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Abstract
We propose a robust data-driven output feedback control algorithm that explicitly incorporates in-
herent finite-sample model estimate uncertainties into the control design. The algorithm has three
components: (1) a subspace identification nominal model estimator; (2) a bootstrap resampling
method that quantifies non-asymptotic variance of the nominal model estimate; and (3) a non-
conventional robust control design method comprising a coupled optimal dynamic output feedback
filter and controller with multiplicative noise. A key advantage of the proposed approach is that
the system identification and robust control design procedures both use stochastic uncertainty rep-
resentations, so that the actual inherent statistical estimation uncertainty directly aligns with the
uncertainty the robust controller is being designed against. Moreover, the control design method ac-
commodates a highly structured uncertainty representation that can capture uncertainty shape more
effectively than existing approaches. We show through numerical experiments that the proposed
robust data-driven output feedback controller can significantly outperform a certainty equivalent
controller on various measures of sample complexity and stability robustness.
Keywords: Robust data-driven control, output feedback, bootstrap, multiplicative noise, sample
complexity

1. Introduction

The intersection of data-driven learning and model-based control continues to provide significant
research challenges despite its long history and vast research literature. Recent work has focused on
non-asymptotic analysis of sample complexity, regret, and robustness, in contrast to a classical focus
on asymptotics and stability. Approaches for data-driven control can be broadly divided into two
categories: “model-based” (or “indirect”), in which a model for the system dynamics is first learned
from data and then used to design a control policy, and “model-free” (or “direct”), in which a control
policy is learned directly from data without explicitly learning a model for the system dynamics.
Model-based approaches can be further divided into two categories: certainty equivalent, in which
uncertainty in the learned model is ignored during control design, and robust, in which uncertainty
in the learned model is explicitly accounted for in control design.

Much recent work has considered the full state feedback setting, and some results have very
recently been obtained in the partially observed output feedback setting. Finite-sample bounds for
system identification from input-state data have been obtained in Simchowitz et al. (2018); Dean
et al. (2020) and from input-output data in Care et al. (2017); Tsiamis and Pappas (2019); Sun
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et al. (2020); Jedra and Proutiere (2019); Oymak and Ozay (2021); Sarkar et al. (2021). Sample
complexity and regret bounds for the Linear Quadratic Gaussian problem are described in Zheng
et al. (2021); Zhang et al. (2021) and Lale et al. (2020, 2021); Simchowitz et al. (2020), respectively.

In the partially observed setting, issues around robustness to model uncertainty are much more
pronounced than in the full state feedback setting, a fact long known in control theory Doyle (1978).
Certainty equivalent approaches that ignore model uncertainty can lead to fragile designs, while ex-
isting approaches the incorporate model uncertainty often utilize very coarse uncertainty represen-
tations (e.g., spectral norm balls), even when obtaining order optimal statistical sample complexity
or regret rates. A good balance between performance and robustness in practice requires carefully
constructed and structured uncertainty representations; just as much effort should go into estimating
from data the shape (not just size) of model uncertainty as the nominal model itself. This becomes
especially important as the uncertainty dimension increases: structured uncertainties may have far
less volume (in model space) than unstructured ones, thereby enabling superior performance. De-
veloping algorithms with good non-asymptotic performance and robustness properties remains a
significant challenge, both in theory and in practice. To address this challenge, Gravell and Sum-
mers (2020) proposed a data-driven robust control scheme via bootstrapped multiplicative noise for
systems with perfect full state measurements; the present work extends these ideas to the partially
observed output feedback setting.

Contributions. The contributions of the present work are as follows:
1. We propose a robust data-driven output feedback control algorithm where the model uncer-

tainty description and robust control design method both use highly structured stochastic un-
certainty representations.

2. We present a novel semi-parametric bootstrap algorithm for quantifying structured paramet-
ric uncertainty in state space models obtained from subspace identification algorithms using
input-output data.

3. We show via numerical experiments that the proposed robust data-driven output feedback
controller can significantly outperform a certainty equivalent controller on various measures
of sample complexity and stability robustness. We make open-source code implementing the
algorithms and experiments freely available.

