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nization. An autonomous vehicle formation is a collection of vehicles, each
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ing possible a range of science and engineering applications, such as satellite

formations for deep-space imaging, teams of unmanned aircraft for military
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exploration. The ubiquitous potential of these applications is driving theoret-

ical work on autonomous vehicle formations across a range of disciplines.

A major theoretical question in the field of control theory, and the main

focus of this dissertation, is how the properties of the information architecture
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(i.e. a mapping of the information flow amongst the agents), relate to the

stability properties of the desired shape and orientation under certain control

laws. A secondary focus is how to design the information flow so that loss

of an agent does not destroy the formation’s ability to maintain a desired

shape. As a motivating example, a solution to a coordinated standoff tracking

problem is presented to demonstrate how an instance of a class of information

architectures, which are called persistent and related to rigid graph theory, can

be used to achieve a formation objective in a practical scenario involving a team

of unmanned aircraft. A generalized formation shape control problem is then

solved for a class of persistent architectures. This solution gives only local

stability results; global stability is analyzed for a four-agent formation and

several open problems are identified. The problem of agent loss is addressed

by performing a self-repair operation in the event of agent loss and separately

by designing robustness into the information architecture a priori. Finally, a

rigid body attitude synchronization problem with communication time delays

is solved for a class of information architectures based on spectral graph theory.
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Chapter 1

Introduction

1.1 Motivation

An autonomous vehicle formation is a collection of vehicles, each with

computation, communication, sensing, and control capabilities, that cooperate

to achieve a common objective. Accelerating advancements are making possi-

ble a range of science and engineering applications, such as satellite formations

for deep-space imaging, teams of unmanned aircraft for military reconnaissance

and surveillance missions, and submarine swarms for oceanic exploration. The

ubiquitous potential of these applications is driving theoretical work on au-

tonomous vehicle formations across a range of disciplines. In the field of control

theory, a major research topic is how to cooperatively control the individual

vehicles, or agents, so that the formation accomplishes a global objective or

exhibits a cohesive behavior.

Autonomous vehicle formations can deliver a number of practical ad-

vantages over a single autonomous vehicle. First, organizing vehicles into

formations can significantly improve sensing capability, e.g resolution and sen-

sitivity in space-based interferometry [39, 42]. A team of vehicles can also

search or monitor a large area faster and more effectively than any single ve-
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hicle could. Second, formations offer new sensing capabilities that are unable

to be achieved with a single vehicle. For example, determining the spatial

position of a target through three-dimensional distance-based localization re-

quires four distinct relative distance measurements from sensors with known

positions to instantaneously localize the target. Third, formations allow for

robustness to failure of a single agent, or a small number of agents. This

modularity of autonomous vehicle formations also allows for easily adding or

subtracting agents from the formation. Lastly, cooperative formations of sim-

ple, inexpensive agents may provide significant cost advantages over a single

complex agent. Other advantages of organizing and controlling vehicles in for-

mations to undertake designated technical tasks might include reducing drag

and improving the range and fuel efficiency of aircraft, and many more are

still to be apprehended.

Sensing capability can be improved by precisely maintaining the for-

mation in a prescribed shape and orientation.1 To do this, each vehicle must

acquire information about the relative position and orientation of other vehi-

1To illustrate with an example, a team of satellites flying in a precisely controlled forma-
tion can synthesize a space-based interferometer that could offer several orders of magnitude
improvement over the resolution of monolithic satellites [70], a technological leap akin to
that from Galileo’s telescope to the Hubble Space Telescope. Space-based interferometry
with satellite formations has been studied in several recent projects including NASA’s Ter-
restrial Planet Finder [42] and the European Space Agency’s Darwin [39] to search for and
characterize extrasolar Earth-like planets. Each satellite collects light from distant sources
and sends the beam to be combined by a separate satellite. The interference pattern be-
tween beams from various satellites provides information about the properties of the light
source. The resolution can be improved by using many satellites and by having large satellite
separations, but precision formation shape and orientation control are crucial [74].
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cles in the formation and use this information to control its own position and

orientation. A major theoretical question, and the main focus of this disser-

tation, is how the properties of the information architecture (i.e. a mapping

of the information flow amongst the agents), relate to the stability properties

of the desired shape and orientation under certain control laws. A secondary

focus is how to design the information flow so that loss of an agent does not

destroy the formation’s ability to maintain a desired shape. The information

architecture must be designed to preserve certain properties in the event of

agent failure.

Formation shape control, orientation control, and information archi-

tecture design problems can be formulated into analogous mathematical prob-

lems. Vehicle motion can be modeled by a set of ordinary differential equa-

tions, and the information architecture can be modeled by a graph. This

dissertation solves variations of three mathematical problems for autonomous

vehicle formations: (1) formation shape control in the plane, (2) robust infor-

mation architecture design, and (3) formation attitude synchronization. The

next section elaborates on these research challenges and locates the work of

this dissertation within the field through a literature review of work on these

problems. The final section of this chapter presents a dissertation outline and

details the original contributions of this work.
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1.2 Literature Review

1.2.1 Formation Shape Control

The challenge of the formation shape control problem is to design mo-

tion control laws for each agent, given certain relative position information, so

that the formation converges to a prescribed formation shape.2 An overarch-

ing requirement for large formations is that implementation of the design be

decentralized. Having a single centralized agent that handles the control, com-

munication, sensing, and computation tasks for the whole formation would be

computationally prohibitive and makes the formation much more vulnerable to

unanticipated catastrophic failure. Instead, each agent is typically assumed to

have access to relative position information from a limited set of other agents

in the formation. The formation shape control problem involves determining

what relative position information is required and how this information should

be used in the control law.

This problem has received significant attention in literature across a

range of engineering disciplines. In the control theory literature, a major point

of divergence is whether the controlled variables are chosen as a set of relative

positions or a set of interagent distances. When relative positions are chosen,

the formation shape maintenance problem can be formulated as a consensus

problem [23,54,59,60]. A consensus problem is to design decentralized control

2This contrasts with another related formation control problem called flocking, in which
the objectives are for agents to move in a common direction, avoid collisions, and stay close
to one another, though not necessarily maintain a prescribed shape; see [45,53,71,72].
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laws to drive a team of agents toward agreement upon certain quantities of

interest, such as position or velocity. For example, in a rendezvous problem,

the control laws drive the agents to a common position.3 Constant offset posi-

tion vectors can be introduced into these control laws to produce any desired

formation shape [23]. In consensus problems, the stability of the formation

shape can be related to the spectral properties of the information architecture

graph Laplacian matrix.

When interagent distances are chosen as the controlled variables, then

the stability of the formation shape is instead related to the graph rigidity [73]

of the information architecture, and the rigidity matrix plays a crucial role in

the stability analysis [1,12,14,21,38,55,83]. An advantage of this approach is

that each agent can locally operate in an arbitrary coordinate basis. By con-

trast, controlling relative positions and using a consensus algorithm assumes

agents to have knowledge of a global coordinate basis. Another advantage of

this approach is that a single agent or small subset of agents can be given re-

sponsibility for the orientation of the whole formation, thus making a rotation

of the whole formation relatively easy. Rotating the whole formation is not as

straightforward with a consensus approach.

Graph rigidity has a long history in combinatorial theory [34,40,73]. It

has been recently introduced in [7, 21, 55] as a means for describing the infor-

mation architecture required to maintain formation shape. The information

3Other cooperative control tasks that can be cast as consensus problems include flocking
and cyclic pursuit, where a group of agents follow one another in a cyclic pattern [46,48].
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architecture is modeled with a graph G(V,E), where V is a set of vertices

representing agents and E ⊆ V × V is a set of edges representing information

flow amongst the agents. In the formation shape control problem, the edge set

E represents the set of inter-agent distances to be actively held constant via

control of individual vehicle motion. If a suitably large and well-chosen set of

inter-agent distances is held constant, then all remaining inter-agent distances

will be constant as a consequence, and the formation shape will be main-

tained. Graph rigidity theory addresses the nontrivial question of identifying

which inter-agent distances should be actively controlled to maintain a desired

formation shape. Although an easy answer is to control every possible inter-

agent distance, this is not a decentralized approach. It also requires controlling

O(n2) distances, where n is the number of agents, when it is only necessary

to control O(n) distances. Another answer is to only control distances within

a prescribed sensing and communication range of each agent. However, this

approach in general does not guarantee rigidity, and determining the minimum

sufficient sensing radius for each agent to guarantee rigidity for an arbitrary

configuration of agents is a nontrivial open problem. Typically, it is assumed

that a designer specifies the interagent distances to actively control and that

the involved agents are within sensing and communication range of each other.

A further divergence in the literature for rigidity-based formation con-

trol is whether the information architecture is directed or undirected. In an

undirected formation, the task of controlling a particular interagent distance

is shared by the involved agents. Undirected formations with gradient-based

6



control laws are studied in [38]. In a directed formation, the task of control-

ling a particular interagent distance is given to only one of the involved agents.

This has the advantage of halving the number of links in the information ar-

chitecture. Directed formations are studied in [1, 7, 12,14,83].

The concept of rigidity for directed graphs is not a simple transposi-

tion of rigidity for undirected graphs, so these concepts are distinguished by

the use of the term persistence for directed graphs [33]. Persistence includes

the concept of rigidity, but also requires a further condition called constraint

consistence, which precludes certain directed information flow patterns [84].

In directed formations, it becomes possible to have cycles in the information

architecture. Acyclic formations allow for a triangular decomposition that

makes the stability analysis much easier to deal with [12], while cyclic forma-

tions may require more complex control laws to achieve stability. A persistent

formation with the smallest number of links in the information architecture is

referred to as a minimally persistent formation. This type of formation falls

into three categories: Leader-First-Follower (LFF), Leader-Remote-Follower

(LRF) and Coleader. Acyclic LFF formations are studied in [12], however,

LFF does not always imply an acyclic formation. In [83], Yu et al consider

minimally persistent LFF formations in the plane with cycles. They apply

decentralized nonlinear control laws to restore formation shape in the pres-

ence of small distortions from the desired shape. They show that choosing

locally stabilizing control gains is possible if a certain submatrix of the rigidity

matrix has all leading principal minors nonzero and prove that all minimally
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persistent LFF formations generically obey this principal minor condition.

To fully characterize the stabilizability of minimally persistent forma-

tions, formation shape control problems for LRF and Coleader also need to

be solved. The method used to prove local stabilizability for LFF formations

does not directly apply to LRF and Coleader formations. How to deal with

LRF and Coleader formations is summarized in the next section and is the

subject of Chapter 4.

Most of the work on rigidity-based formations shape control shows local

stability or stabilizability of the desired shape, with a few exceptions. Almost4

global stability is demonstrated for a directed, cyclic, three-agent formation

in [1] and for a directed, acyclic three-agent formation in [13, 14]. It is noted

in [19] that these results extend easily to the undirected three-agent case.

In [12], almost5 global stability is demonstrated for directed, acyclic, n-agent

formations. In [38], Krick et al study an undirected n-agent rigidity-based

formation control problem. They prove for undirected rigid formations that

the desired formation shape is locally asymptotically stable under a gradient

control law if the information architecture is rigid. The global stability prop-

erties of the desired shape remain a challenging open problem for undirected

formations with more than three agents. There are a number of technical

difficulties, including the effect of non-minimal rigidity and the existence of

4The formations converge to a desired triangular shape from any non-collinear initial
configuration, so what is demonstrated is actually almost global stability since the set of
collinear configurations is thin (Lebesgue measure zero).

5Again, convergence is shown from all initial configurations outside of a thin set.
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incorrect equilibrium formation shapes, that make these formations difficult

to analyze. Characterizing global stability for a four-agent formation as a

special case is an essential step to solving the problem for larger formations.

Chapter 5 considers the global stability of an undirected, four-agent formation

and shows that a class of rectangular incorrect equilibrium formation shapes,

previously thought to be attractive, are unstable saddle points.

All formation shape control results in this dissertation are restricted

to motion in the plane. This restriction is mainly due to the fact that rigid

graph theory is incomplete in higher dimensions, as discussed in the follow-

ing chapter. Although there are partial results for higher dimensions, a full

characterization of graph rigidity remains a significant open problem.

