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Abstract— We propose a convex relaxation heuristic for

sensor and actuator selection problems in dynamical networks

using Gramian metrics. We also propose heuristic algorithms

to enforce a rank constraint on the Gramian that can be used

in conjunction with combinatorial greedy algorithms and the

convex relaxation. This allows selection of sensor or actuator

sets that optimize an objective function while preserving a cer-

tain amount of observability or controllability throughout the

state space, combining previous methods that focus exclusively

on either rank or Gramian metrics. We illustrate and compare

the greedy and convex relaxation heuristics in several numerical

examples involving random and regular networks.

I. INTRODUCTION

Recent advances in sensing technologies are revealing
unprecedented data streams about diverse physical, tech-
nological, and social network dynamics. Further advances
in computation, communication, and actuation technologies
are increasing our ability to use this data to understand
and manipulate network dynamics using feedback control
techniques. This includes many important applications such
as efficient, reliable, and secure delivery of energy in power
grids; throughput maximization and congestion control in the
Internet and in transportation networks; unraveling natural
designs and ultimately synthesizing new functions in biolog-
ical networks; and understanding and controlling contagion
processes in social networks like financial defaults, disease,
and unhealthy behaviors.

A basic problem in the context of large dynamical net-
works is the selection or placement of sensors and actuators
in the network to provide desirable observability and con-
trollability properties. The notions of controllability and ob-
servability have been recognized for decades as fundamental
properties of dynamic systems, but there has been signif-
icant renewed interest in quantifying these notions in large
networks. The recent literature can be broadly categorized by
the metrics used to quantify controllability or observability
and the methods used for selecting sensors and actuators.

Liu et al. and much follow up work [14], [21], [8],
[16], [30], [17], [22], [19] focus on a binary quantification
using the classical Kalman rank condition and the notion
of structural controllability that reduces the problem to a
purely combinatorial one. A minimal set of actuators that
render a network structurally controllable can be obtained
using a standard maximum matching algorithm for graphs.
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However, the focus on Kalman rank and structural control-
lability excludes other important considerations; there are
many alternative controllability metrics that provide a much
richer quantification and can be optimized by appropriate
actuator selections.

Other recent work has considered problems of placing
actuators to maximize these alternative controllability met-
rics. One line the work uses Gramian-based metrics that
quantify controllability in terms of input energy required
for state transfer [25], [26], [18], [7], [28], [6]. Combi-
natorial greedy algorithms can be used to obtain effective
actuator selections, and submodularity properties that provide
theoretical performance guarantees have been discovered in
many cases. Other work uses metrics based on associated
optimal feedback control problems with greedy algorithms
[24] and optimization and convex relaxation techniques [13],
[4], [20], [15], [9]. Although heuristic selections for these
metrics in general do not come with theoretical performance
guarantees, good actuator selections can be obtained. Further
work on related network topology design problems involving
leader selection, coherence, rigidity, and user-interfaces can
be found in [3], [5], [27], [23], [29].

The main contributions of the present paper are threefold.
First, we present a convex relaxation for Gramian-based
metrics that provides a performance bound on the original
selection problem and gives several heuristic methods for
providing a good approximate solution. The relaxation results
in a semidefinite program for several interesting metrics
of the Gramian. This method complements previous results
using the greedy algorithm and submodularity properties,
in which a worst case approximation bound is obtained,
by obtaining a best case performance bound. Second, we
propose several modified greedy algorithms that allow a
rank constraint on the Gramian to be enforced in various
ways. This effectively brings together previous methods that
focus exclusively on either rank or Gramian metrics. Third,
we illustrate and compare the greedy and convex relaxation
heuristics in several numerical examples involving random
and regular networks. We observe that neither method pro-
duces superior actuator selections in all instances and that
the greedy algorithm scales to larger network sizes. We
focus here on controllability and actuator selection, but all
results have analogous counterparts and interpretations for
observability and sensor selection.

The rest of the paper is structured as follows. Section
II presents set function and mixed integer optimization
formulations of the actuator placement problem. Section III
presents the convex relaxation and greedy heuristics that



can be used to obtain approximate solutions. Section IV
presents numerical examples that illustrate and compare
the greedy and convex relaxation heuristics in random and
regular network. We give concluding remarks in Section V.