The algorithm has three components: (1) a subspace identification nominal model estimator; (2) a
novel semi-parametric bootstrap resampling method that quantifies non-asymptotic variance of the
nominal model estimate; and (3) a non-conventional robust control design method using an optimal
linear quadratic coupled estimator-controller with multiplicative noise. This approach provides a
natural interface between several highly effective methods from system identification, statistics, and
optimal control theory (namely, subspace identification, bootstrap resampling, and robust control).
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1.1. Notation

Symbol Meaning
Rn×m Space of real-valued n×m matrices
Sn Space of symmetric real-valued n× n matrices
Sn+ Space of symmetric real-valued positive semidefinite n× n matrices
Sn++ Space of symmetric real-valued strictly positive definite n× n matrices
ρ(M) Spectral radius (greatest magnitude of an eigenvalue) of a square matrix M
∥M∥ Spectral norm (greatest singular value) of a matrix M
∥M∥F Frobenius norm (Euclidean norm of the vector of singular values) of a matrix M
M ⊗N Kronecker product of matrices M and N
vec(M) Vectorization of matrix M by stacking its columns
mat(v) Matricization of vector v such that mat(vec(M)) =M
svec(M) Symmetric vectorization of matrixM by stacking columns of the upper triangular

part, including the main diagonal, with off-diagonal entries multiplied by
√
2 such

that ∥M∥2F = svec(M)⊺ svec(M)
smat(v) Symmetric matricization of vector v i.e. inverse operation of svec(·) such that

smat(svec(M)) =M
M ≻ (⪰) 0 Matrix M is positive (semi)definite
M ≻ (⪰) N Matrix M succeeds matrix N as M −N ≻ (⪰) 0

Let GL(n) denote the general linear group of size n, that is the set of non-singular n × n matrices
together with the operation of matrix multiplication. An ordered sequence of vectors is denoted in
the compact notation x0:T = [x0, x1, . . . , xT ].

2. Problem Formulation: Data-Driven Output Feedback Control

We consider data-driven control of the discrete-time linear dynamical system

xt+1 = Axt +But + wt, (1)

yt = Cxt + vt (2)

where xt ∈ Rn is the system state, ut ∈ Rm is the control input, yt ∈ Rp is the measured output,
and wt and vt are i.i.d. process and measurement noises with zero mean and covariance matrices W
and V , respectively. The system matrices (A,B,C) and noise covariances (W,V ) are grouped into
the true model M = (A,B,C,W, V ) which is assumed unknown.1 Given only on a single training
trajectory of finite length T of input-output data DT = (ytrain

0:T , u
train
0:T−1) generated by the true system

(1), (2), a data-driven input-output history-dependent control policy ut = π(y0:t, u0:t−1) is to be
designed. We assume that the input signal that produced the training trajectory was persistently
exciting to avoid identifiability issues (see Definition 5 of Van Overschee and De Moor (2012)).

The performance of an arbitrary policy π is characterized by the infinite-horizon time-averaged
linear-quadratic output-input criterion

H(π) := lim
T →∞

1

T
E

[T −1∑
t=0

y⊺t Y yt + u⊺tRut

]
(3)

1. We assume the order n of the underlying system is known; future work will address systems with unknown order.
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where Y ≻ 0 and R ≻ 0 are penalty matrices, ut = π(y0:t, u0:t−1), the initial state x0 is a
random vector with zero mean and identity covariance independent of the noises wt and vt, and
the expectation is taken with respect to the process and measurement noise sequences and the initial
state. Notice that this formulation permits one to choose the output penalty Y ≻ 0, which can
be specified even if the true underlying state xt and system model are unknown. The output-input
performance criterion (3) is equivalent, up to a shift by a problem-dependent constant, to a state-
input performance criterion with a penalty matrix Q = C⊺Y C ⪰ 0, such that

J(π) := lim
T →∞

1

T
E

[T −1∑
t=0

x⊺tQxt + u⊺tRut

]
= H(π)− Tr(Y V ) (4)

so that minimization ofH is tantamount to minimization of J , which is shifted by a positive constant
Tr(Y V ) that does not depend on the policy.

We focus on a sequential design pipeline, in which the data is first used to identify a system
model M̂(DT ) and then an output feedback control policy πM̂(DT ) is designed based on the iden-

tified model; note that the identified model M̂(DT ) is more generic and may have alternative or
additional structure compared to the true model M. A linear dynamic compensator is a policy
which combines a linear state estimator with a linear state estimate feedback in the form

x̂t+1 = Fx̂t + Lyt, ut = Kx̂t. (5)

Such a compensator is fully specified by the triple (F,K,L), and the specification need not depend
on the state xt or system matrices (A,B,C) of the underlying system. The optimal cost is the con-
stant J∗ = minπ J(π) = J(πM), which is achieved when the true model M is known and used in
the canonical linear quadratic Gaussian (LQG) control policy πM, a linear dynamic compensator
with F = A + BK − LC and gain matrices (K,L) computed (separately) as the solution to two
decoupled algebraic Riccati equations, which can be accomplished via several well-known meth-
ods such as the dynamic programming techniques of policy iteration and value iteration Bertsekas
(2012), convex semidefinite programming Boyd et al. (1994), and specialized direct linear algebraic
methods Laub (1979). Therefore, we restrict attention to the class of linear dynamic compensators
in (5). Using a compensator (F,K,L), the closed-loop system dynamics become the autonomous
stochastic difference equation[

xt+1

x̂t+1

]
=

[
A BK
LC F

] [
xt
x̂t

]
+

[
I 0
0 L

] [
wt

vt

]
(6)