1.2.2 Robust Information Architecture Design

Formations require the design of information architectures that allow

robustness to agent loss. This loss could occur in a number of ways: from

enemy attack or jamming; from random mechanical or electrical failure; or

from intentionally deploying an agent for a separate task. Large-scale forma-

tions may be composed of relatively inexpensive agents that are prone to such

failures. Loss of an agent can prevent the successful performance of funda-

mental tasks. This dissertation focuses on preserving a formation’s ability for

formation shape control.

The loss of an agent can be addressed via two separate approaches. The

first is to perform a “self-repair” operation on the information architecture in
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the event of agent loss to recover rigidity or global rigidity6. The second is to

introduce robustness into the information architecture a priori so that agent

loss does not destroy rigidity or global rigidity. The “self-repair” approach

is reactive in that the formation reacts to an agent loss event. The robust-

ness approach is proactive in that redundancy is built into the formation in

anticipation of an agent loss event.

The “self-repair” approach is an instance of the closing ranks problem,

described below. For large-scale formations that do not support centralized

computation, communication, and sensing, the repair must be made in a de-

centralized way. The term “decentralized” is used in this context to encompass

two properties: (1) the formation makes a local repair involving only neigh-

bors of a lost agent, and (2) the neighbors perform the repair using only local

6Closely related to the concept of rigidity is global rigidity (the precise distinction is
covered in the next chapter), which is important for the separate task of sensor network
self-localization [5, 18, 56] and also has applications in robot pose estimation [76]. Many
applications for sensor networks require knowledge of agent positions in order to detect
and record events and for geographic routing. The global rigidity property pertains to
a set of vertices having a unique configuration in Euclidean space. The self-localization
task is to uniquely determine positions of each agent from knowledge of a partial set of
inter-agent distances and knowledge of the positions in a global coordinate basis of several
agents (“anchors”). The information architecture is modeled as a graph G(V,E) where
the vertex set V represents the agents and the edge set E represents the set of known
inter-agent distances. If a suitably large and well-chosen set of inter-agent distances is
known, then the remaining inter-agent distances may be uniquely determined. Further, if
the positions of three non-collinear agents are known, then all other agent positions may
be uniquely determined [5]. Noise in known distances causes nontrivial problems in self-
localization, but global rigidity remains a central idea [18]. Both rigidity and global rigidity
are important properties of information architectures for autonomous vehicle formations and
sensor networks because of the crucial role they play in formation shape control and self-
localization. Although these are two rather different tasks, they are related by the concept
of rigidity, and they both serve as a motivating basis for our discussion of robust information
architectures.
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information (independent of formation size).

The closing ranks problem is to recover rigidity by determining new

sensing/communication links in the event of agent loss. Closing ranks does

not necessarily result in motion of the agents; it is a sensing/communication

deficiency that is repaired, which means that a set of edges is added to the

graph. In [20], Eren et al present a systematic method to solve the closing

ranks problem with local repair. This result draws from a graph theoretic

theorem given by Tay and Whiteley in [73], which proves that rigidity can be

recovered when a vertex is removed from a rigid graph by adding edges only

between neighbors of the lost vertex. In terms of formation shape maintenance,

this is equivalent to assigning further agent pairs between which the distance

should be preserved.

Although the method in [20] determines a minimal local repair, in terms

of adding the least number of links to restore rigidity, it cannot always be

implemented using only local information. The effect of adding a particular

link may depend on the information architecture in a non-local way. How the

closing ranks problem can be solved in a decentralized way is the subject of

Chapter 6.

The robustness approach is related to the concept of redundant rigidity.

A redundantly rigid graph has the property that rigidity is preserved after

removing any single vertex. This concept is analyzed by Servatius in [67]

and the recent work by Yu and Anderson in [82]. Chapter 6 also builds on

this preliminary work by solving an open problem introduced by Servatius
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in [67] and further investigating the structure of redundantly rigid graphs,

and providing new results for redundantly globally rigid graphs.

1.2.3 Rigid Body Attitude Synchronization

The rigid body attitude synchronization problem is to design torque

control laws to asymptotically synchronize the orientation of a team of rigid

bodies. There is an extensive body of literature on consensus/synchronization

problems that utilize spectral graph theory rather that rigid graph theory; for

recent surveys see e.g. [54, 60]. In these problems, a team of cooperating

agents exchange certain local information, through either communication or

sensing, in order to achieve the synchronization. A key feature of these results

is that the structure of the communication architecture can be related to the

stability and performance of the synchronization via spectral graph theory;

the eigenvalues of the graph Laplacian govern both stability and speed of

convergence.

Recently, focus has turned to consensus problems with double inte-

grator agent dynamics [57, 58, 80]. Double integrators are a more suitable

model for mechanical systems than single integrators as mechanical systems

are generally controlled though acceleration, not velocity. More recently, com-

munication time delays have been considered in consensus problems with

double integrators [51, 68, 85]. In [85], simple necessary and sufficient con-

ditions for second-order consensus of both position and velocity are given for

a directed communication architecture and homogeneous delay, but with self-
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delay7. Consensus is achieved if and only if the time delay is less than a

specified value. In [68], sufficient stability conditions based on linear matrix

inequalities (LMI) are given for second-order consensus with directed graphs

and homogeneous delay (no self-delay); however, the analysis is restricted to

graphs in which the degree matrix can be written as a scalar multiple of the

identity matrix. In [51] sufficient conditions are stated in terms of control

gains for second-order consensus with heterogeneous delays; however, the re-

sults are restricted to undirected graphs. Consensus problems for higher order

agent dynamics are considered in [44, 52]. In [44] sufficient stability condi-

tions for consensus in terms of the individual agent’s closed loop frequency

response are provided for directed graphs with heterogeneous delays. In [52],

somewhat more complicated set-valued necessary and sufficient conditions for

higher-order consensus (of position and higher-order derivatives) are given

for an undirected communication architecture and heterogeneous time delays.

However, these results do not readily provide explicit conditions on control

gain parameters that guarantee stability. New consensus results are needed

for double integrator agents in a directed communication architecture with

homogenous delay (without self-delay).

Satellite formations have received significant attention in the literature

due to potential applications such as space interferometry. Rigid body attitude

synchronization is an important problem for these applications, and extending

7Self-delay means that the value of an agent’s own state has an associated delay in its
control law. This may occur if there is a computational processing delay.
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the linear consensus results to this problem with nonlinear dynamics and time

delays is a significant challenge, which is taken up in Chapter 7. Several papers

consider leader-follower communication architectures in which each follower

simply tracks the attitude of a designated leader, or other architectures in

which there is a common external reference attitude known to all agents [43,

77]. However, directed graphs that represent leader-follower architectures can

take on more general forms, and situations in which there is no designated

leader and no common external reference attitude may be of interest [57, 63].

Synchronization of rigid body attitudes without a leader or common external

reference may also provide practical benefits and are also more challenging

theoretically. When only the relative, not absolute, orientations of the rigid

bodies are of interest (e.g. for autonomous on-orbit assembly), the formation

attitude is not constrained to a designated leader or reference, which gives an

extra degree of freedom that may reduce costs [63].

Chapter 7 solves a rigid body attitude synchronization problem with

communication time delays for leader-follower and leaderless communication

architectures.

1.3 Dissertation Outline

The rest of the dissertation is organized as follows:

Chapter 2 is a background chapter that overviews of graph rigidity

theory as used in Chapters 3-6. Graphs can be used as basic models for in-

formation flow in autonomous vehicle formations. Graph rigidity theory is
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non-standard in the control theory literature but provides important informa-

tion architecture properties in the formation shape control problem when the

controlled variables are interagent distances.

To introduce the rigidity-based formation shape control problems in

Chapters 4 and 5, Chapter 3 demonstrates how directed persistent informa-

tion architectures can be used to achieve a formation objective in a practical

scenario involving a team of unmanned aircraft, called the coordinated standoff

tracking problem. Control laws are designed for a team of unmanned aircraft

to fly a circular orbit around a target with prescribed inter-vehicle angular

spacing. To achieve the angular spacing, the vehicles sense or communicate

certain relative position information according to a graph. The control objec-

tive suggests an information architecture that is equivalent to an instance of

a persistent graph. This finding motivates the study of more general classes

of graphical information architectures.

Chapter 4 solves a formation shape control problem for a class of di-

rected persistent information architectures. It builds on work undertaken for

minimally persistent leader-first-follower formations and completes the charac-

terization of the stabilizability of minimally persistent architectures by solving

the problem for minimally persistent LRF and Coleader formations.

The stability results in Chapter 4 are local, so that converging to the

desired shape is not guaranteed for all initial positions. Chapter 5 turns to

the question of global stability of an undirected four-agent formation in the

plane. The analysis is restricted to the undirected four-agent case because this
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still remains an interesting and challenging open problem and because this will

be an important special case that may shed light on the problem for larger

formations and directed formations.

Chapter 6 returns to another motivation for autonomous vehicle for-

mations and addresses the problem of agent loss by performing a self-repair

operation in the event of agent loss and separately by designing robustness

into the information architecture. The architectures in this chapter are all

undirected.

Chapters 3-6 are concerned with formation shape control problems in

which each agent can be modeled as a point; Chapter 7 is concerned with

an attitude synchronization problem in which each agent is modeled as a rigid

body and the communicated signals have a time delay. This chapter relates the

stability of the formation around a configuration with synchronized attitude

to the spectral graph properties of the information architecture.

Chapter 8 summarizes the key results of the dissertation and identifies

several possible directions for future research.

1.4 Statement of Contributions

This section summarizes the original contributions of this dissertation.

The relevant publications for each contribution are indicated.

1. We solve a coordinated standoff tracking problem using a Lyapunov guid-

ance vector field approach recently introduced by Frew, Lawrence, and
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Morris in [24] to achieve the desired circular trajectory. The contri-

butions involve both single vehicle path planning and multiple vehicle

coordination. For single vehicle path planning, we complete a proof of

heading convergence using feedback, which has thus far not been fully

addressed in the literature, and also offer a novel approach for heading

convergence that does not require continuous feedback in the ideal case

(no wind, stationary target), taking advantage of an analytical solution

for the guidance field. Further, we use a variable airspeed controller

to maintain the circular trajectory despite unknown, constant-velocity

wind and target motion. Adaptive estimates of the unknown wind and

target motion are introduced to ensure stability of the circular trajec-

tory. A novel feature of our results is rigorous satisfaction of vehicle

specific kinematic constraints on heading rates and airspeed variations.

For multiple vehicle coordination, we again use a variable airspeed con-

troller to achieve the prescribed angular spacing. We demonstrate that a

persistent information architecture can be used to achieve the formation

objective, and we implement decentralized control laws based on this

architecture.

• T.H. Summers, M.R. Akella, and M.J. Mears, Coordinated Standoff

Tracking of Moving Targets: Control Laws and Information Archi-

tectures, AIAA Journal of Guidance, Navigation, and Control, Vol.

32, No. 1, pp. 56-82, 2009.

• T.H. Summers, M.R. Akella, and M.J. Mears, Coordinated Stand-
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off Tracking of Moving Targets, AIAA Guidance, Navigation, and

Control Conference, August 19- 21 2008, Honolulu, HI, USA.

2. We solve an n-agent formation shape maintenance problem in the plane

for two classes of directed, cyclic information architectures associated

with minimally persistent formations: leader-remote-follower and coleader.

We propose a decentralized control law using relative position measure-

ments to control certain interagent distances. The resulting nonlinear

closed-loop system has a manifold of equilibria, which implies that the

linearized system is nonhyperbolic. We apply center manifold theory to

show local exponential stability of the desired formation shape. The

result circumvents the non-compactness of the equilibrium manifold.

Choosing stabilizing gains is possible if a certain submatrix of the rigid-

ity matrix has all leading principal minors nonzero, and we show that

this condition holds for all minimally persistent leader-remote-follower

and coleader formations with generic agent positions.

• T.H. Summers, C. Yu, B.D.O. Anderson, and S. Dasgupta, Con-

trol of leader- remote-follower and coleader formations in the plane,

submitted to IEEE Transactions on Automatic Control.

• T.H. Summers, C. Yu, B.D.O. Anderson, and S. Dasgupta, Control

of coleader formations in the plane, IEEE Conference on Decision

and Control, December 16-18 2009, Shanghai, China.

• T.H. Summers, C. Yu, B.D.O. Anderson, and S. Dasgupta, Control
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of leader- remote-follower formations in the plane, European Control

Conference, August 23-26, 2009, Budapest, Hungary.