II. PROBLEM STATEMENT AND CONVEX RELAXATION

A. Network model and problem statement

Consider the linear time-invariant dynamical system mod-
eling the network dynamics

ẋ(t) = Ax(t) +B0u(t), (1)

where x(t) 2 Rn is the network state and u(t) 2 Rm is an
external input. The dynamics matrix A 2 Rn⇥n is assumed
to be stable, and the input matrix B0 2 Rn⇥m corresponds
to a (possibly empty, i.e., m = 0) set of existing actuators.
Let V = {b1, ..., bM} be a finite set of vectors b

i

2 Rn that
corresponds to possible placements of additional actuators
into the system.

We consider the set function optimization problem

maximize
S✓V

f(S)

subject to |S| = k

(A,B

S

) controllable

(2)

where f : 2

V ! R is a set function that quantifies the
controllability of the pair (A,B

S

), which we assume can be
evaluated efficiently, and B

S

= [B0 b

i

], b
i

2 S, i.e., we want
to choose a k-element subset of V to maximize f subject to
the system being controllable.

Following [25], [26], [18], [7], [28], [6], we consider
metrics associated with the controllability Gramian. For S ✓
V we associate the controllability Gramian
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which is the unique positive semidefinite solution to the
Lyapunov equation
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Various scalarizations of the Gramian, e.g., trX
S

,
tr[(X

S

)

�1
], log detX

S

, or �
min

(X

S

), quantify in various
ways the energy required to move the system around in the
state space.

The set function optimization problem (2) is a difficult
combinatorial optimization problem. For small problems, it
can be solved by brute force checking of all subsets. For
large problems without the controllability constraint, certain
combinatorial structure in f , viz. modularity or submodular-
ity, allows efficient optimization or approximation guarantees
using a simple greedy algorithm [25].

The set function optimization problem (2) can be ex-
pressed as a mixed-integer optimization problem with data
A 2 Rn⇥n, b1, ..., bM , and k and variables X = X

T 2

Rn⇥n and z 2 {0, 1}M

maximize
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subject to AX +XA
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i

= 0
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2 {0, 1}, 1T

z = k

rank(X) = n,

(5)

where the objective function is a spectral measure of the
Gramian variable X .

B. Convex relaxation

By removing the rank constraint and replacing the Boolean
constraints z

i

2 {0, 1} with the convex constraints z

i

2
[0, 1], we obtain the relaxation
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(6)

This turns out to be a convex optimization problem when
the objective function f is one of several interesting con-
cave functions the Gramian variable, e.g., g(X) = tr(X),
g(X) = �tr(X�1

), g(X) = log det(X), or g(X) =

�

min

(X). These can be expressed as semidefinite programs
and can be solved efficiently using interior point methods.
The solution of the relaxed problem does not immediately
give a solution to the original problem, but the optimal
objective value of the relaxed problem gives an upper bound
on the original problem and can serve as a quality indicator
for any heuristic method. In particular, if any heuristic
method yields a solution whose objective value is close to
the optimal objective value of the relaxed problem, then the
solution is close to optimal.

C. Selection heuristics based on the convex relaxation

There are several heuristics for obtaining selections from
the convex relaxation.

1) Sparsity-inducing regularization: First, one can intro-
duce a sparsity-inducing regularizer into (7) (and drop the
constraint 1T

z = k, which is unnecessary here for obtaining
a selection) and solve

maximize
X,z

g(X) + �kzk1

subject to AX +XA

T

+
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i=1

z

i

b

i

b

T

i

= 0

X ⌫ 0, z

i

2 [0, 1].

(7)

The parameter � is used to trade off sparsity of z with the
controllability metric f . As � is made larger, z will tend to
have fewer nonzero elements. If exactly k actuators are to
be added, bisection can be performed on �.



2) Directly from the solution of the relaxation (7): A
second simple method to generate a heuristic selection is
as follows. Let X⇤ and z

⇤ denote an optimizer of (7). Let
z

⇤
i1, ..., z

⇤
iM

denote the elements of z

⇤ sorted in descending
order, with ties broken arbitrarily. The heuristic selection is
S

relax

= {i1, ..., ik}, corresponding to the indices of the k

largest elements of z⇤.
3) Probabilistic: A final heuristic is to view z/(1T

z) as
a probability distribution over the set of possible actuator
selections. One can then use this distribution to sample
heuristic subsets that may yield good objective values.