Denote the following augmented closed-loop matrices

Φ =

[
A BK
LC F

]
, Q′ =

[
Q 0
0 K⊺RK

]
, W ′ =

[
W 0
0 LV L⊺

]
. (7)

The stability of the closed-loop system is characterized by the spectrum of the matrix Φ, namely if
ρ(Φ) < 1 then the closed-loop system is stable in the sense that the covariance of the augmented
state [xt x̂t]

⊺ converges to a finite positive definite matrix as t → ∞. With such stability, the
steady-state value matrix P ′ and the steady-state covariance S′ of [x⊺t x̂

⊺
t ]
⊺ are found by solving the

discrete-time Lyapunov equations

P ′ = Φ⊺P ′Φ+Q′, S′ = ΦS′Φ⊺ +W ′. (8)
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With a slight abuse of notation, the performance criterion (4) can be expressed and computed as

J(F,K,L) = Tr(P ′W ′) = Tr(S′Q′). (9)

Denote the performance criterion and closed-loop system matrix under a linear dynamic compen-
sator (F̂T , K̂T , L̂T ) designed with the T -step data record DT as JT = J(F̂T , K̂T , L̂T ) from (9)
and ΦT from (7), respectively. The quantity of primary interest is JT

J∗ ∈ [1,∞), which represents
the normalized infinite-horizon performance at time T . Since the policy is computed based on a
model identified from noisy finite data, the ratio JT

J∗ is a random variable. We are interested in its
finite sample behavior and finiteness (which relates to stability robustness); in particular, we would
like to know not only in how in how the mean or median scale with the data length T , but also
how the upper tails scale. These properties depend on whether and how inherent uncertainty in the
identified model is accounted for in the controller design. Certainty equivalent approaches ignore
the model uncertainty altogether, which may lead to serious finite sample robustness issues. Here
we aim to explicitly incorporate the model uncertainty in the controller design. In particular, we
propose a robust data-driven output feedback control algorithm that explicitly accounts for finite-
sample model uncertainty in an identified model using a multiplicative noise framework, estimated
via the bootstrap.

3. Robust Control via Bootstrapped Multiplicative Noise

Our robust data-driven control algorithm is summarized in Algorithm 1, The algorithm has three
main components: (1) a subspace identification nominal model estimator; (2) a bootstrap resam-
pling method that quantifies non-asymptotic variance of the nominal model estimate; and (3) a
non-conventional robust control design method using an optimal LQG with multiplicative noise.

Algorithm 1 Robust Data-Driven Output Feedback Control
Input: single trajectory data DT = (ytrain

0:T , u
train
0:T−1), number of bootstrap resamples Nb, model

uncertainty scaling parameter γ, penalty matrices Y ≻ 0, R ≻ 0
1: (ÂT , B̂T , ĈT , ŴT , V̂T , ÛT , ŵ0:T , v̂0:T ) = SubspaceID (y0:T , u0:T−1)
2: (Σ̂AT

, Σ̂BT
, Σ̂CT

) = BootstrapModelCovariance (y0:T , u0:T−1, ÂT , B̂T , ĈT , ŵ0:T , v̂0:T , Nb)
3: (F̂T , K̂T , L̂T ) = MultiNoiseLQG(ÂT , B̂T , ĈT , ŴT , V̂T , ÛT , Ĉ

⊺
TY ĈT , R, Σ̂AT

, Σ̂BT
, Σ̂CT

, γ)

3.1. Subspace Identification for Nominal Model Estimation

The first component of the algorithm is a subspace identification algorithm to estimate the unknown
system matrices from input-output trajectory data. Subspace identification algorithms have been
developed and studied for several decades Van Overschee and De Moor (2012). There are sev-
eral variations, which all involve constructing block Hankel matrices from the data and estimating
certain subspaces via singular value decompositions, from which the system matrices and noise
covariances can be retrieved. Any of these can be used within the proposed framework, but for
concreteness we use the so-called N4SID algorithm Van Overschee and De Moor (1994). Based
on the input-output data (ytrain

0:T , u
train
0:T−1), the subspace identification algorithm produces a nominal

estimate of the system state space matrices and the process and measurement noise covariances:

(ÂT , B̂T , ĈT , ŴT , V̂T , ÛT ) = SubspaceID(ytrain
0:T , u

train
0:T−1). (10)
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Due to space constraints we refer readers to the literature, e.g. “Combined Algorithm 1” in Chapter
4 of Van Overschee and De Moor (2012), for details of the subspace identification algorithm.