3. We study global stability of a four agent formation in the plane, moti-

vated by an example from Krick et al in [38]. The control laws are bidi-

rectional, gradient-based interagent distance and are designed so that

the agents cooperatively and autonomously achieve a specified desired

formation shape. When every interagent distance is actively controlled

(i.e. the information architecture is a complete graph), there may exist

equilibrium formation shapes with incorrect interagent distances. We

show that a class of rectangular incorrect equilibrium shapes identified

in [38], which was previously thought to be stable, is actually locally un-

stable and provide a way to compute a desired equilibrium shape from

a supposed incorrect equilibrium shape.

• T.H. Summers, C. Yu, B.D.O. Anderson, and S. Dasgupta, Forma-

tion shape control: Complete graph with four agents, IEEE Con-

ference on Decision and Control, December 16-18 2009, Shanghai,

China.

4. We address the problem of agent loss in vehicle formations and sen-

sor networks via two separate approaches: (1) perform a “self-repair”

operation in the event of agent loss to recover desirable information ar-

chitecture properties, or (2) introduce robustness into the information

architecture a priori such that agent loss does not destroy desirable prop-
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erties. We focus on two properties of the graph called rigidity and global

rigidity, which are required for formation shape maintenance and sen-

sor network self-localization, respectively. For the self-repair approach,

we show that while previous results permit local repair involving only

neighbors of the lost agent, the repair cannot always be implemented

using only local information. We present new results that make the lo-

cal repair using only local information. We describe implementation and

illustrate with algorithms and examples. For the robustness approach,

we investigate the structure of graphs with the property that rigidity or

global rigidity is preserved after removing any single vertex (we call the

property 2-vertex-rigidity or 2-vertex-global-rigidity, respectively). Infor-

mation architectures with such properties would allow formation shape

maintenance or self-localization to be performed even in the event of

agent failure. We review a characterization of a class of 2-vertex-rigidity

and develop a separate class. We also characterize of a class of 2-vertex-

global-rigidity.

• T.H. Summers, C. Yu, and B.D.O. Anderson, Addressing Agent

Failure in Vehicle Formations and Sensor Networks, International

Journal of Robust and Nonlinear Control, Vol. 19, No. 15, pp.

1673-1696, 2009.

• T.H. Summers, C. Yu, and B.D.O. Anderson, Robustness to Agent

Loss in Vehicle Formations and Sensor Networks, IEEE Conference

on Decision and Control, December 9-11 2008, Cancun, Mexico.
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• T.H. Summers, C. Yu, and B.D.O. Anderson, Decentralized Closing

Ranks in Vehicle Formations and Sensor Networks, Mediterranean

Conference and Control and Automation, June 25-27 2008, Ajaccio,

Corsica, France.

5. We design torque control laws that asymptotically synchronize the at-

titude of a team of rigid bodies subject to constant, unknown com-

munication time delays, but without self-delays. Directed communica-

tion graphs that contain a spanning tree, which encompass both leader-

follower and leaderless architectures are considered. A feedback lineariza-

tion result involving the modified Rodrigues parameter (MRP) represen-

tation of attitude kinematics is employed to prescribe control torques

that reduce the attitude dynamics to blocks of double integrator agents;

the remainder of the control effort is prescribed to achieve attitude point-

ing to a consensus. Necessary and sufficient delay-independent stability

conditions for the resulting closed-loop system are obtained. For leader-

follower architectures, the desired consensus orientation is prescribed; for

leaderless architectures, an analytical expression for the consensus atti-

tude in terms of the initial conditions, control gains, and communication

delay is derived.

• A. Chunodkar, T.H. Summers8, and M.R. Akella, Rigid body at-

titude synchronization with unknown communication time delays,

8A. Chunodkar and T.H. Summers each contributed equally to this work.
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submitted to Systems & Control Letters.

• T.H. Summers, A. Chunodkar and M.R. Akella, Rigid body at-

titude synchronization with unknown communication time delays,

AAS/AIAA Space Flight Mechanics Meeting, 14-17 February 2010,

San Diego, CA, USA.
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Chapter 2

Background: Rigid Graph Theory

Rigid graph theory has a long history in combinatorial mathematics

[3,27,34,40,73], tracing back to a conjecture by Euler in 1766 [22] and a result

by Cauchy in 1813 [16] on the rigidity of triangulated polyhedral surfaces.

It has since been applied in a range of other fields including the molecular

structures of proteins [36] and non-crystalline solids (e.g. glass) [75], and

has recently been applied to model information architectures in autonomous

vehicle formations [7, 21, 55]. Persistence theory, which is rigid graph theory

generalized to directed graphs, has been developed only within the last few

years to model one-way information flow in formation shape control problems

[31–33, 81, 84]. Persistence in the plane is developed in [33] and extended to

higher dimensions in [84]. The aim of this chapter is to provide a summary

overview of rigidity and persistence theory in the plane as used in subsequent

chapters on the formation shape control problem.

This chapter also briefly reviews global rigidity theory in the plane.

Global rigidity is related to rigidity and is important in sensor network self-

localization problems [5]. The robust information architecture design problems

in this dissertation are developed to recover or preserve both rigidity and global
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rigidity in the event of agent loss.

2.1 Graph Theory Preliminaries

An undirected graph G(V,E) is a set V = {1, ..., n} of vertices and a

set E ⊆ V × V of unordered pairs of vertices, called edges. A graph is often

represented by assigning vertices to positions in the plane and drawing a line

segment between vertices i and j whenever (i, j) ∈ E. We say that vertices i

and j are connected, or neighbors, if (i, j) ∈ E and that i and j are incident

to (i, j). The degree of di of vertex i is the number of edges to which it is

incident, or equivalently its number of neighbors. A graph on n vertices is

called complete and denoted by Kn if E = V × V , i.e. every pair of vertices is

connected by an edge. The complete graph contains 1
2
n(n− 1) edges. Graphs

can sometimes be defined with self-edges, where (i, i) ∈ E, or with multiple

edges between two vertices. A simple graph is one without self-edges and

multiple edges. This dissertation exclusively uses simple graphs.

A path is a sequence of vertices v1, ..., vm with (i, i + 1) ∈ E ∀i ∈

{1, ...,m−1}. Vertices v1 and vm are said to be connected by a path. A graph

is called connected if every pair of vertices is connected by a path. A graph is

called k−connected if it remains connected after removing any k − 1 edges.

A subgraph of a graph G(V,E) is a graph G′(V ′, E ′) with V ′ ⊆ V and

E ′ ⊆ E.The subgraph induced by a set of vertices V ′ is obtained by removing

all vertices in V \ V ′ (where V \ V ′ = {v ∈ V |v ∈ V and v /∈ V ′}) and all

edges incident to them.
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A directed graph G(V,E) is a set V of vertices and a set E ⊆ V × V

of ordered pairs of vertices, called edges. An edge (i, j) ∈ E is an outgoing

edge from i and an incoming edge to j. A directed graph is often represented

by drawing arrows to indicated edge directions. A directed path is a sequence

of vertices v1, ..., vm with (i, i + 1) ∈ E ∀i ∈ {1, ...,m − 1}. Vertices v1 and

vm are said to be connected by a directed path. A cycle is a directed path

that starts and ends at the same vertex. A directed graph that contains at

least one cycle is called cyclic; otherwise it is called acyclic. A graph is called

strongly connected if every pair of vertices is connected by a directed path. A

directed spanning tree is a directed graph that has one vertex, called the root,

from which there is a directed path to every other vertex.

2.2 Rigid and Persistent Formations

2.2.1 Rigidity

The information architecture of a formation is modeled by a graph

G(V,E) where the vertex set V represents the agents and the edge set E

represents the set of interagent distances to be controlled to maintain formation

shape. A representation p : V → <2n is a function which assigns to each

vertex a position in the plane, and we call pi ∈ <2 the position of vertex

i. Consider all continuous motions such that the distances between any two

vertices connected by an edge remains constant. The graph is called rigid if for
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almost all1 representations, every such motion preserves the distance between

every vertex pair. A formation F (G, p) is an information architecture together

with a representation and is called rigid if G is a rigid graph.

Rigidity is a generic property; that is, for a formation with generic

agent positions, it is not the particular agent positions that matter in deter-

mining rigidity, but rather the distribution of the edges amongst the graph

vertices. This leads us to the following paraphrase of Laman’s combinatorial

characterization of rigid graphs in the plane [40].

Theorem 2.2.1 ( [40]). A graph G(V,E) is rigid in the plane iff there is a

subgraph G′(V,E ′), E ′ ⊆ E that satisfies

• |E ′| = 2|V | − 3

• For any V ′ ⊆ V and the associated induced subgraph G′′(V ′, E ′′) of G′

with E ′′ ⊆ E ′, there holds |E ′′| ≤ 2|V ′| − 3.

The first condition gives the minimum number of edges required for a

rigid graph: given |V | vertices, one must have at least 2|V | − 3 edges. The

second condition gives the manner in which a minimum set of edges must be

1The definition of rigidity given here differs slightly from standard definitions in the
literature. This is done to simplify the presentation by making several subtly different
rigidity concepts equivalent (namely rigidity, infinitesimal rigidity, and graph rigidity; see
e.g. [3,4,73]). The term “almost all” is referring here to generic representations, which form
an open, dense subset of <2n. A representation is called generic if the set of coordinates of
agent positions is algebraically independent over the rationals. Non-generic representations
correspond to special agent configurations, e.g. all agents are collinear. The fact that rigidity
is a generic property is nontrivial; for discussion on use of the terms “generic” and “almost
all” in this context, see [3, 4, 73]
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(a) (c)(b)

Figure 2.1: Illustration of a (a) non-rigid, (b) minimally rigid, and (c) non-
minimally rigid formation.

distributed amongst the vertices to ensure rigidity. A graph is called mini-

mally rigid if it is rigid and has exactly 2|V |−3 edges. The minimum number

of required edges is linear in the number of vertices. In contrast, in a complete

information architecture (i.e. every inter-vehicle distance is actively main-

tained), the number of required edges is quadratic in the number of vertices.

This difference can be quite significant for large formations. For example, a 100

agent formation requires 197 distances to be maintained (and thus 197 com-

munication/sensing links) whereas a complete architecture would require 4,950

links. Figure 2.1 illustrates non-rigid, minimally rigid, and non-minimally rigid

formations with four vertices [2].

Additionally, there is a set of two basic operations, called Henneberg

operations, that allow one to “grow” every minimally rigid graph in the plane

from the complete graph on two vertices [34, 73]. Let j and k be two dis-

tinct vertices of a minimally rigid graph G(V,E). A vertex addition operation

involves adding a vertex i and edges (i, j) and (i, k). Let x, y, and z be
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Figure 2.2: Representation of (a) vertex addition operation (b) edge splitting
operation.

three distinct vertices of a minimally rigid graph with edge (x, y). An edge

splitting operation involves removing (x, y) and adding a vertex w and edges

(w, x), (w, y), (w, z). The operations are illustrated in Figure 2.2. They give

an equivalent characterization of rigidity: a graph is minimally rigid iff it can

be obtained from the complete graph on two vertices by applying a certain

sequence of vertex addition and edge splitting operations.

There is a separate linear algebraic way to characterize rigidity involv-

ing the rigidity matrix. Let F (G, p) be a formation in the plane and pi ∈ <2

be the position of agent i. Let F(G, 2) denote the space of formations in the

plane with a given graph G. Let r : F(G, 2) → <|E| be the rigidity function
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defined by

r(p) =
1

2
[..., ||pj − pk||2, ...]T (2.1)

where the ith entry of r, viz. ||pj − pk||2, corresponds to the edge ei ∈ E

connecting vertex j to vertex k in G. The rigidity matrix R(p) ∈ <|E|×2|V |

is given by the Jacobian of r and has the following structure. The columns

of R are regarded as |V | sets of two columns, with each set of two columns

corresponding to a vertex of G, i.e. columns 2i−1 and 2i correspond to vertex

i. Each row of R corresponds to an edge of G. In the ith row corresponding to

the edge connecting vertices j and k, all entries zero except in columns 2j− 1,

2j, 2k−1, 2k, which are xj−xk, yj−yk, xk−xj, and yk−yj, respectively, with

(xj, yj) denoting the coordinates of agent j. Because the rigidity matrix is the

Jacobian of a rational function, it has the same rank for all points but a set

of measure zero (via a nontrivial result of Sard [62]), corresponding to special

vehicle configurations (e.g. there is a set of collinear or collocated vehicles)

that cause the rank deficiency. The linear algebraic characterization is given

by following result from [73].