The convex relaxation complements recent work using the
greedy algorithm and submodularity properties [25], [28],
[6]. The greedy methods give a worst case approximation
guarantee in certain cases, whereas here we get a best case
performance bound. However, as with previous work using
the greedy algorithm, the rank constraint is not guaranteed to
be satisfied by the heuristic selections based on the convex
relaxation. In the next section, we will discuss ways that
the rank constraint could be enforced while optimizing a
Gramian metric.
D. Dual problems

We now formulate a dual problem of (7) for the case where
g(X) = log detX . The dual problem is

minimize
⇤, ,�

log det(⇤A+A

T

⇤)

�1 � n+ k�+ 1T

 

subject to �+ b

T

i

⇤b
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+  

i

� 0, i = 1, ...,M

 � 0

(8)

with variables ⇤ = ⇤

T 2 Rn⇥n,  2 RM , and � 2 R.
This can be interpreted as finding a quadratic Lyapunov
function associated with the system ż(t) = A

T

z(t) that has
a dissipation function with minimum volume level sets and
contains at least M � k of the points b

i

. Dual problems
and associated interpretations can also be obtained for other
objective functions.

III. GREEDY GRAMIAN METRIC OPTIMIZATION UNDER
RANK CONSTRAINTS

In this section we consider the problem of optimizing a
certain Gramian metric subject to a rank constraint. Recall
that a linear dynamical system with given dynamics and
input matrices is controllable if and only if the associated
controllability Gramian X is full rank, i.e., rank(X) = n.

We have the following assumptions.
Assumption 1: There exists a set M? ✓ {1, . . . ,M} such

that the solution of AX +XA

T

+

P
i2M? b

i

b

T

i

= 0 is full-
rank.

Assumption 2: There is no i, j = 1, . . . , n such that
�

i

(A) 6= ��
j

(A) where �
i

(A) and �

j

(A) are eigenvalues
of A.

Lemma 1: Consider Assumptions 1 and 2. Let X
i

satisfy
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+X
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A
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= 0 (9)

where b

i

is the i-th column of B. Moreover, assume that for
some i, j 2M, rank(X

i

) � rank(X
j

) and rank(X
i

+X

j

) =

rank(X
i

). Then rank(
P

i2M\{j} Xi

) = n.

Proof: First, in the light of Assumption 2 note that
each X

i

, i 2 M is the unique solution to (10) and is
positive semidefinite. Additionally because of Assumption
1 rank(

P
i2M X

i

) = n. Let X , P
i2M\{i,j} Xi

. It is
enough to show u

T

(X

i

+X)u > 0 for all u 2 Rn. Assume
there is a v 2 Rn such that vT (X

i

+ X)v = 0. We know
u

T

(X

i

+X

j

+X)u > 0 for all u 2 Rn. Thus, vTX
j

v > 0

and v

T

X

i

v = 0. On the other hand, let r

i

, rank(X
i

).
Moreover, uT

(X

i

+X

j

)u > 0 if uT

X

i

u > 0 or uT

X

j

u > 0.
We know u

T

X

i

u > 0 for all u in the r

i

-dimensional space
spanned by r

i

eigenvectors of X
i

associated with its nonzero
eigenvalues. Hence, uT

(X

i

+X

j

)u > 0 for all u in the same
space, and since rank(X

i

+X

j

) = r

i

there is no u such that
u

T

X

i

u = 0 and u

T

X

j

u > 0. Thus there is no v such that
v

T

X

j

v > 0 and v

T

X

i

v = 0 and it completes the proof.

To satisfy the rank constraint for controllability, we would
like to find z 2 {0, 1}M such that X?, the solution to

AX

?

+X

?

A

T

+

MX

i=1

z

i

b

i

b

T

i

= 0 (10)

with b

i

being the i-th column of B, satisfies rank(X?

) = n.
Moreover, it is desired that

P
M

i=1 zi is minimized. This can
be posed as the following optimization problem:

minimize
X,z,k

k

subject to AX +XA

T

+

MX

i=1

z

i

b

i

b

T

i

= 0

rank(X) = n, z

i

2 {0, 1}, k =

MX

i=1

z

i

(11)
Although this is known to be an extremely difficult problem
[17], Algorithm 1 proposes a greedy heuristic.

Algorithm 1 A Greedy Algorithm for (12)
Require: A, B
X  0, S  {1, . . . ,M}, S  ;
X

i

satisfies AX

i

+X

i

A

T

+ b

i

b

T

i

= 0, 8i 2 {1, . . . ,M}
while rank(X) < n do

i

? 2 argmax
i2S

[rank(X +X

i

)� rank(X)]

X  X +X

i

?

S  S [ {i?}
S  S \ {i?}

end while

X

?  X , S?  S

Proposition 1: Under Assumptions 1 and 2, Algorithm 1
returns a feasible solution at most after M steps.