Due to non-uniqueness of state space representations, the system matrices are estimated within a
similarity transformation of an underlying unknown representation. Based on the input-output data
and the estimated system matrices, subspace algorithms generate residuals of the process and mea-

surement noises {ŵτ}t−1
τ=0, {v̂τ}T−1

τ=0 from which sample average covariance estimates
[
ŴT ÛT

Û⊺
T V̂T

]
are produced. Because the estimated system matrices (ÂT , B̂T , ĈT ) do not share a state coordinate
system with the true system matrices (A,B,C), even though the true cross-covariance between
wt and vt is assumed zero, the cross-covariance of the estimates disturbances ŵt and v̂t may be
non-zero and must be estimated and accounted for in the compensator design.

3.2. Bootstrap Resampling to Quantify Non-Asymptotic Model Uncertainty

There are inevitably errors in model estimates obtained from subspace identification using any finite
data record, due to the process and measurement noises. It is difficult to analytically characterize
non-asymptotic uncertainty in these estimates. Quantifying uncertainty is subspace identification es-
timates has been considered in Viberg et al. (1991); Bauer et al. (1999); Bauer and Jansson (2000);
Reynders et al. (2008), which focus on asymptotic results. Bootstrapping has been used to quan-
tify non-asymptotic uncertainty in Bittanti and Lovera (2000) for input-output quantities such as
frequency response or pole locations. However, to our best knowledge, these uncertainty quantifi-
cations have not been used for control design.

To quantify non-asymptotic uncertainty in the model estimate, we propose a novel semi-parametric
time series bootstrap resampling procedure. In semi-parametric methods, bootstrap data are simu-
lated from the nominal model with the process and measurement noise sampled i.i.d. with replace-
ment from residuals calculated with the nominal model Härdle et al. (2003). Dependence in the
data is preserved by construction. There are also purely parametric and non-parametric versions of
the bootstrap. Generally, the semi- and nonparametric bootstraps are less sensitive to assumptions
about the model and the noise distribution, while the semi- and pure parametric bootstraps have bet-
ter small sample performance when the model is correctly specified. The bootstrap resamples allow
for various estimates of finite-sample uncertainty associated with the nominal model; here, we will
utilize an estimate of the covariance of the model parameters. For concreteness, a semi-parametric
bootstrap with resampled residuals discussed above is summarized in Algorithm 2.

State-space Alignment
Due to non-uniqueness of state space representations, the uncertainty representation should not be
obtained directly from a sample covariance of the bootstrap resamples. Instead, for each resample
we first find a similarity transformation that minimizes the total squared error to the nominal state
space model, and then compute a sample covariance in the transformed coordinates. Ideally, we
would form and solve the following optimization problem

min
T∈GL(n)

d̃(T ) = ψA∥TĀT−1 − Â∥2F + ψB∥TB̄ − B̂∥2F + ψC∥C̄T−1 − Ĉ∥2F (11)

which attempts to bring the source model (Ā, B̄, C̄) as close to the nominal model (Â, B̂, Ĉ) as
possible by selecting the decision matrix T that defines the coordinate transformation. Notice that
the coordinates of the nominal model (Â, B̂, Ĉ) are treated as a ground truth to which the source
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model (Ā, B̄, C̄) should be aligned; reversing their roles would yield a different, less meaningful
transformation. The constants ψA, ψB , ψC are user-selected to tune the relative weight of the align-
ment of A, B, and C. For simplicity these are set to unity; further tuning of these constants is left to
future work. This problem has been referred to as the “realization alignment” problem; however, as
noted by Jimenez et al. (2013), there are several mathematical issues which complicate solving this
problem to global optimality, including the non-compactness of GL(n) and nonconvexity of d̃. The
approach developed in Jimenez et al. (2013) to address these issues is specialized to a certain class
of LTI systems, namely those with C full column rank, which may not include the LTI systems
which result from the subspace identification algorithm we use in this work, and is therefore not
appropriate for the current setting.

As an alternative, we use a slightly different objective which does not involve the inverse of the
transform matrix T , and is in fact linear in the transform matrix T and is no longer constrained to
GL(n):

min
T∈Rn×n

d(T ) = ψA∥TĀ− ÂT∥2F + ψB∥TB̄ − B̂∥2F + ψC∥C̄ − ĈT∥2F (12)

Another alternative is the dual problem

min
T−1∈Rn×n

ddual(T
−1) = ψA∥ĀT−1 − T−1Â∥2F + ψB∥B̄ − T−1B̂∥2F + ψC∥C̄T−1 − Ĉ∥2F (13)

where the inverse transform matrix T−1 is used as the decision variable instead. Notice that the
solution of (13) is the same as that of a problem of the form of (12) with the roles of the target
(Â, B̂, Ĉ) and source (Ā, B̄, C̄) models reversed. However, in general the solutions T to each of
the problems (11), (12) and (13) are not the same; the choice between (12) and (13) is somewhat
arbitrary, so we choose the former. The problem (12) is unconstrained, smooth, and strictly convex;
as such there is a unique global minimizer located at the stationary point where the derivative of
the objective vanishes. Explicitly, the derivative of the objective can be found by expressing the
objective in terms of the trace as

d(T ) = ψATr
[
(TĀ− ÂT )⊺(TĀ− ÂT )