Theorem 2.2.2 ( [73]). Let F (G, p) be a formation in the plane with generic

representation p and let R(p) be the associated rigidity matrix. Then F is rigid

iff the rank of R(p) is 2|V | − 3.

Thus, a rigid formation has at least 2|V |−3 well-distributed edges and

has a rigidity matrix with full row rank. Further, the dimension of the null

space is exactly three. The vectors in the null space correspond to a set of in-

finitesimal displacements of the agents that preserve the formation shape, with
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the three independent displacements spanning the null space corresponding to

translation in two directions and rotation of the entire formation.

Rigid graph theory can be developed for representations in D dimen-

sions (i.e. p : V → <Dn with pi ∈ <D). The linear algebraic characterization

given by Theorem 2.2.2 generalizes to any dimension: a formation in D-space

with generic representation is rigid iff the associated rigidity matrix has rank

D|V | − 1
2
D(D + 1) [73]. For example, in three dimensions, a rigid formation

with |V | agents has a rigidity matrix with rank 3|V | − 6. Unfortunately, the

Laman conditions given in Theorem 2.2.1 are only necessary for D > 2 [73].

Finding a necessary and sufficient combinatorial characterization for graphs

in higher dimensions remains a significant and elusive open problem in rigid

graph theory.

2.2.2 Persistence

An important distinction of rigid graph theory as applied to autonomous

vehicle formations is that the distance corresponding to an edge is held con-

stant by a control law rather than by some physical mechanism. This distinc-

tion gives rise to the notion of rigidity for directed graphs. In particular, there

are two possible ways that a particular interagent distance can be controlled:

either the two involved agents share the responsibility, or only one of the in-

volved agents is given the responsibility. In the former case, the information

architecture can be modeled by an undirected graph, and in the latter case, by

a directed graph. We sometimes refer to the formation as being undirected or

30



directed, respectively. In a directed formation, a direction is assigned to every

edge in E with an outgoing edge from the agent responsible for controlling the

interagent distance.

Directed formations have the advantage of reducing the sensing and

communication requirements by half. Also, they allow leader-follower forma-

tions that are prevalent in the literature and may be necessary when agents

have limitations on sensing/communication range.

The concept of rigidity for directed graphs is not a simple transposition

of rigidity for undirected graphs; therefore, the term persistence is used for di-

rected graphs to distinguish from the undirected notion. It turns out that the

formation shape control task becomes impossible for certain directed informa-

tion flows. To preclude these situations, a further condition called constraint

consistence is required in addition to rigidity [33]. Examples of a constraint

consistent and non-constraint consistent graph are shown in Figure 2.3, taken

from [83]. In the right-hand graph, agent 1 is free to move in the plane while

agents 2 and 3 can move on circles around agent 1; thus, it may be impossi-

ble for agent 4 to maintain all of its distance constraints simultaneously. For

further discussion and rigorous definitions, see [33,83,84].

Essentially, a graph is persistent if its underlying undirected graph (ob-

tained simply by ignoring the edge directions) is rigid and the edge directions

are constraint consistent. A formation is called persistent if its information

architecture is persistent.

31



1 

2 

4 

(a) 

1 

2 

4 

(b) 

3 
3 

Figure 2.3: Constraint consistent and non-constraint consistent graphs with
the same underlying undirected graph.

2.2.3 Minimally Persistent Formations

The focus in this dissertation will be on minimally persistent formations

in the plane, which are persistent formations with the smallest possible number

of edges in the graph. We have the following basic result from [33].

Theorem 2.2.3 ( [33]). Let G(V,E) be a directed graph in the plane with at

least two vertices. Then G is minimally persistent iff the underlying undirected

graph is minimally rigid (rigid with exactly 2|V | − 3 edges), and no vertex has

more than two outgoing edges.

This results in the following classification of minimally persistent for-

mations in the plane.

• Type (A) [Leader-First-Follower (LFF)]: One agent known as the leader

has no outgoing edge, i.e. zero distances to maintain and thus two de-

grees of freedom (DOF). Another known as the first follower has one
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out going edge to the leader, i.e. one distance to maintain and thus one

DOF. The remaining, ordinary followers have two outgoing edges each,

i.e. two distances to maintain and thus zero DOF.

• Type (B) [Leader-Remote-Follower (LRF)]: One agent known as the

leader has no outgoing edge (two DOF), another known as the remote

follower has one outgoing edge to an agent other than the leader (one

DOF), and the remaining ordinary followers have two outgoing edges

each (zero DOF).

• Type (C) [Coleader ]: Three agents (known as coleaders), have one out-

going edge each (one DOF each) and all others (known as ordinary fol-

lowers), have exactly two such edges each (zero DOF).

Figure 2.4 illustrates examples LFF and LRF formations. Figure 2.5

illustrates examples of coleader formations with differing information flow pat-

terns and coleader connectivity.

In directed formations, it becomes possible to have cycles in the infor-

mation architectures. LFF formations can be either cyclic or acyclic, and LRF

and coleader formations are inherently cyclic (see Theorem 5 of [33]). As will

be seen in Chapter 4, cyclic information architectures can cause the desired

formation shape to be locally unstable under a standard control law; achieving

stabilizability requires a non-trivial modification of the control law.

When might the LRF or Coleader structures be used? There is cur-

rently no straightforward measure like a controllability gramian that might give

33



 

Leader Leader

Remote Follower
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(b) (a) 

Figure 2.4: Examples of LFF and LRF formations with four agents: (a) in
LFF formations the one-DOF agent is connected to the leader, and (b) in
LRF formations the one-DOF agent is not connected to the leader.

 

(a) (b) (c) 

(d) (e) 

indicates coleader 

Figure 2.5: Examples of coleader formations with connected coleaders: (a)
cyclic coleaders, (b) inline coleaders, (c) v-coleaders. Examples of coleader for-
mations with non-connected coleaders: (d) one-two coleaders, (e) distributed
coleaders. Each coleader has only one interagent distance to maintain and so
has only one outgoing arrow.
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guidance as to preferred information structures, and such a measure might well

give guidance. Apart from that, one can readily contemplate intuitively the

potential attractiveness of a cyclic coleader pattern in the case of a formation

three of whose agents define a triangle, with all other agents in the interior

of the triangle. The three agents defining the triangle would in some sense

confine and lead the rest of the formation. The motion of the three agents in

this case can be analyzed as in [1], and would be independent of the motion

of other agents, though not conversely. In relation to a leader-remote-follower

structure, one could conjecture its relevance for control of a formation whose

shape was long and thin. At one end of the formation, the leader would move

in the direction of a target. At the other end of the formation, the freedom of

the remote follower would be used to rotate the formation, thereby aligning

its longer axis with the direction of target motion.

The distinction between LFF, LRF, and coleader formations is impor-

tant in the stability analysis for the formation shape control laws. In particular,

for LFF formations it is possible to define a global coordinate basis to obtain

a hyperbolic reduced-order system in which local stability can be ascertained

via eigenvalue analysis of the linearized system [83]. This is so because in the

framework of both [83], after its “small” initial move, the leader stops moving.

Thereafter, the algorithm of [83] forces the first follower to move in the direc-

tion of the leader. Thus the direction of movement of the first follower in the

LFF framework is fixed. This direction critically defines the stated coordinate

basis in [83]. In contrast, for LRF formations the direction associated with
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the remote follower’s DOF is not fixed in space since it is following an agent

other than the leader to satisfy its distance constraint. Similarly, for coleader

formations the directions associated with the coleader DOFs are not fixed in

space. Thus, the device used in [83] to obtain a global coordinate system that

provides a hyperbolic reduced-order system no longer applies. Consequently,

one cannot draw conclusions about the local stability of the nonlinear system

near the desired formation shape by analyzing the linearized system alone;

more sophisticated techniques are needed. Center manifold theory provides

tools for determining stability near nonhyperbolic equilibrium points and is

reviewed in Chapter 4.

In contrast to [83], [38] does use center manifold theory to establish

stability of the closed-loop system, but their analysis is restricted to undirected

graphs. It is possible to work with a reduced-order system, using the fact that

for the laws in question, the centroid of the formation is stationary. This allows

the full-order system to be reduced by 2 in dimension, and leaves one zero

eigenvalue for the linearized system. A critical feature of the center manifold

analysis of [38] is the observation that the set of equilibria of this reduced-

order system is then compact. For LRF formations, one can fix the position

of the leader to obtain a compact set of equilibria for a reduced-order system.

However, this is not possible in the coleader setting. In either case, separate

aspects of center manifold theory have to be used to establish a related de facto

compactness condition. Stability analysis of the formation shape control laws

for minimally persistent LRF and Coleader formations is taken up in Chapter
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4.

2.3 Global Rigidity

A fundamental task for sensor networks is to determine uniquely the

position of each agent from knowledge of certain inter-agent distances and

the positions of a small number of agents. This task is related to a further

concept called global rigidity. A graph in the plane is called globally rigid if

two formations having the same inter-agent distances differ at most by trans-

lation, rotation, and reflection. In [5], Aspnes et al show that global rigidity

is required for unique self-localization in sensor networks (and when the posi-

tions of any three non-collinear agents are known, global rigidity is sufficient

for localizability of every agent). In [35], Jackson and Jordan prove a conjec-

ture posed by Hendrickson in [30] that provides a complete characterization

of global rigidity in the plane. The result is as follows:

Theorem 2.3.1. A graph G(V,E) in the plane is globally rigid if and only if

it is 3-connected and redundantly rigid2.

A graph is called minimally globally rigid if it is globally rigid and

there exists no globally rigid graph with the same number of vertices and a

smaller number of edges, or equivalently, if removing any edge results in loss

of global rigidity. This equivalency is related to the fact that the edge splitting

2A graph is redundantly rigid if it remains rigid after removing any edge.
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operation described above can be used to “grow” all minimally globally rigid

graphs from the complete graph on four vertices [10].

2.4 Conclusion

Rigidity, persistence and global rigidity are rich mathematical topics

that feature extensively in modeling of autonomous vehicle formations and

sensor networks in this dissertation. A demonstration of how persistence fea-

tures in the information architecture and control law design is presented in

the next chapter, which examines a practical scenario in which a team of

unmanned aircraft are employed to cooperatively track a target.
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Chapter 3

Coordinated Standoff Tracking: Control Laws

and Information Architectures

3.1 Introduction

A primary use of unmanned aerial vehicles (UAVs) is for the surveil-

lance and tracking of moving targets. Teams of UAVs could be employed for

reconnaissance on unknown or adversarial targets, or for surveillance of the

surrounding area for potential threats to a friendly convoy. This chapter ex-

amines a coordinated standoff tracking problem, in which the objective is to

fly a team of UAVs in a planar circular orbit around a moving target with

prescribed standoff radius and inter-vehicle angular spacing.1 It demonstrates

that persistent information architectures can be used to achieve the coordi-

nated standoff tracking objective, and implements control laws based on these

architectures.

The problem of designing a heading rate controller to enable a vehicle

to maintain the prescribed standoff radius from the target was recently intro-

duced by Frew, Lawrence, and Morris using a Lyapunov guidance vector field

1A configuration that places vehicles at equal angular spacing around a perimeter is
optimal for gathering information about a given target [50].
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approach [24]. This study also proposed airspeed control laws for two vehi-

cles to achieve a prescribed angular spacing while executing the circular orbit.

However, this analysis left several important areas open for further work.

• It neglected an important timescale separation issue for heading and

standoff radius convergence.

• Although target motion and wind were considered, these were assumed

to be known so that a correction term could be added into the control

law. In general, wind and target motion are unknown and necessitate

an estimation process or adaptive control laws.

• The angular spacing analysis for two vehicles did not provide a formal

proof of convergence to the desired configuration.

• The multi-vehicle analysis was restricted to two vehicles and did not

consider information architectures that scale to any number of vehicles.

A Lyapunov guidance vector field approach was also adopted in a study by

Kingston and Beard that used heading control exclusively to obtain the desired

circular orbit and spacing [37]. This analysis also had limitations.

• It circumvents the timescale separation issue by using a sliding mode

controller to guarantee heading convergence in finite time; however, slid-

ing mode controllers are inherently discontinuous and known to produce

actuator chatter.
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• It utilizes an information architecture that scales to n vehicles, but this

architecture contains more than the minimum necessary number of infor-

mation links. Their stability results are local, though their Monte Carlo

analysis also suggests global stability.