Proof: Without loss of generality assume g(X1) 
· · ·  g(X

M

). First, note that the problem is feasible at each
iteration l, if rank(

P
i2S X

i

) = n at the start of the iteration.
Again without loss of generality assume that up to step i, n >

rank(X1 + · · ·+X

i�1) > rank(X1 + · · ·+X

i�2). However,



at the i-th step rank(X1+· · ·+X

i

) = rank(X1+· · ·+X

i�1),
that results in the exclusion of {i} from M. Nevertheless,
due to Lemma 1, rank(

P
i2S=M\{i} Xi

) = n. Reapplying
Lemma 1 at each step l such that rank(X1 + · · · + X

l

) =

rank(X1 + · · · + X

l�1) ensures that at each step there is
a set J 2 S such that rank(

P
i2S

S
J X

i

) = n and in
the worst case scenario, J = {M} which means the rank
condition rank(X) = n is satisfied at the last evaluation and
the algorithm terminates at the M -th step.

Remark 1: For the case where g(X) is a modular set
function [26], it holds that g(

P
i2S? X

i

)  g(

P
i2M X

i

)

where S? is obtained from the algorithm and M ⇢M such
that |M| = |S?| and rank(

P
i2M X

i

) = n.
Remark 2: Assuming that X

i

are given, the worst case
computational complexity of Algorithm 1 is M

2
n

3.
Remark 3: The computations in each step of Algorithm 1

are amenable to parallel computations. Each of the Lyapunov
equations to find X

i

can be solved independently of the other
ones using parallel algorithms [12]. In turn, the singular value
decomposition required to check the rank increase can be
done in parallel for each X

i

.
In general, to connect back to our original problem state-

ment, we would like to maximize a performance metric of the
controllability Gramian while finding a small set of actuators
that provides controllability. For the rest of this section we
consider the trace of the controllability Gramian as this
performance function, though any efficiently computable
function can be used. This problem can be formulated as a
multi-objective optimization problem of the following form:

minimize
X,z,k

(k, �tr(X))

subject to AX +XA
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+
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i

b

i

b

T

i

= 0

rank(X) = n, z
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2 {0, 1}, k =

MX

i=1

z

i

.

(12)
Algorithm 1 can be modified to produce alternative heuristics
for this problem. Two different greedy algorithms that return
a solution to (13) are presented in Algorithms 2 and 3. These
algorithms are not guaranteed to return optimal selections,
but they can provide small actuator subsets to provide
good controllability in terms of the Gramian metric while
satisfying the rank constraint.

Similarly, to improve the heuristic outputs of Algorithms
1, 2, or 3, one can employ a stingy algorithm to prune
those elements of S? that do not contribute to satisfying the
controllability conditions of the system while minimizing the
impact of their removal. Algorithm 4 is proposed to achieve
such pruning.

IV. EMPIRICAL COMPARISON OF GREEDY AND CONVEX
RELAXATION HEURISTICS

In this section we present several illustrative numerical ex-
amples to compare the greedy and convex relaxation heuris-
tics in both random and regular networks. In all examples, we

Algorithm 2 A Greedy Algorithm for (13).
Require: A, B
X  0, S  {1, . . . ,M}, S  ;
X

i

satisfies AX
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= 0, 8i 2 {1, . . . ,M}
while rank(X) < n do
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end while
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Algorithm 3 A Greedy Algorithm for (13).
Require: A, B
X  0, S  {1, . . . ,M}, S  ;, z

i
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end if
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end while
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Algorithm 4 A Stingy Algorithm for Pruning S?
Require: A, B,

# bS and b
X are the outputs of Algorithms 1, 2, or 3.
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end while

X

?  X , S?  S

generate a network whose structure defines non-zero entries
in the dynamic matrix and then randomly generate weights
associated with non-zero entries by drawing independently
from a standard normal distribution. We then shift the matrix
so that it is stable, with the slowest eigenvalue(s) having
real part -0.05. We assume that an input signal could be
injected into any state node, i.e., the set V of possible input
matrix vectors corresponds to the standard basis for the state
space. For the convex relaxation, we use the second heuristic



(a) (b)
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Fig. 1. Selecting actuator nodes in a 40-node Barabási-Albert random
network to minimize the trace of the controllability Gramian (pseudo)
inverse: (a) convex relxation, (b) greedy algorithm without rank constraints,
(c) greedy algorithm with rank constraints. Actuator nodes are highlighted
in red. Each algorithm produces a different set of 15 actuators, while the
greedy algorithm with rank constraints requires 20 actuators to be added to
satisfy the constraint.

described in Section II-C to obtain actuator selections.
Barab

´

asi-Albert networks: We first consider selecting 15
actuator nodes to minimize the trace of the controllability
Gramian (pseudo) inverse in a 40-node Barabási-Albert
network, which is generated with a preferential attachment
mechanism that produces power law degree distributions [2].
A representative instance of this problem and results for the
convex relaxation and greedy algorithms with and without
rank constraints is shown in Fig. 1.