]
+ ψB Tr

[
(TB̄ − B̂)⊺(TB̄ − B̂)

]
+ ψC Tr

[
(C̄ − ĈT )⊺(C̄ − ĈT )

]
then using standard matrix derivative rules e.g. Petersen and Pedersen (2012) to obtain the derivative

∂d

∂T
= 2ψA

(
TĀĀ⊺ + Â⊺ÂT − Â⊺TĀ− ÂT Ā⊺

)
+ 2ψB

(
TB̄B̄⊺ − B̂B̄⊺

)
+ 2ψC

(
Ĉ⊺ĈT − Ĉ⊺C̄

)
Setting the derivative equal to zero yields a linear matrix equation in T , in fact a kind of generalized
Lyapunov equation, which can be solved e.g. via vectorization and Kronecker products and solution
of a linear vector equation:

T = mat
[
G−1 vec(H)

]
(14)
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where G and H are the matrices

G = ψA

(
ĀĀ⊺ ⊗ In + In ⊗ Â⊺Â− Ā⊺ ⊗ Â⊺ − Ā⊗ Â

)
+ ψB

(
B̄B̄⊺ ⊗ In

)
+ ψC

(
In ⊗ Ĉ⊺Ĉ

)
,

H = ψBB̂B̄
⊺ + ψCĈ

⊺C̄.

It is assumed that G is invertible so that this equation is solvable and results in an invertible trans-
formation matrix T . Then the transformed system matrices are computed as

Ã = TĀT−1, B̃ = TB̄, C̃ = C̄T−1, W̃ = TW̄T ⊺, Ṽ = V̄ , Ũ = TŪ. (15)

Note that in the special case when the nominal model (Â, B̂, Ĉ) and the source model (Ā, B̄, C̄)
are related exactly by a similarity transformation, the solution T to the optimization problem is
precisely this similarity transform, the optimal objective value is identically zero, and we obtain
exact matching (Ã, B̃, C̃) = (Â, B̂, Ĉ). This coordinate alignment is incorporated into the model
covariance estimation Algorithm 2.

Algorithm 2 Semi-parametric Bootstrap Model Covariance Estimation

Input: trajectory data (y0:t, u0:t−1), nominal model estimate (Ât, B̂t, Ĉt), residuals
{ŵτ}tτ=0, {v̂τ}tτ=0, number of bootstrap resamples Nb

1: x̄0 = x̂0
2: ū0:t−1 = u0:t−1

3: for k = 1, . . . , Nb do
4: Generate data x̄τ+1 = Âtx̄τ + B̂tūτ + w̃τ , ȳτ = Ĉtx̄τ + ṽτ , τ = 0, ..., t− 1, where w̃0:t−1

and ṽ0:t−1 are i.i.d. resamples with replacement from residuals ŵ0:t−1 and v̂0:t−1

5: (Âk
t , B̂

k
t , Ĉ

k
t ,−,−,−,−,−) = SubspaceID(ȳ0:t, ū0:t−1)

6: T ∗ = argminT∈Rn×n ∥TÂt − Âk
t T∥2F + ∥TB̂t − B̂k

t ∥2F + ∥Ĉt − Ĉk
t T∥2F

7: Ãk
t = T ∗ÂtT

∗−1, B̃k
t = T ∗B̂t, C̃k

t = ĈtT
∗−1

8: end for
Output: Bootstrap sample covariance Σ̂At =

1
Nb−1

∑Nb
k=1 vec(Ãk

t − Ât)vec(Ãk
t − Ât)

⊺

Bootstrap sample covariance Σ̂Bt =
1

Nb−1

∑Nb
k=1 vec(B̃k

t − B̂t)vec(B̃k
t − B̂t)

⊺

Bootstrap sample covariance Σ̂Ct =
1

Nb−1

∑Nb
k=1 vec(C̃k

t − Ĉt)vec(C̃k
t − Ĉt)

⊺

3.3. Multiplicative Noise LQG: Combined Controller and State Estimator

The model covariance estimate generated from bootstrap resampling interfaces quite naturally with
a variant of the optimal linear quadratic output feedback controller that incorporates multiplicative
noise, which has a long history in control theory but is far less widely known than its additive
noise counterpart (Wonham (1967); Bernstein and Greeley (1986); De Koning (1992); Gravell et al.
(2019)). Consider the optimal control problem to find an output feedback controller ut = π(y0:t)
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for dynamics perturbed by multiplicative noise

minimize
π∈Π

lim
T →∞

1

T
E

T −1∑
t=0

(x⊺tQxt + u⊺tRut), (16)

subject to xt+1 = (A+ Āt)xt + (B + B̄t)ut + wt, (17)

yt = (C + C̄t)xt + vt

where Āt, B̄t, and C̄t are i.i.d. zero-mean random matrices with a joint covariance structure over
their entries governed by the covariance matrices ΣA := E[vec(Ā) vec(Ā)⊺] ∈ Rn2×n2