This chapter addresses several gaps in the above analyses to further

develop the Lyapunov guidance vector field approach to steer vehicles to the

desired planar circular orbit. Section 3.2 presents the dynamical model and

Lyapunov guidance field approach. In the no-wind, stationary target case,

we show that the guidance field admits a closed-form analytical solution and

that this can be used in a path planning approach for a single vehicle. We

analyze two approaches for heading convergence, including a novel approach

that guarantees exact heading convergence in finite time, and demonstrate

that the trajectory is entirely determined from the initial condition. Section

3.3 applies these results to the case of a moving target with unknown constant-

velocity and unknown wind. Adaptive estimates are employed to account

for wind and target motion to achieve the desired circular orbit. Section

3.4 presents a variable airspeed control law that achieves the desired angular

spacing. The control laws are based on a persistent information architecture.

We show convergence to the desired configuration for any number of vehicles.

Section 3.5 shows numerical simulations that demonstrate the theoretical work,

and Section 3.6 offers concluding remarks.
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3.2 The Coordinated Standoff Tracking Problem

This section presents the dynamic model and the Lyapunov guidance

vector field approach to guide a single vehicle to the desired circular orbit, as

introduced by Frew, Lawrence, and Morris in [24]. We begin with the no-wind

stationary target case and generalize the results to account for unknown wind

and target motion in the following section.

We use the following unicycle model with kinematic constraints to de-

scribe the dynamics of a fixed-wing UAV:

ẋ = u1 cosψ

ẏ = u1 sinψ (3.1)

ψ̇ = u2

where [x, y]T ∈ R2 is the inertial position of the aircraft, ψ is the heading, u1 is

the airspeed input, and u2 is the heading rate input. This model, as with any

model, represents a simplification of the physics of a real UAV. It is assumed

that the UAV is capable of altitude stabilization, so the analysis is restricted

to a flat-earth plane, and typically 2nd-order dynamics associated with the

control inputs are neglected. However, the unicycle model is commonly used

in the literature [24, 49, 65] and is a reasonable starting point for describing

UAV motion. We do enforce kinematic constraints that would be an essential

feature of any practical implementation. We assume that there are constraints

on minimum and maximum airspeed according to

0 < vmin ≤ u1 ≤ vmax (3.2)
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and a constraint on maximum heading rate magnitude according to

|u2| ≤ ωmax. (3.3)

The maximum heading rate constraint is equivalent to a minimum turning

radius constraint, where rmin = u1/ωmax.

3.2.1 Lyapunov Guidance Vector Field Construction

This subsection describes the design of the heading rate control input

u2(t) to guide a vehicle to the desired circular trajectory around the target. For

the moment, we assume that the airspeed input is constant, i.e. u1(t) = u0 ∀t.

The heading rate command is generated from a Lyapunov guidance vector field

that guides the UAV to a circular orbit around the target, which is assumed

to be stationary and centered at the origin. We assume here that the initial

vehicle heading is aligned with the heading specified by the Lyapunov guidance

vector field and discuss how to deal with arbitrary initial headings in the next

subsection.

Consider the Lyapunov function

V (r) = (r2 − r2
d)

2 (3.4)

where r =
√
x2 + y2 is the relative distance to the target and rd is the desired

standoff radius of the circular orbit. As shown in [24], the time derivative

of V can be made non-positive and the the circular orbit can be achieved by

choosing the desired inertial velocity according to the vector field

f(x, y) =

[
ẋ
ẏ

]
= − u0

r(r2 + r2
d)

[
x(r2 − r2

d) + y(2rrd)
y(r2 − r2

d)− x(2rrd)

]
. (3.5)

43



The desired heading along the vector field, denoted ψd, is determined from

(3.5) via

ψd = arctan

(
ẏ

ẋ

)
= arctan

(−y(r2 − r2
d) + x(2rrd)

−x(r2 − r2
d)− y(2rrd)

)
. (3.6)

Differentiating, we obtain the heading rate input along the guidance field

u2 = ψ̇d =
4u0r

3
d

(r2 + r2
d)

2
. (3.7)

To satisfy the heading rate constraint, we require ψ̇d ≤ ωmax. Since the head-

ing rate given by (3.7) is maximized when r = 0, the constraint is satisfied

for any guidance field trajectory whenever 4u0/rd ≤ ωmax. It will be shown

below that if the guidance field trajectory begins outside the standoff radius,

it converges globally asymptotically to the standoff radius without ever going

inside the standoff radius. For such trajectories, the heading rate constraint

is satisfied whenever u0/rd ≤ ωmax. Throughout this subsection, we assume

that the parameters u0, rd, and ωmax are such that the heading rate constraint

is satisfied along the guidance trajectories.

The guidance field may be expressed in polar coordinates as

g(r, θ) =

[
ṙ

rθ̇

]
=

u0

r2 + r2
d

[
−(r2 − r2

d)
2rrd

]
. (3.8)

Observe qualitatively that when r > rd, r decreases toward the standoff radius,

when r < rd, r increases toward the standoff radius, and when r = rd, r

is constant and the vehicle moves around the standoff circle with constant

angular velocity θ̇ = u0/rd, which is the desired behavior. Evaluating the
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derivative of (3.4) along these trajectories, then

V̇ = −4u0r(r
2 − r2

d)
2

r2 + r2
d

≤ 0 (3.9)

and LaSalle’s Invariance Principle [41] may be invoked to conclude that r → rd

as t→∞, i.e. the trajectories converge asymptotically to the desired standoff

radius [24].

In fact, the vector field admits a closed-form analytical solution. Ob-

serve that the dynamics in (3.8) are independent of θ and we can obtain

dr

dθ
= −r

2 − r2
d

2rd
(3.10)

which has the solution

r(θ) =

{
1+kre−(θ−θ0)

1−kre−(θ−θ0) rd, r0 ≥ rd
1−kre−(θ−θ0)

1+kre−(θ−θ0) rd, r0 < rd
kr =

r0 − rd
r0 + rd

(3.11)

where r0 = r(0) is the initial separation distance from the target and θ0 is the

initial polar coordinate “clock angle”. This solution can be substituted into

the θ̇ equation in (3.8), which can be integrated to give the following implicit

solution for θ as a function of time

θ − θ0 =
u0

rd
(t− t0) + 2kr

[
e−(θ−θ0)

1− kre−(θ−θ0)
− 1

1− kr

]
r0 ≥ rd

θ − θ0 =
u0

rd
(t− t0)− 2kr

[
e−(θ−θ0)

1 + kre−(θ−θ0)
− 1

1 + kr

]
r0 < rd. (3.12)

An example trajectory under the control law (3.7) is shown in Fig. 3.1

with u0 = 20m/s, rd = 300m, x0 = 800m, y0 = 800m, and assuming

ψ0 = −2.8746rad in accordance with (3.6).
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Figure 3.1: Lyapunov guidance field trajectory with heading initially aligned
with the field.

The solutions given by (3.11) and (3.12) constitute the complete an-

alytical solution to the guidance vector field. A vehicle with heading rate

commanded according to (3.7) will converge to the desired circular orbit, pro-

vided that the initial heading is aligned with the guidance field. However, in

general the initial vehicle heading will not be aligned with the guidance field,

and we need an approach to converge to the desired heading. In the next

subsection, we analyze two approaches for heading convergence. We show

that a heading feedback approach from the literature has some theoretical and

practical limitations and propose an alternative that avoids these limitations.
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3.2.2 Heading Convergence

A heading feedback approach to obtain exponential heading conver-

gence is used by Frew, Lawrence, and Morris [24]; however, a complete proof

that accounts for the timescale separation between heading convergence and

standoff radius convergence is absent from their analysis. Other studies use a

sliding mode controller to guarantee heading convergence in finite time, [28,37]

which is inherently discontinuous and known to produce actuator chatter. This

problem is typically circumvented in practice by an approximation via a satu-

ration function, but this has the effect of diluting the theoretical convergence

properties.

In this subsection, we present a proof of heading convergence using the

feedback approach that explicitly addresses the timescale separation issue. We

also identify two theoretical and practical problems with this approach. First,

the proof of convergence is restricted to a certain set of initial headings, and

second, the kinematic constraints are not always satisfied.

As an alternative, we propose a novel, yet simple, approach to head-

ing convergence, which involves an initial minimum radius loiter circle. The

vehicle converges exactly to the desired heading in finite time for any initial

heading and does not violate the kinematic constraints. Further, the time and

location of convergence are analytically computable, and this allows the entire

trajectory to be exactly known for any arbitrary initial heading.
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3.2.2.1 Heading Feedback

Before proceeding with the heading error analysis, we introduce some

additional notation for the guidance trajectories. Since x = r cos θ and y =

r sin θ, and defining the angle φ via

cosφ =
r2 − r2

d

r2 + r2
d

, sinφ =
2rrd
r2 + r2

d

, (3.13)

we can write the vehicle dynamics (3.5) as

ẋ = − u0

r2 + r2
d

[
(r2 − r2

d)
x

r
+ (2rrd)

y

r

]
= −u0 [cos θ cosφ+ sin θ sinφ]

= −u0 cos(θ − φ) (3.14)

and similarly

ẏ = − u0

r2 + r2
d

[
(r2 − r2

d)
y

r
− (2rrd)

x

r

]
= −u0 [sin θ cosφ− cos θ sinφ]

= −u0 sin(θ − φ). (3.15)

Accordingly, from (3.6) we obtain the following angle relationship

ψd = θ − φ+ π. (3.16)

Now, suppose the vehicle has some initial heading error ψe(0) defined

by

ψe(t0) = ψ(t0)− ψd(t0) (3.17)
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where ψ(t0) is the actual initial heading and ψd(t0) is the desired initial heading

along the guidance solution. If the heading rate input u2 is given by

u2(t) = −kψe(t) + ψ̇d(t) (3.18)

for some feedback gain k > 0, then we obtain exponential convergence of the

feedback error as ψe(t) = ψe0e
−k(t−t0), wherein ψe0 = ψe(t0). Note that the

parameter k explicitly governs the heading error convergence rate and that k

must be chosen so that the turn rate constraint given by (3.3) is not violated.

This requires striking a proper balance between the feedback and feedforward

terms in (3.18).

From (3.1) and (3.17), the vehicle dynamics may be expressed as[
ẋ
ẏ

]
=

[
cos(ψe) − sin(ψe)
sin(ψe) cos(ψe)

] [
u0 cos(ψd)
u0 sin(ψd)

]
. (3.19)

Note that the matrix involving heading error has the structure of a rotation

matrix. Further, as the heading error ψe(t) converges to zero, this matrix

exponentially becomes the identity matrix, and the ideal dynamics along the

guidance field are recovered. From (3.19) we obtain the desired heading rate

when there is heading error

ψ̇d =
4u0r

3
d

(r2 + r2
d)

2
− 2u0

r
sin(

ψe
2

)

[
cos(φ− ψe

2
)− sin(φ) sin(φ− ψe

2
)

]
. (3.20)

The desired heading rate here consists of the ideal heading rate along the

guidance field given in (3.7) and a term involving sin(ψe/2) that goes to zero

as ψe goes to zero. This additional term involves r in the denominator and
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Figure 3.2: Heading Error Quadrants

may produce large heading rate commands that would violate the heading rate

constraint when r becomes small.

The results for boundedness and convergence with the heading feedback

approach depend on the quadrant of the initial heading error, illustrated in

Fig. 3.2 where the curve represents the analytical guidance trajectory with

u0 = 20m/s, rd = 300m, x0 = 600m, and y0 = 600m. The desired heading

is tangent to this trajectory; in general, the actual initial heading will not be

aligned with the guidance field, but instead pointed in one of the quadrants

shown. The result is provided by the following theorem.

Theorem 3.2.1. Suppose the vehicle dynamics are given by (3.1) and subject

to kinematic constraints (3.2) and (3.3). Suppose the airspeed input is set
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to a constant u0, and the heading rate input is given by (3.18) and (3.20).

Then when the initial heading error satisfies −π/2 ≤ ψe0 ≤ π/2 (i.e. heading

error is in quadrant II or III, as shown in Fig. 3.2), the vehicle asymptotically

converges to the standoff radius and circles the target with constant angular

velocity, i.e. limt→∞ r(t) = rd and limt→∞ θ̇(t) = u0/rd.