Erd

˝

os-R

´

enyi networks: We next consider selecting 5
actuator nodes to minimize the trace of the controllability
Gramian (pseudo) inverse in a 50-node Erdős-Rényi random
networks, with the edge probability chosen to be 0.08, above
the critical value of ln(50)/50 to ensure connectivity of the
network [10]. A representative instance of this problem and
results for the convex relaxation and greedy algorithms with
and without rank constraints is shown in Fig. 2.

Regular cycle networks: Finally, we consider selecting
10 actuator nodes to minimize the trace of the controlla-
bility Gramian (pseudo) inverse in a 50-node regular cycle
network. An instance of this problem is shown in Fig. 3.

Discussion: We observe that each method generally pro-
duces a different selection of actuator nodes, though in some
cases certain actuator nodes are common to all three selected
sets. The greedy algorithm with rank constraints may require
additional or even fewer actuators to enforce the constraint
but generally produces actuator subsets the provide worse
controllability in terms of trace of the inverse Gramian.

We now compare the greedy algorithm without rank
constraints and the convex relaxation. Here in each of these
instances, the greedy algorithm produced actuator subsets
that provide better controllability in terms of trace of the
inverse Gramian. However, we generated many instances of
the random networks and varied parameters such as network
size and number of actuators added and observed that neither

(a) (b)

(c)

Fig. 2. Selecting actuator nodes in a 50-node Erdős-Rényi random network
to minimize the trace of the controllability Gramian (pseudo) inverse: (a)
convex relaxation, (b) greedy algorithm without rank constraints, (c) greedy
algorithm with rank constraints. Actuator nodes are highlighted in red.
Each algorithm produces a different set of 5 actuators, while the greedy
algorithm with rank constraints requires 7 actuators to be added to satisfy
the constraint.

(a) (b)

(c)

Fig. 3. Selecting actuator nodes in a 50-node regular cycle network to
minimize the trace of the controllability Gramian (pseudo) inverse: (a)
convex relaxation, (b) greedy algorithm without rank constraints, (c) greedy
algorithm with rank constraints. Actuator nodes are highlighted in red.
Each algorithm produces a different set of 10 actuators, while the greedy
algorithm with rank constraints requires only 8 actuators to be added to
satisfy the constraint.

method is clearly superior to the other in these network
types. For example, we ran the algorithms on 200 40-
node Barabási-Albert networks, and the greedy algorithm
produced a better actuator subset on just over half of the
instances.

A difficulty in comparing these algorithms is that even
for these moderately sized networks, the Gramian often
has several very small eigenvalues corresponding to state
space directions that require large input energy to achieve
state transfer. The trace of the Gramian pseudoinverse and
rank computations are then highly sensitive to the threshold
defining which eigenvalues are considered numerically zero.
The appropriate threshold depends highly on modeling and
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Fig. 4. Computation times for placing n/10 actuators in a n-node Barabási-
Albert random network to minimize the trace of the controllability Gramian
(pseudo) inverse. The greedy algorithm scales to larger networks.

application context to interpret whether the required input
energy for state transfer in certain directions is feasible.

Finally, we compared computation times for the convex re-
laxation and greedy algorithm without rank constraints (rank
constraints were not observed to contribute significantly to
computation times). We implemented the convex relaxation
using the parser CVX [11] with the semidefinite program-
ming solver Mosek [1]. All computations were performed
on a 1.7 GHz Intel Core i7 processor. Results are shown
in Fig. 4, where it can be seen that the greedy algorithm
can scale to larger networks. It is possible to use custom
semidefinite programming algorithms [9] and accelerated or
parallel greedy algorithms [27] to speed up both methods,
so a comprehensive comparison will require further study.

V. CONCLUSION

We considered an actuator placement problem in a dy-
namical network using Gramian metrics to quantify con-
trollability. We proposed a convex relaxation that provides
lower bounds and can be used in various ways to generate
heuristic actuator subsets. We also propose a modified greedy
algorithm that allows a rank constraint to be enforced.
Finally, we presented numerical experiments that compare
the convex relaxation with greedy algorithms.
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