
(vTP 2v + vTR2u), (14)

It is assumed that P i � 0, i = 1, 2, so that J̄1(u, v) is
strictly convex in u and J̄2(u, v) is strictly convex in v.



For any given team decision functions γ and λ we define
the expected costs

J1(S0, T0, γ, λ) = Ex(uTQ1x+ uTP 1u+ 2vTR1u), (15)

J2(S0, T0, γ, λ) = Ex(vTQ2x+ vTP 2v + 2vTR2u),

with ui = γi(zi(x)), vj = λi(yj(x))
(16)

A pair of team decision strategies (γ∗, λ∗) are called Nash
equilibrium strategies if

γ∗ ∈ arg min
γ
J1(S0, T0, γ, λ

∗)

λ∗ ∈ arg min
λ
J2(S0, T0, γ

∗, λ),
(17)

and the corresponding Nash equilibrium values are de-
noted by

J1∗(S0, T0) = J1(S0, T0, γ
∗, λ∗)

J2∗(S0, T0) = J2(S0, T0, γ
∗, λ∗).

(18)

Under the stated assumptions, the Nash equilibrium deci-
sion strategies γ∗i and λ∗j are unique and affine, and can be
computed by solving a set of linear equations derived from
stationarity conditions; see Basar (1978). In particular, the
Nash equilibrium solution also consists of each agent on
each team forming the conditional state estimates

x̂1
i = E[x | zi]

= x̄+XHT
i (HiXH

T
i +Ri)

−1(zi −Hix̄)
(19)

x̂2
j = E[x | yj ]

= x̄+XGTj (GjXG
T
j + Tj)

−1(yj −Gj x̄)
(20)

and using the affine decision functions

ui = γi(zi) = Aix̄+Bi(x̂
1
i − x̄), (21)

vj = λj(yj) = Cj x̄+Dj(x̂
2
j − x̄), (22)

where Ai and Bi are the unique solutions to the linear
equations

P 1
iiAi +

N∑
j 6=i

P 1
ijAj = −Q1

j

P 1
iiBi +

N∑
j=1,j 6=i

P 1
ijBjXH

T
j (HjXH

T
j +Rj)

−1Hj

+

M∑
j=1,j 6=i

R1
ijBjXH

T
j (HjXH

T
j +Rj)

−1Hj = −Q1
j ,

(23)
and Ci and Di are the unique solutions to the linear
equations

P 2
iiCi +

N∑
j 6=i

P 2
ijCj = −Q2

j

P 2
iiDi +

N∑
j=1,j 6=i

P 2
ijDjXG

T
j (GjXG

T
j + Tj)

−1Gj

+

M∑
j=1,j 6=i

R2
ijDjXG

T
j (GjXG

T
j + Tj)

−1Gj = −Q2
j ,

(24)
with P 1, Q1, R1, P 2, Q2, R2 partitioned according to the
dimensions of ui and vj .

Information Structure Design. We now pose an infor-
mation structure design problem for the blue team, with

the information structure of the red team held fixed;
an analogous problem can be posed for the red team.
As above, we form the finite set V in (8) consisting of
all possible measurements or communicated information
about the environmental state that could be added to the
information structure of the blue team. For any subset
S ⊆ V , we associate a modified information structure by
including the selected information links in the appropriate
agents’ information model.

Let J1∗(S) denote the Nash equilibrium value of the blue
team associated with the information structure modifi-
cation S. Our second problem of interest is to select an
information structure modification of size k to minimize
the Nash equilibrium value of the blue team under the
associated Nash equilibrium strategies. Again, we can pose
this as a cardinality constrained set function optimization
problem

min
S⊂V, |S|=k

J1∗(S). (25)

Remark 1. In adversarial settings, resilient information
structure design problems can be formulated for zero-sum
games as a special case of the above by setting J1 = −J2,
i.e., the blue team seeks to minimize J1 while the red team
seeks to maximize it.

Remark 2. One can also formulate variations where the
blue or red team is allowed to modify the information
structure of the other team (perhaps by adding links when
the objectives are relatively aligned, or to sabotage by
removing links or increasing noise when the objectives are
relatively unaligned).