Proof. The vehicle dynamics may be expressed in polar coordinates as[
ṙ

rθ̇

]
=

u0

r2 + r2
d

[
cos(ψe) − sin(ψe)
sin(ψe) cos(ψe)

] [
−(r2 − r2

d)
2rrd

]
. (3.21)

We can express the r dynamics more compactly as

ṙ = −u0 cos(φ− ψe). (3.22)

Let us first establish an upper bound for r. Note from (3.13) that

φ ∈ [0, π) (since r ≥ 0) and φ → 0 as r → ∞, φ = π/2 when r = rd, and

φ→ π as r → 0.

For the first case, suppose that the initial heading error is−π/2 ≤ ψe0 <

0 (i.e. the heading error is in quadrant II). Then we obtain the following upper

bound on r (assuming r0 > rd),

r(t) ≤ r0 + u0t
∗ , rsup (3.23)

where t∗ is the time at which r achieves its maximum value, which may be

bounded as

t∗ ≤ 1

k
ln

( −ψe0
π
2
− φ(0)

)
. (3.24)
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From (3.22) we have r(t) ≥ rd for all t ≥ 0.

For the second case, suppose that 0 ≤ ψe0 ≤ π/2 (i.e. the initial heading

error is in quadrant III). From (3.22) we obtain r(t) ≤ r0 ≤ rsup ∀ t. For this

case, it is possible for r(t) to become smaller than the prescribed stand-off

radius rd. The actual size of this standoff distance violation effectively depends

on the initial distance to the target r0 and the feedback gain parameter k.

Now consider the Lyapunov function candidate

V =
1

2
(r2 − r2

d)
2 +

λ

2
ψ2
e , (3.25)

for some λ > 0. Evaluating V̇ along the trajectories given by (3.21) and (3.22),

then

V̇ =
−2u0r(r

2 − r2
d)

2

r2 + r2
d

+ 4u0r(r
2 − r2

d) sin(
ψe
2

) sin(
ψe
2
− φ)− λkψ2

e . (3.26)

Now, provided that −π/2 ≤ ψe0 ≤ π/2, we can bound V̇ as

V̇ ≤ −u0r(r
2 − r2

d)
2

r2 + r2
d

+ [u0rsup(r
2
sup + r2

d)− λk]ψ2
e (3.27)

and choosing λ according to

λ >
1

k
u0rsup(r

2
sup + r2

d) (3.28)

we then obtain

V̇ ≤ −u0r(r
2 − r2

d)
2

r2 + r2
d

− αψ2
e ≤ 0 (3.29)

where α > 0. Thus, limt→∞ r(t) = rd, and limt→∞ θ̇(t) = u0/rd follows from

(3.21). When |ψe0| > π/2 (i.e. heading error is in quadrant I or IV), we cannot
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bound V̇ as above. Consequently, the proof does not encompass this range of

initial headings.

Our proof of convergence addresses the timescale separation issue be-

tween heading convergence and standoff radius convergence. The theoretical

problem with this approach is that the proof is restricted to initial headings in

quadrants II and III. It is not necessarily impossible to prove convergence for

the remaining quadrants, though it would likely require a nontrivial modifica-

tion to what we have shown. The practical problem with this approach is that

for initial headings in quadrant III, where r(t) could possibly become smaller

than the prescribed standoff distance rd, it is not straightforward to choose the

heading feedback gain k in such a way to satisfy the heading rate constraint.

The lower bound of r for initial headings in quadrant III is a function of k,

and there is potential to violate the heading rate constraint. A particular case

is shown in Fig. 3.3 with u0 = 20m/s, rd = 300m, x0 = 325m, y0 = 0m,

ψ0 = π, and k = 0.001. Although the trajectory will eventually converge to

the standoff radius via Theorem 3.2.1, it gets close to the target in the pro-

cess, and potentially violates the turn rate constraint due to tighter loops the

vehicle must execute around the target.

3.2.2.2 Initial Loiter Circle

The availability of an analytical solution for the guidance vector field

motivates a novel approach for aligning the heading with the field. In partic-

ular, we show in this section that the desired heading can be exactly achieved
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Figure 3.3: Trajectory using heading feedback with initial heading in quadrant
III and small feedback gain.
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without the use of continuous heading feedback. The approach is to fly an

initial loiter circle of minimum radius rmin that is consistent with the heading

rate constraint (3.3). Whenever the desired heading is exactly achieved, the ve-

hicles can switch onto the guidance field solution, which is analytically known

from (3.11) and (3.12). The time and location of convergence are analytically

available. The result is given by the following theorem.

Theorem 3.2.2. Any minimum radius loiter circle that does not contain the

target will necessarily obtain the desired heading defined by the guidance vector

field (3.6) within finite time.

Proof. Consider a minimum radius loiter circle on which a vehicle is traveling

initially. This trajectory continuously takes on all values in [0, 2π] from initial

time to the time it takes to complete the loiter circle. Note that the desired

heading on the loiter circle is the same at initial time and at the time at which

a loiter circle has been completed (since this is the same point in space).

Assuming that the loiter circle does not contain the target, we can show that

the desired heading along the loiter circle takes on only a subset of values in

[0, 2π]. Then along the lines of the Intermediate Value Theorem, the headings

will match at some point between initial time and the time at which a loiter

circle has been completed. We make the argument for the open right half-

plane. By the radial symmetry of the guidance vector field, the argument will

hold for any rotated open half-plane. Thus, the result holds for any loiter

circle that does not contain the target.
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Let us show that in the open right half-plane, the guidance vector field

(3.5) never points down, i.e. when the ẋ-component is zero the ẏ-component

is positive. Ignoring the scalar parts since they do not contribute to direction,

when the ẋ-component is zero, the ẏ-component is given by

ẏ = 2rd(x+
y2

x
)
√
x2 + y2 (3.30)

Since in the open right half-plane x > 0, then ẏ > 0. By radial symmetry of

the vector field, the same argument is valid for any rotated open half-plane,

and hence the desired heading can be attained by any trajectory in this plane

that acquires all headings.

Thus, it suffices to simply execute an initial loiter circle of minimum

radius in accordance with the initial heading, and the desired heading will

be exactly attained in finite time at some point on the circle. In fact, in the

stationary target with no wind case, we can determine the point of heading

convergence as follows. Consider an initial loiter circle defined by

(x− xl)2 + (y − yl)2 = r2
min (3.31)

where (xl, yl) defines the center of the initial loiter circle and rmin denotes the

minimum turn radius according the the heading rate constraint (3.3). We can

rewrite this equation in polar coordinates as

r2 + r2
min − r2

l − 2rrmin cos(θ − α) = 0 (3.32)
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where rl =
√
x2
l + y2

l and α is the clock angle relative to horizontal reference

direction on the initial loiter circle, defined by

x− xl = rmin cosα

y − yl = rmin sinα. (3.33)

The angle α is related to the heading as

ψ = α +
π

2
. (3.34)

We are seeking the point where ψd = ψ, and from (3.16) and (3.34) we can

obtain the following relationship

θ − α = φ− π

2
(3.35)

which implies

cos(θ − α) = sinφ. (3.36)

From the definition of φ, (3.32) can be written as

r4 + (r2
min − r2

l + r2
d + 4rdrmin)r2 + r2

d(r
2
min − r2

l ) = 0 (3.37)

and the real, positive solution to this equation corresponds to the point on

(3.31) at which the desired heading will be obtained. An example trajectory

using this approach is shown in Fig. 3.4.

Further, we can implement logic on the turn direction of the initial loiter

circle to minimize the time to heading convergence and also the penetration

depth of the standoff radius, which may be desired for adversarial targets where
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Figure 3.4: Trajectory using initial left-turn loiter circle to converge exactly
to the desired heading. The dashed line represents the guidance trajectory if
the vehicle’s initial heading was aligned with the guidance field.

stealth is needed. Referring back to the heading error quadrants defined in

Fig. 3.2, it is reasonable to choose a left-turn loiter when the heading error

is in quadrants I and II, and a right-turn loiter when the heading error is in

quadrants III and IV. As examples, Fig. 3.4 shows a case where a left-turn

loiter is executed with u0 = 20m/s, rd = 300m, x0 = 800m, and y0 = 800m

and ψ0 = π/2, and Fig. 3.5 shows a case where a right-turn loiter is executed

with u0 = 20m/s, rd = 300m, x0 = 800m, and y0 = 800m and ψ0 = −π/2.

Moreover, when the initial radius satisfies r0 < rd + 2rmin and it is desirable

to avoid penetrating the standoff radius, a left-turn loiter may be executed

with quadrant IV headings. This case is shown in Fig. 3.6 with u0 = 20m/s,

rd = 300m, x0 = 230m, and y0 = 230m and ψ0 = −3π/4. However, there are

certain initial conditions from which it is impossible to avoid penetrating the
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Figure 3.5: Trajectory using initial right-turn loiter circle to converge exactly
to the desired heading.

standoff radius without violating the heading rate constraint.

There are several advantages of using this approach instead of heading

feedback. First, the convergence to the guidance field heading is exact, not

asymptotic. As a consequence, the entire trajectory, including the analytical

guidance solution, is exactly known at initial time for arbitrary initial head-

ing errors. Therefore, there is no need to continuously measure heading for

feedback. Measurements of deviations from this trajectory may be used to

estimate unknown wind and target motion, which we show in the following

section. Finally, the heading rate constraint (3.3) is always satisfied.
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Figure 3.6: Trajectory using initial left-turn loiter circle with quadrant IV
heading to avoid penetrating the standoff radius. The trajectory get close
to, but does penetrate, the standoff radius. However, there are certain initial
conditions from which it is impossible to avoid penetrating the standoff radius
without violating the heading rate constraint.
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3.3 Moving Target Tracking with Wind

In this section we extend the Lyapunov guidance vector field approach

to account for unknown wind and target motion. Specifically, we use variable

airspeed control and adaptive estimates of wind and target motion to maintain

stability of the circular orbit pattern. We restrict consideration to targets

moving with constant velocity, though the same principles could in theory

be applied to more general target motion. We also discuss theoretical and

practical limitations on what can be achieved given the kinematic constraints

on the controllers.

3.3.1 Variable Airspeed Controller with Adaptive Wind/Target Mo-
tion Estimates

Consider the vehicle dynamics given by (3.1) expressed relative to a

moving target and incorporating a wind term

ẋ = u1 cosψ +Wx − VxT

ẏ = u1 sinψ +Wy − VyT (3.38)

ψ̇ = u2

where [Wx,Wy]
T are components of a constant wind velocity and [VxT , VyT ]T

are components of the constant inertial target velocity. The wind and target

velocity both affect the dynamics additively, and this allows us to combine the
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two effects into one variable as

Tx = VxT −Wx

Ty = VyT −Wy. (3.39)

We treat Tx and Ty as unknown constants, and assume a priori availability of

an upper bound T ∗ satisfying

max(Tx, Ty) ≤ T ∗ (3.40)

which encompasses worst case combined effect of wind and target velocities.

Consider the following controller construction

u1 cosψ = −u0 cos(θ − φ) + T̂x − νs sin θ

u1 sinψ = −u0 sin(θ − φ) + T̂y + νs cos θ (3.41)

where T̂x and T̂y are adaptive estimates for the unknown wind and target

motion, νs is a yet-to-be-specified signal, and all other variables have the same

meaning as before. This construction defines a heading given by

tanψ =
−u0 sin(θ − φ) + T̂y + νs cos θ

−u0 cos(θ − φ) + T̂x − νs sin θ
(3.42)

and an airspeed input given by

u2
1 = [−u0 cos(θ−φ) + T̂x−νs sin θ]2 + [−u0 sin(θ−φ) + T̂y +νs cos θ]2. (3.43)

The heading equation (3.42) may be differentiated to obtain the heading rate

input.
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Using (3.41) with (3.38) we obtain

ṙ = −u0
r2 − r2

d

r2 + r2
d

+ T̃x cos θ + T̃y sin θ

rθ̇ = −u0
2rrd
r2 + r2

d

− T̃x sin θ + T̃y cos θ + νs. (3.44)

where T̃x = T̂x − Tx and T̃y = T̂y − Ty are the adaptive estimation errors. We

now use the same Lyapunov guidance field as before to define the perfect case

relative motion as

ṙp = −u0

r2
p − r2

d

r2
p + r2

d

rpθ̇p = −u0
2rprd
r2
p + r2

d

. (3.45)

We define the error signals as

er = r − rp

eθ = θ − θp (3.46)

and the corresponding error dynamics are then given by

ėr = −u0

2r2
d(r

2 − r2
p)er

(r2 + r2
d)(r

2
p + r2

d)
+ T̃x cos θ + T̃y sin θ

ėθ = −u0
2rd(r + rp)er

(r2 + r2
d)(r

2
p + r2

d)
+

1

r
(−T̃x sin θ + T̃y cos θ + νs). (3.47)

The actual and guidance trajectories are defined from the same point, which

implies rp(0) = r(0) and θp(0) = θ(0). Consequently, the error signals are

zero at the initial time (after heading convergence to the desired Lyapunov

guidance field is achieved).
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Remark. It is important to note that we assume throughout this anal-

ysis that the desired heading can be obtained before the adaptation process

is initialized. Via Theorem 3.2.2, the exact heading can be achieved provided

that the target does not penetrate the initial loiter circle before the correct

heading has been obtained.