, ΣB :=
E[vec(B̄) vec(B̄)⊺] ∈ Rnm×nm, ΣC := E[vec(C̄) vec(C̄)⊺] ∈ Rpn×pn which quantify uncertainty
in the nominal system matrices (A,B,C). The expectation is taken with respect to all of the basic
random quantities in the problem, namely x0, {Āt}, {B̄t}, {C̄t}, {wt}, {vt}.

Due to the multiplicative noise, the state distribution is non-Gaussian even when all primi-
tive distributions are Gaussian, so the Kalman filter is not necessarily the optimal state estimator.
However, the optimal linear output feedback controller can be exactly computed, and consists of a
multiplicative noise linear dynamic compensator of the form (5). In this case, there is no separation
between estimation and control, so the optimal controller and estimator gains (K,L) must be jointly
computed. Specifically, the optimal gains can be computed by solving the coupled nonlinear matrix
equations in symmetric matrix variables X = (X1, X2, X3, X4)

X1 = Q+A⊺X1A+
n2∑
i=1

αiA
⊺
iX1Ai −K⊺

R+B⊺X1B +
nm∑
j=1

βjB
⊺
jX1Bj +

nm∑
j=1

βjB
⊺
jX2Bj

K

+

n2∑
i=1

αiA
⊺
iX2Ai +

pn∑
i=1

λiC
⊺
i L

⊺X2LCi

X2 = (A− LC)⊺X2(A− LC) +K⊺

R+B⊺X1B +
nm∑
j=1

βjB
⊺
jX1Bj +

nm∑
j=1

βjB
⊺
jX2Bj

K

X3 =W +AX3A
⊺ +

n2∑
i=1

αiAiX3A
⊺
i − L

V + CX3C
⊺ +

pn∑
j=1

λjCjX3C
⊺
j +

pn∑
j=1

λjCjX4C
⊺
j

L⊺

+

n2∑
i=1

αiAiX4A
⊺
i +

nm∑
i=1

βiBiKX4K
⊺B⊺

i

X4 = (A+BK)X4(A+BK)⊺ + L

V + CX3C
⊺ +

pn∑
j=1

λjCjX3C
⊺
j +

pn∑
j=1

λjCjX4C
⊺
j

L⊺

(18)
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where {αi, Ai}n
2

i=1, {βj , Bj}nmj=1, and {λj , Cj}pnj=1 are the eigenvalues and reshaped eigenvectors of
ΣA, ΣB , and ΣC , respectively, and

K = −

R+B⊺X1B +
nm∑
j=1

βjB
⊺
jX1Bj +

nm∑
j=1

βjB
⊺
jX2Bj

−1

B⊺X1A (19)

L = (U +AX3C
⊺)

V + CX3C
⊺ +

pn∑
j=1

λjCjX3C
⊺
j +

pn∑
j=1

λjCjX4C
⊺
j

−1

(20)

The associated optimal cost is then given by

J∗ = Tr(QX3 + (Q+K⊺RK)X4) = Tr(WX1 + (W + LV L⊺)X2)

These equations are solved using a value iteration algorithm, described in De Koning (1992). In the
absence of multiplicative noise, they reduce to the familiar separated algebraic Riccati equations for
optimal estimation and control. The solutions are denoted

(X,K,L) = GDARE(A,B,C,W, V, U,Q,R,ΣA,ΣB,ΣC) (21)

Both the optimal controller and estimator gains depend explicitly on the model uncertainty, as quan-
tified by the variances of the system matrices, as well as the process and measurement noise covari-
ances. This policy is known to provide robustness to uncertainties in the parameters of the nominal
model (Bernstein and Greeley (1986)). Furthermore, the uncertainty in the nominal model estimate
used in this control design method is richly structured and derived directly from the finite available
data.