3. INFORMATION STRUCTURE DESIGN AND
LACK OF SUPERMODULARITY

In this section we propose a simple greedy algorithm for
the set function optimization problems defined above to
formalize information structure design in team decision
and game problems. We show that the set functions are not
in general supermodular. This implies that the information
structure modifications produced by the greedy algorithm
are not in general guaranteed to come along with worst-
case theoretical suboptimality gurantees. Nevertheless, the
greedy algorithm can scale to far larger networks than
exhaustive search, and we will demonstrate empirically
that it often produces near optimal designs.

3.1 Set functions and submodularity

The information structure problems described above are
formulated as cardinality constrained set function opti-
mization problems. These problems are combinatorial and
finite, and so can be solved simply by brute force enumera-
tion and exhaustive search. However, this approach quickly
becomes intractable even for moderately sized problems.
The motivating context of large cyber-physical networks
requires a different approach.

Greedy algorithms are a simple alternative to exhaustive
search. When a set function minimization problem has
a certain property called supermodularity, a greedy al-
gorithm achieves results that are provable within a con-
stant factor of the optimal value. Supermodularity (and
the closely related submodularity) plays a similar role



in combinatorial optimization as convexity and concavity
play in continuous optimization Lovász (1983); Krause and
Golovin (2012).

Definition 1. A set function f : 2V → R is called
supermodular if for all subsets A ⊆ B ⊆ V and all elements
s /∈ B, it holds that

f(A ∪ {s})− f(A) ≤ f(B ∪ {s})− f(B), (26)

or equivalently, if for all subsets A,B ⊆ V , it holds that

f(A) + f(B) ≤ f(A ∪B) + f(A ∩B). (27)

A set function is called submodular if the reversed inequal-
ities in (26) and (27) hold and is called modular if (26) and
(27) hold with equality.

Intuitively, supermodularity is a diminishing returns prop-
erty where adding an element to a smaller set gives a
larger benefit than adding it to a larger set. Minimization
of supermodular functions (equivalently, maximization of
submodular functions) is NP-hard, but a simple greedy
heuristic can be used to obtain a solution that is provably
close to the optimal solution Nemhauser et al. (1978). The
greedy algorithm for set function minimization is shown
in Algorithm 1. Several problems in systems and control
that feature greedy algorithms and sub- or supermodu-
larity have been recently explored Bushnell et al. (2014);
Clark et al. (2014); Summers et al. (2016); Summers and
Lygeros (2014); Shames and Summers (2015); Tzoumas
et al. (2015). However, other important set function opti-
mization problems in systems and control fail to be sub-
or supermodular Summers (2016).

Algorithm 1 A greedy algorithm for set function opti-
mization.
S ← ∅
while |S| ≤ k do
e? = argmin

e∈V \S
f(S ∪ {e})

S ← S ∪ {e?}
end while
S? ← S

3.2 A greedy algorithm and lack of supermodularity

The simple greedy algorithm described in Algorithm 1 can
be directly applied to the information structure design
problems that we formulated as cardinality constrained
set function optimization problems in (10) and (25). At
each iteration, one simply adds the information link that
reduces the optimal cost the most by evaluating the
optimal cost associated with each possible additional link.
The algorithm terminates after k links have been added.

For the single team information structure design problem,
each iteration requires a set of 2n

∑
imi linear equations

to be solved to compute the 2n
∑
imi optimal strategy

coefficients Ai and Bi in (7), so the total computational
complexity is order k(n

∑
imi)

3. Within each iteration,
the function evaluations for computing the cost of each
possible additional link are trivially parallelizable, so dis-
tributed computing platforms could be used to scale com-
putations to large networks. Further, it may be possible
to exploit the sparsity often found in many cyber-physical
networks that motivate these problems.