There are some initial conditions and target trajectories where the ve-

hicle heading does not converge to the desired heading within a single loiter

circle. This situation would arise if a moving target penetrates the initial loi-

ter circle before the desired heading has been obtained. However, since we are

assuming that the target moves with constant velocity, the target will even-

tually exit the initial loiter trajectory. Thus, the desired heading will still be

achieved, but it may require more than one initial loiter circle. For simplic-

ity, we assume that we have sufficient initial separation such that the desired

heading will be reached within one orbit of the initial loiter circle. As a con-

sequence, the time required for one orbit can be used to initiate the variable

airspeed angular spacing control scheme.

3.3.2 Stability Analysis

Before commencing the stability analysis, we introduce a smooth pa-

rameter projection construction to ensure that the estimates for wind and

target motion evolve within the known bounds give by T ∗. We define the
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estimates as follows

T̂x = T ∗ tanh φ̂x

T̂y = T ∗ tanh φ̂y (3.48)

where φ̂x and φ̂y are estimates that can adapt free of any restrictive bounds.

The corresponding true parameter values are

Tx = T ∗ tanhφ∗x

Ty = T ∗ tanhφ∗y. (3.49)

Now consider the Lyapunov function candidate

V =
1

2
e2
r+

µ

2
e2
θ+

T ∗

γ
(log cosh φ̂x−φ̂x tanhφ∗x)+

T ∗

γ
(log cosh φ̂y−φ̂y tanhφ∗y)+c∗

(3.50)

for any µ > 0 and γ > 0. The term c∗ is a to-be-determined fixed constant to

ensure positive definiteness of V . Evaluating V̇ along the trajectories defined

by (3.47) and defining the adaptive update laws

˙̂
φx = −γ

[
er cos θ − µeθ sin θ

r

]
˙̂
φy = −γ

[
er sin θ + µ

eθ cos θ

r

]
νs = −kθu0

γ
tanh eθ + β (3.51)

for some signal β and constant kθ > 0, we obtain

V̇ = −u0
2r2

d(r + rp)e
2
r

(r2 + r2
d)(r

2
p + r2

d)
− kθ

r
eθ tanh eθ − µu0

2rd(r + rp)ereθ
(r2 + r2

d)(r
2
p + r2

d)
+
µβeθ
r

.

(3.52)
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The parameter γ has the interpretation of a “learning rate” that governs how

fast the adaptation process in (3.51) evolves. To cancel the sign-indefinite

term in (3.52), we choose

β =
2u0rd(r + rp)rer
(r2 + r2

d)(r
2
p + r2

d)
(3.53)

and thus

V̇ = −u0
2r2

d(r + rp)e
2
r

(r2 + r2
d)(r

2
p + r2

d)
− kθu0

γr
eθ tanh eθ ≤ 0 (3.54)

provided that r > 0, which can be readily established from (3.44) and (3.48).

It still remains to determine the constant c∗. Since the error signals er and

eθ are initially zero, and if we set the adaptive estimates φ̂x and φ̂y to be

initially zero, then the third and fourth terms in (3.50) have a minimum value

whenever φ̂x = φ∗x and φ̂y = φ∗y. Accordingly, we can define c∗ as

c∗ =
T ∗

γ
[| log coshφ∗x − φ∗x tanhφ∗x|+ | log coshφ∗y − φ∗y tanhφ∗y|] (3.55)

to ensure positive definiteness of V . Finally, note that c∗ is inversely propor-

tional to γ and that 1/2e2
r(t) ≤ V (t) ≤ V (0) = c∗. This implies |er(t)| ≤

√
2c∗.

Thus, the maximum radial error from the guidance trajectory can be reduced

by increasing the learning rate γ.

Equation (3.54) implies that all closed-loop signals are bounded and

that er → 0 and eθ → 0, which achieves the desired circular orbit.

3.3.3 Kinematic Constraints

There are theoretical and practical limitations to what can be achieved

given the kinematic constraints (3.2) and (3.3) on the controllers. For example,
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if either wind or target speed (or their combined effect) is too large, then it will

be impossible to maintain the circular trajectory around the target. Moreover,

even when it is possible to maintain the circular trajectory, there may be large

demands on airspeed variation that are undesirable or infeasible from a fuel

efficiency point of view.

Let us examine the vehicle airspeed command in order to establish a

parameter α > 0 such that

T ∗ = αu0 (3.56)

for the maximum target speed T ∗ that we can accommodate given the airspeed

constraint (3.2). From (3.43), we establish

u2
1 = u2

0 + ν2
s + T̂ 2

x + T̂ 2
y + 2u0νs sinφ+ 2νs(T̂y cos θ − T̂x sin θ)

− 2u0(T̂x cos(θ − φ) + T̂y sin(θ − φ)).
(3.57)

Using (3.40) and (3.56), we obtain the following upper bound

u2
1 ≤ [|νs|+ u0(1 + 2α)]2. (3.58)

To satisfy the airspeed constraint, we require u2
1 ≤ v2

max and so

|νs| ≤ vmax − u0(1 + 2α). (3.59)

For (3.59) to be meaningful, we need the right hand side to be positive, which

yields an upper bound for α

α <
1

2
[
vmax
u0

− 1]. (3.60)
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Next, from (3.57), we also establish the following lower bound on the

commanded airspeed

u2
1 ≥ |νs|2 − 2u0(1 + 2α)|νs|+ (1− 4α)u2

0. (3.61)

To satisfy the airspeed constraint (3.2), we require u2
1 ≥ v2

min, and so we need

|νs|2 − 2u0(1 + 2α)|νs|+ (1− 4α)u2
0 − v2

min ≥ 0. (3.62)

Let r+ and r− be the two roots of

|νs|2 − 2u0(1 + 2α)|νs|+ (1− 4α)u2
0 − v2

min = 0 (3.63)

which are given by

r+ = u0(1 + 2α) +
√

4α2u2
0 + 8αu2

0 + v2
min

r− = u0(1 + 2α)−
√

4α2u2
0 + 8αu2

0 + v2
min. (3.64)

Clearly, these are two real distinct roots with r+ > r−. Now we can write

(3.62) as

(|νs| − r+)(|νs| − r−) ≥ 0 (3.65)

and to satisfy this we need |νs| ≥ r+ or |νs| ≤ r−. Since we are interested in

upper bounding |νs|, we adopt |νs| ≤ r−, which leads to

|νs| ≤ u0(1 + 2α)−
√

4α2u2
0 + 8αu2

0 + v2
min. (3.66)

For (3.66) to be meaningful, we need the right hand side to be positive, which

yields a separate upper bound for α given by

α <
1

4

[
1− v2

min

u2
0

]
. (3.67)
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Combining (3.60) and (3.67), then

α < min

[
1

2

(
vmax
u0

− 1

)
,
1

4

(
1− v2

min

u2
0

)]
= αmax (3.68)

in order to satisfy the airspeed constraint (3.2). Thus, we have 0 ≤ α < αmax

such that T ∗ = αu0. From (3.68), we can see that there is a tradeoff between

allowable airspeed variation and maximum allowable wind and target speed:

a larger allowable variation in airspeed (i.e. large vmax and small vmin) means

that a faster target or stronger wind can be accommodated.

We must also establish a lower bound for the learning rate γ such that

the airspeed constraint (3.2) is satisfied. Since r = er+rp then |r| ≤ |er|+ |rp|.

Also, r0 ≥ |rp| ≥ rd ∀t and, as we have already noted, |er| ≤
√

2c∗. Then, we

obtain the following upper bound on the β term in νs from (3.51) as

|β| ≤ 2u0

√
2c∗(
√

2c∗ + r0)(
√

2c∗ + 2r0)

r3
d

(3.69)

Combining (3.51), (3.59), (3.66), and (3.69) we establish

kθ
γ

+
2
√

2c∗(
√

2c∗ + r0)(
√

2c∗ + 2r0)

r3
d

≤

min

[
vmax
u0

− (1 + 2α), (1 + 2α)−
√

4α2 + 8α +
v2
min

u2
0

] (3.70)

Solving (3.70) yields a lower bound for γ where if we choose γ > γmin, then

the airspeed constraint will be readily satisfied.

However, we cannot choose an arbitrarily large learning rate γ because

there is potential to violate the heading rate constraint. This can be seen by

observing that the heading rate is given by the derivative of (3.42), which via
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(3.48) is proportional to the adaptive estimates given in (3.51) that are directly

scaled by the learning rate γ. Therefore, we must choose an appropriate

learning rate γ such that the heading rate constraint is satisfied.

As an example, take u0 = 20m/s, rd = 300m, r0 = 800, kθ = 0.001,

vmax = 25m/s, and vmin = 15m/s. Then we have αmax = 7/64 ≈ 0.1095 and

T ∗ ≈ 2m/s, i.e., we can accommodate a target speed of approximately one

tenth of the nominal vehicle airspeed u0. Also, γmin ≈ 202.5 so any γ > γmin

will satisfy the airspeed constraint.

It is important to note that while the bounds derived in this section

are sufficient to guarantee satisfaction of the airspeed constraint, they may not

necessary. Indeed, the process of bounding the various terms is conservative,

which is apparent in the simulations we report subsequently. In practice, the

design choices for the various tradeoffs will ultimately depend on mission par-

ticulars and individual UAV capabilities. The controller construction we have

proposed allows adjustable parameters to be tuned so that the coordinated

standoff tracking objective can be achieved despite uncertainties while also

accounting for kinematic constraints.

3.4 Stationary Target Tracking: Multiple Vehicle Spac-
ing

This section develops control laws to achieve desired angular spacing

when multiple vehicles engage a stationary target. The control laws are based

on a persistent information architecture. The coordinated standoff tracking
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problem naturally suggests a leader-follower structure: the target is the leader

since it is not constrained to maintain any relative distances, and the engag-

ing vehicles are followers that maintain their distances to the target and to

one another. We consider minimally persistent leader-first-follower, with the

minimum possible number of distances actively controlled, and show global

asymptotic stability of the desired formation.

Each vehicle uses a variable airspeed controller to obtain the desired

spacing. We explicitly account for the airspeed constraint (3.2) by introduc-

ing a design variable that adjusts the amount of allowable airspeed variation

without diluting our convergence properties. In this way, the fuel expenditure

required to obtain desired angular spacing can be minimized. There is a trade-

off: larger allowable airspeed variation means faster convergence and smaller

allowable airspeed variation means slower convergence.

The angular spacing control can commence once all of the UAVs com-

plete their initial respective loiter arcs. The required time for all of the vehicles

to match headings with the guidance field is analytically determined through

only knowledge of the initial conditions of all of the vehicles when there is no

wind or target motion; the time can be upper-bounded according to Theorem

3.2.2 by the time required to execute a loiter circle. Accordingly, we assume

in this section without loss of generality that all of the vehicles have already

matched their heading with the guidance field. For simplicity in the analy-

sis, we also assume that the vehicles align their headings with the guidance

field outside of the standoff radius, though in principle the results would still

71



extend to the case where heading alignment occurs inside the standoff radius

with some minor modifications.

Minimally Persistent Information Architecture

This subsection develops control laws based on a minimally persistent

leader-first-follower information architecture. The target is the leader since it

does not maintain any distances to the engaging UAVs. One of the engaging

UAVs maintains the circular orbit around the target and has no other distances

to maintain. The remaining vehicles maintain the circular orbit around the

target and, through adjustments in airspeed, maintain a prescribed angular

spacing with the neighboring vehicle ahead of it in the circular orbit. This

structure requires the minimum possible number of communication/sensing

links to achieve the circular orbit and angular spacing.