In the proposed data-driven control algorithm, we simply substitute the estimated nominal
model and model covariance matrices obtained from the subspace identification and bootstrap meth-
ods into the multiplicative noise compensator design equations. We also introduce a parameter γ
which provides a fixed scaling of the model uncertainty. Note that γ = 0 corresponds to certainty
equivalent control, and as γ increases, more weight is placed on uncertainty in the nominal model.
For γ ∈ (0, 1), this approach can be interpreted as shrinkage estimation of the model sample co-
variance matrices towards certainty equivalence Ledoit and Wolf (2004). Existence of a solution to
the generalized Riccati equation depends not just on stabilizability and detectability of the nominal
system (A,B,C), but also on the mean-square stabilizability via dynamic output feedback of the
multiplicative noise system (called mean-square compensatability in De Koning (1992)). When
the multiplicative noise variances are too large, it may be impossible to stabilize the system in the
mean-square sense. In this case, we scale down the model variances to compute a mean-square
stabilizing dynamic output feedback controller; see Algorithm 3. In particular, we verify the system
with specified γ is mean-square stabilizable by checking whether the generalized Riccati equation
admits a positive semidefinite solution; if not, we find the upper limit γmax = cγγ via bisection (e.g.
Burden et al. (1978)) on a scaling cγ ∈ [0, 1].

10
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Algorithm 3 Multiplicative Noise LQG
Input: Nominal model matrices A, B, C, additive disturbance covariances W , V , U , penalty ma-

trices Q, R, covariances ΣA,ΣB,ΣC , scaling γ, bisection tolerance ϵ > 0
1: Find largest cγ ∈ [0, 1] via bisection such that there exists a feasible solution to (21)
2: (X,K,L) = GDARE(A,B,C,W, V, U,Q,R, cγγΣA, cγγΣB, cγγΣC)

Output: (A+BK − LC,K,L)

4. Numerical Experiments

We examined the following 2-state shift register with system, penalty, and noise covariance matrices[
A B

C

]
=

 0 1 0
0 0 1

1 −1

 , [
Q

R

]
=

 1 −1
−1 1

0.01

 , [
W

V

]
=

 0.1 0
0 0.1

0.1


where the output penalty was Y = 1 leading to the given value forQ = C⊺Y C. The first state stores
the previous value of the second state, the second state is determined solely by the control input,
and the output is the difference of the two states. This system is based on the one described in Recht
(2020), wherein it was shown that the system is extremely sensitive to model identification errors.
In particular, despite the open-loop system being perfectly stable with zero eigenvalues, the system
under optimal linear quadratic state feedback control is nearly unstable such that any small error in
the estimated system matrices produce an unstable closed-loop system. Therefore, this system is
likely to see a benefit from the proposed robust control synthesis approach.

The training data DT were generated by initializing the state at the origin, applying random
controls distributed according to a Gaussian distribution with zero-mean and scaled identity covari-
ance where the scaling was equal to the sum of the largest singular values of W and V (to ensure a
sufficiently strong signal-to-noise ratio), and simulating the evolution of the state with the additive
process and measurement noise specified by the problem data (W,V ).

For brevity, we abbreviate the control design schemes “certainty-equivalent control” as “CE”
and “robust control via multiplicative noise” as “RMN”. To evaluate the performance of RMN rel-
ative to CE, we performed Monte Carlo trials to estimate the distribution of several key quantities:
infinite-horizon performance, spectral radius of the closed-loop system, model error, and multiplica-
tive noise variances. In each Monte Carlo trial, the actual additive noise disturbances wt, vt were
drawn independently. The level of additive noise was significant enough that an appreciable number
of model estimates remained poor for many timesteps, highlighting the behavior of CE and RMN
in the critical high-uncertainty regime. We simulated the system and evaluated quantities for the
trajectory lengths T ∈ {20, 40, 80, 160, 320} according to Algorithm 1; all of the trajectory lengths
were sufficiently long to ensure the estimates in subspace identification were non-degenerate. We
drew Ns = 100, 000 independent Monte Carlo samples and Nb = 100 bootstrap samples at each
time step for uncertainty estimation. We used unity scaling of the multiplicative noise (γ = 1) and
a tolerance of ϵ = 0.01 for bisection to find the largest scaling cγ of multiplicative noise variance in
the multiplicative noise LQG algorithm.

From Figure 1 we see that for T = 20 the nominal model is fairly accurate but clearly mis-
specified, and that the bootstrap distribution of models captures the true deviation of the nominal
model from the true system, as the true system parameters fall within the distribution of bootstrap
samples. This is an accurate representative of the Ns = 100, 000 Monte Carlo samples.
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Figure 1: Entrywise plot of the true system, nominal model, and 100 bootstrap samples. Each sub-
plot represents an entry in the system matrices A, B, and C and are arranged according
to the block matrix representation of the system. Entrywise bootstrap distributions esti-
mated using kernel density estimation are shown in shaded regions; these are not used
in the proposed approach, they are just shown here for visual clarity. The nominal and
bootstrap model matrices were aligned with the true system via a minimum norm trans-
formation; note that this procedure is not part of the proposed approach, and is performed
here strictly for comparison with the true system. The data are drawn from the results of
just one out of theNs = 100, 000 Monte Carlo samples for a trajectory length of T = 20.
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In Figure 2 we plot statistics of performance and spectral radius using both control schemes,
while in Figure 3 we plot statistics of the differences between the performance and spectral radius.
We are chiefly interested in the expected value and upper quantiles of performance, which corre-
spond to average performance and risk of poor performance. We see that CE leads to both worse
average behavior and riskier behavior as reflected by the distribution of the performance. In par-
ticular, we see that the performance of RMN is clearly better during times between T = 20 and
T = 80, dropping at the 99th percentile from 2.318 to 1.077 whereas CE suffers 12.091 to 1.089.
This can also be explained from the spectral radius, which is larger across all timesteps and statis-
tics, corresponding to a less stable system. In particular, at the beginning between T = 20 and
T = 80 when uncertainty is highest, RMN yields spectral radii at the 99th percentile that drop from
0.903 to 0.843 while CE yields 0.985 to 0.916, nearer to instability and allowing the state to travel
far from the origin, resulting in high cost. With increasing T the model estimates improved and
uncertainty estimates became sufficiently small that the difference between CE and RMN control
was insignificant.