Unfortunately, it turns out that the set functions defined
in (10) and (25) that map information structure modifi-
cations to associated optimal team cost values or Nash
equilibrium values are not in general supermodular. Con-
sider a single team (cooperative) problem with 2 players,
each of whose information could be modified by a single
additional link. Suppose

Q =

[
Q1

Q2

]
=

[
1 1
1 1

]
, P =

[
1 −0.5
−0.5 1

]
H1 = H2 = [ 1 0 ] , R1 = R2 = 0

h11 = h21 = [ 0 1 ] , r11 = r21 = 0

x̄ =

[
0
0

]
, X =

[
1 0
0 1

]
Let V = {(h11, r11), (h21, r21)}, which has four subsets:
A = {(h11, r11)}, B = {(h21, r21)}, A ∩ B = ∅, and
A∪B = V . Evaluating the cost of all of these information
structure modifications, we have:

J∗(∅) = −2, J∗(A) = −2.5,

J∗(B) = −2.5, J∗(V ) = −4

so that

J∗(A) + J∗(B)− J∗(A ∪B)− J∗(A ∩B) = 1 > 0

which violates the supermodularity inequality in Defini-
tion 1. Effectively, the cost benefit provided by each addi-
tional link individually is less than the benefit of adding
both of them together, so there is no diminishing returns
property. It is also easy to construct examples where the
submodularity inequality does not hold, so that the set
function is in general neither sub- nor supermodular. Since
the single team is a special case of the two team problem,
the set function for the Nash equilibrium value is neither
sub- nor supermodular.

This implies that the greedy algorithm does not in gen-
eral produce information structure modifications that are
within a constant factor of the globally optimal informa-
tion structure modifications of a given cardinality. How-
ever, the greedy algorithm can be an effective and scalable
heuristic, which we demonstrate empirically in the next
section.

4. NUMERICAL EXPERIMENTS

To illustrate the effectiveness of our proposed greedy al-
gorithms for information structure design, we considered
problems with randomly generated data that were small
enough to solve globally by exhaustive search. The data
was generated in the following way. We consider a single
team (cooperative) problem with 10 states and 4 players.
Each player has 3 decision variables and 2 measurements
of the state, and the set of information structure modifi-
cations consists of 2 possible additional measurements for
each player. The goal is to find the 4 best new measure-
ments (out of the 8 possible) to minimize the team cost

function. We let P = P̃T P̃ ,X = X̃T X̃ to ensure that
P and X are symmetric and positive definite, while each
element of Q, P̃ ,Hi, Ri, hij , rij , X̃ are generated indepen-
dently from a standard normal distribution N (0, 1).

We compare the information structure obtained by the
greedy algorithm with the globally optimal information



structure found by exhaustive search. For this problem
size, the greedy algorithm is about 60 times faster than
exhaustive search. We observe that the greedy algorithm
often finds a structure with the same value as or very
near the globally optimal value. In several hundred prob-
lem instances, the greedy algorithm achieves the globally
optimal value around 80% of the time, while in the worst
instance is only 25% worse than the globally optimal value.
Although there are no guarantees, our experiment shows
that the greedy algorithm can produce very good results.
Moreover, it scales to problem sizes far larger than what
can be handled by exhaustive search, making it much
more suitable for scaling to problems involving distributed
estimation and control in large cyber-physical networks.

5. CONCLUSIONS AND OUTLOOK

We have formulated information structure design problem
for team decision problems and team games, in which
the objective is to jointly design information structure
modifications together with optimal strategies. We posed
these as set function optimization problems and proposed
a greedy algorithm as a heuristic for designing good infor-
mation structures. We showed via a simple counterexample
that the associated set functions are in general not super-
modular, so that the greedy algorithms do not in general
come with worst-case performance guarantees. However,
we observed empirically that the greedy algorithm often
produces effective information structure modifications.

Our immediate future work will consider team decision
problems and games with dynamics, focusing on tractable
information structures in that setting, such as partially
nested and quadratically invariant. We will also explore
alternative convex relaxation approaches and other tech-
niques for scaling the computations to large networks.
Finally, we plan to apply the results to application areas,
including power systems and transportation networks.
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Yüksel, S. and Başar, T. (2013). Stochastic networked
control systems. AMC, 10, 12.

Zhu, B., Joseph, A., and Sastry, S. (2011a). A taxonomy
of cyber attacks on scada systems. In International



Conference on Internet of things and cyber, physical and
social computing, 380–388. IEEE.
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