In Figure 4 we plot statistics of the nominal model estimate errors, which are applicable to both
control schemes. We see that the nominal system matrices Â, B̂, and Ĉ produced by the subspace
identification algorithm approached the true parameters (after a suitable alignment transformation).
This is mirrored by the decrease in the multiplicative noise variances, showing that the multiplicative
noise variances accurately reflect the true model error, i.e., the bootstrap model uncertainty estimator
gives reasonable estimates.

From Figure 5 we see that at the very beginning when the uncertainty is extremely high, the
multiplicative noise variance sometimes had to be reduced significantly in order to admit a solution
to the generalized Riccati equation. Over time as the uncertainty decreased, the multiplicative noises
were used with their native scaling almost all of the time.
Code which realizes the algorithms of this paper and generates the reported results is available from
https://github.com/TSummersLab/robust-adaptive-control-multinoise-output.

5. Conclusions

We proposed a data-driven robust control algorithm that uses the bootstrap to estimate model es-
timate covariances and a non-conventional multiplicative noise LQG robust output feedback com-
pensator synthesis to explicitly account for model uncertainty. Future work will go towards pro-
viding finite-time theoretical performance guarantees using tools from high-dimensional statistics
and exploring alternative bootstrap uncertainty quantification schemes and robust control synthesis
frameworks based e.g. on linear matrix inequalities and System Level Synthesis.
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Figure 2: Infinite-horizon performance JT /J∗ and closed-loop spectral radius ρ(ΦT ) vs time for
CE and RMN.

Figure 3: Difference between CE and RMN on infinite-horizon performance JT /J∗ and closed-
loop spectral radius ρ(ΦT ) metrics vs time. Differences between metrics using CE and
RMN were computed for each Monte Carlo trial individually; statistics of the resulting
empirical distribution are shown.
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Figure 4: System matrix estimation errors and multiplicative noise variances vs time using RMN.
The left column shows the Frobenius norm of the estimated system matrices from the
true parameters after applying an alignment transformation. The right column shows the
maximum multiplicative noise variances a = maxi αi, b = maxi βi, c = maxi λi at each
time step.

Figure 5: Scaling of multiplicative noise scale parameter γ vs time for the example system using
RMN.
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Algo Care, Balázs Cs Csáji, Marco C Campi, and Erik Weyer. Finite-sample system identification:
An overview and a new correlation method. IEEE Control Systems Letters, 2(1):61–66, 2017.

W. L. De Koning. Compensatability and optimal compensation of systems with white parameters.
IEEE Transactions on Automatic Control, 37(5):579–588, 1992. doi: 10.1109/9.135491.

Sarah Dean, Horia Mania, Nikolai Matni, Benjamin Recht, and Stephen Tu. On the sample com-
plexity of the linear quadratic regulator. Foundations of Computational Mathematics, 20(4):
633–679, 2020.

John C Doyle. Guaranteed margins for LQG regulators. IEEE Transactions on automatic Control,
23(4):756–757, 1978.

Benjamin Gravell and Tyler Summers. Robust learning-based control via bootstrapped multiplica-
tive noise. In Alexandre M. Bayen, Ali Jadbabaie, George Pappas, Pablo A. Parrilo, Benjamin
Recht, Claire Tomlin, and Melanie Zeilinger, editors, Proceedings of the 2nd Conference on
Learning for Dynamics and Control, volume 120 of Proceedings of Machine Learning Research,
pages 599–607. PMLR, 10–11 Jun 2020. URL https://proceedings.mlr.press/
v120/gravell20a.html.

Benjamin Gravell, Peyman Mohajerin Esfahani, and Tyler Summers. Learning robust control
for LQR systems with multiplicative noise via policy gradient. CoRR, 2019. URL http:
//arxiv.org/abs/1905.13547.
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