Control Laws and Stability Analysis

The dynamics for the ith vehicle in polar coordinates are given by

ṙi = −u1i
r2
i − r2

d

r2
i + r2

d

(3.71)

riθ̇i = u1i
2rird
r2
i + r2

d

, i = 1, ..., n. (3.72)

We designate vehicle n to have a constant airspeed

u1n = u0. (3.73)

Let the airspeed input of the remaining n− 1 vehicles be given by

u1i = u0 + ∆Vmax tanh(θi+1 − θi − θd)
r2
i + r2

d

r2
i+1 + r2

i

(3.74)
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where ∆Vmax > 0 is a design parameter to be chosen such that (3.74) satisfies

the airspeed constraint, and θd is the desired angular spacing between each

pair of vehicles. To satisfy the airspeed constraint, we require u0 −∆Vmax >

vmin > 0. When the angular spacing is different from desired, the second term

adjusts the airspeed to compensate. When the desired spacing is achieved, the

second term goes to zero, and the airspeed becomes the constant nominal u0.

We emphasize that any positive value for ∆Vmax is sufficient to achieve the

desired spacing. Therefore the amount of allowable airspeed variation can be

adjusted in order to maximize fuel efficiency. The tradeoff for choosing a small

∆Vmax is that convergence to the desired angular spacing may be slower. We

note that all feedback signals for vehicle i, viz. ri, ri+1, θi+1−θi are computable

from relative position measurements in an arbitrary local coordinate basis from

the target and from vehicle i’s neighboring vehicle.

We define the angular spacing errors as δθi = θi+1 − θi − θd. We

then differentiate and use (3.71) with (3.74) to obtain angular spacing error

dynamics as

δθ̇n−1 =
2u0rd(r

2
n−1 − r2

n)

(r2
n + r2

d)(r
2
n−1 + r2

d)
− 2rd∆Vmax

(r2
n + r2

n−1)
tanh(δθn−1), i = n− 1 (3.75)

δθ̇i =
2u0rd(r

2
i − r2

i+1)

(r2
i+1 + r2

d)(r
2
i + r2

d)
+

2rd∆Vmax
(r2
i+2 + r2

i+1)
tanh(δθi+1)− 2rd∆Vmax

(r2
i+1 + r2

i )
tanh(δθi),

i = 1, ..., n− 2.

(3.76)

Now consider the Lyapunov function candidate

V =
n−1∑
i=1

log cosh δθi +
1

2

n∑
i=1

λir
2
i (3.77)
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with some suitably chosen λi > 0. Evaluating V̇ along the trajectories defined

by (3.71) and (3.75), we obtain

V̇ =
n−1∑
i=1

[
2u0rd(r

2
i − r2

i+1)

(r2
i+1 + r2

d)(r
2
i + r2

d)
tanh(δθi)−

2rd∆Vmax
(r2
i+1 + r2

i )
tanh2(δθi)− λiriu1i

r2
i − r2

d

r2
i + r2

d

]

+
n−2∑
i=1

[
2rd∆Vmax

(r2
i+2 + r2

i+1)
tanh(δθi+1) tanh(δθi)

]
− λnrnu0

r2
n − r2

d

r2
n + r2

d

(3.78)

Using the fact that rd ≤ ri(t) ≤ ri0 from (3.71) and u12 ≥ u0 − ∆Vmax from

(3.74), we can bound V̇ as

V̇ ≤
n−1∑
i=1

[
−∆Vmaxrd

r̄2
0

tanh2 δθi +
u0(r2

i − r2
d)

rd(r2
i + r2

d)
+
u0(r2

i+1 − r2
d)

rd(r2
i+1 + r2

d)

]
(3.79)

−
n−1∑
i=1

[
λird(u0 −∆Vmax)

(r2
i − r2

d)

(r2
i + r2

d)

]

+
n−2∑
i=1

[
∆Vmax
rd

tanh(δθi+1) tanh(δθi)

]
− λnrnu0

r2
n − r2

d

r2
n + r2

d

. (3.80)

We can rewrite as

V̇ ≤ − tanh δθTC tanh δθ −
n−1∑
i=1

[
[λird(u0 −∆Vmax)−

2u0

rd
]
(r2
i − r2

d)

(r2
i + r2

d)

]
− (λnrnu0 −

u0

rd
)
(r2
i − r2

d)

(r2
i + r2

d)

(3.81)

where tanh δθ = [tanh(δθ1), ..., tanh(δθn−1)] and the matrix C has the positive-

definite structure

C =



∆Vmaxrd
r̄20

−∆Vmax
rd

0 · · · 0

0 ∆Vmaxrd
r̄20

−∆Vmax
rd

· · · 0

0 · · · . . . · · · 0
0 · · · 0 ∆Vmaxrd

r̄20
−∆Vmax

rd

0 0 · · · 0 ∆Vmaxrd
r̄20

 . (3.82)
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The positive-definiteness of C is directly related to the information architecture

being minimally persistent leader-first-follower. Choosing

λn >
1

r2
d

, λi >
u0

r2
d

(u0 −∆Vmax), i = 1, ..., n− 1 (3.83)

we obtain V̇ ≤ 0. This implies

lim
t→∞

ri(t) = rd, ∀i (3.84)

which achieves the circular standoff radius, and

lim
t→∞

δθi(t) = 0, ∀i (3.85)

which achieves the angular spacing objective.

3.5 Simulations

In this section, we present simulations to demonstrate our control laws

for the coordinated standoff tracking problem with minimally persistent infor-

mation architecture. The simulations show four UAVs engaging a stationary

target and two UAVs engaging a moving target.

Fig. 3.7 shows four UAVs engaging a stationary target with u0 =

20m/s, rd = 300m, ∆Vmax = 5m/s, x10 = 1000m, y10 = 1000m, ψ10 = 0,

x20 = −800m, y20 = −700m, ψ20 = π/2, x30 = −500m, y30 = 900m, ψ30 = π,

x40 = 700m, y40 = −100m, and ψ40 = −π/4. The vehicles initially have

arbitrary headings and execute the initial loiter circle to converge to the desired

heading along the Lyapunov guidance vector field. When all vehicles arrive
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Figure 3.7: Four UAVs engaging a stationary target in local coordinates.

within a prescribed distance from the standoff radius, the variable airspeed

controllers commence to achieve the desired angular spacing. The airspeed

commands are shown in Fig. 3.8. The airspeed of the first follower remains

constant while the other vehicles adjust their airspeeds to achieve the spacing.

The relative spacing errors (we show relative distances here, which is equivalent

to relative angles in this case) are shown in Fig. 3.9 and all converge to zero.

Fig. 3.10 shows two UAVs engaging a target moving with constant

velocity in inertial coordinates where u0 = 20m/s, rd = 400m, ∆Vmax =

5m/s, γ = 0.01, µ = 1, kθ = 0.01, x10 = 1100m, y10 = 800m, ψ10 = 0,

x20 = 800m, y20 = −800m, ψ20 = 0, Tx = 3m/s, and Ty = 3m/s. The

target speeds Tx and Ty and the learning rate γ are outside the range of

values established in our analysis in section 3.3. Despite this, the vehicles
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Figure 3.8: Airspeed commands for spacing.
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Figure 3.9: Relative spacing errors for four UAVs engaging a stationary target.
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accomplish the coordinated standoff tracking objectives, which highlights the

conservatism inherent in the various upper bounds that were derived. The

vehicles again initially have arbitrary headings and execute the same initial

loiter circle at constant airspeed to converge to the desired heading. When the

desired heading is achieved, the variable airspeed control commences, which

adapts for the unknown wind and target motion. After a prescribed time, the

variable airspeed angular spacing control commences for the vehicles to obtain

a prescribed angular separation of π. The trajectories are shown in local

target frame coordinates in Fig. 3.11, where it can be seen that the circular

orbit pattern is achieved despite the unknown wind and target motion. The

airspeed commands for spacing and maintaining the circular orbit are shown

in Fig. 3.12 and the variations are within 25% of the nominal airspeed. The

relative spacing error (we show relative distance here, which is equivalent to

relative angle in this case) is shown in Fig. 3.13 and converges to zero.

3.6 Conclusions

This chapter has progressed the Lyapunov guidance vector field ap-

proach to the coordinated standoff tracking problem. For single vehicle path

planning, we presented a proof of heading convergence that addresses a previ-

ously neglected timescale separation issue. We then proposed a novel approach

for heading convergence that utilizes an analytical solution to the guidance vec-

tor field and offers theoretical and practical advantages. To accommodate un-

known target motion and wind, adaptive estimates were introduced to ensure
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Figure 3.10: Two UAVs engaging a moving target in inertial coordinates (m).
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Figure 3.13: Relative spacing error for two UAVs engaging a moving target.
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stability of the circular trajectory. For multiple vehicle coordination, a vari-

able airspeed controller was implemented to achieve prescribed inter-vehicle

angular spacing. We established a connection with recent work on persistent

information architectures and based our control laws on an architecture which

was derived from that theory. We showed asymptotic stability the desired

formation configuration.

The connection between the stability of the desired formation shape

and graph theoretic properties of the information architecture motivates a

study of more general information architectures. The next chapter studies the

stabilizability of two types of minimally persistent formations: leader-remote-

follower and coleader.
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Chapter 4

Control of Minimally Persistent

Leader-Remote-Follower and Coleader

Formations in the Plane

4.1 Introduction

The previous chapter used an instance of a persistent information ar-

chitecture to solve a coordinated standoff tracking problem. This chapter

addresses the more general problem of solving an n-agent formation shape

control problem in the plane for a class of persistent architectures. The ob-

jective of this problem is to design decentralized control laws for each agent

to restore a desired formation shape. We use relative position measurements

to control certain interagent distances according to a directed graph.

The persistent architectures considered in this chapter are minimally

persistent formations in the plane, which fall into three categories: Leader-

First-Follower (LFF), Leader-Remote-Follower (LRF) and Coleader. This

chapter extends the results of [83] to minimally persistent LRF and coleader

formations. In [83], Yu et al prove for minimally persistent LFF formations in

the plane with cycles that choosing locally stabilizing control gains is possible

if a certain submatrix of the rigidity matrix has all leading principal minors
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nonzero. They also prove that all minimally persistent LFF formations gener-

ically obey this principal minor condition.

The contribution of this chapter is non-trivial because the nonlinear

closed-loop system has a manifold of equilibria, which implies that the lin-

earized system is nonhyperbolic. Center manifold theory is thus required in

the stability analysis. Yu et al obtain a hyperbolic system for LFF formations

via the choice of a particular global coordinate system and prove local expo-

nential stability of the formation shape through eigenvalue analysis. Such a

choice of global coordinate system is not possible for LRF and Coleader forma-

tions. Accordingly, we apply a new result based on center manifold theory to

show local exponential stability of the desired formation shape. In [38] Krick

et al also show local exponential stability of the desired formation shape us-

ing center manifold theory, but their analysis is restricted to undirected rigid

formations. A further challenge of our argument, in contrast to that of [38],

is to circumvent the non-compactness of the equilibrium manifold. We show

that it is again possible to choose stabilizing control gains whenever a certain

submatrix of the rigidity matrix has all leading principal minors nonzero and

show that this condition holds for all LRF and coleader formations.

Together with [83], this chapter effectively demonstrates local stabiliz-

ability of the desired shape for all minimally persistent formations. Section

4.2 presents background on center manifold theory. Section 4.3 proves a new

center manifold theory result for systems with an equilibrium manifold. Sec-

tion 4.4 describes the nonlinear equations of motion and shows how center
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manifold theory can be applied to prove that the desired formation shape is

locally exponentially stable. Section 4.5 shows that the principal minor con-

dition holds for all LRF and coleader formations. Section 4.6 illustrates the

results with numerical simulations. Section 4.7 gives concluding remarks.

4.2 Center Manifold Theory

Center manifold theory offers tools for analyzing stability of dynamical

systems near nonhyperbolic equilibrium points of a nonlinear system (that is,

equilibrium points about which the linearization has one or more eigenvalues

with zero real part). Effectively, the theory allows one to reduce the dimension

of the nonlinear system. The motions tend asymptotically toward trajectories

on the center manifold rather than to a point. Standard treatments of center

manifold theory can be found in e.g [15], [64], or [79]. These concentrate on

isolated equilibria. In the formation shape maintenance problem, the dynamic

system has a manifold of non-isolated equilibrium points corresponding to the

desired formation shape that for the coleader case is not even compact. In [47],

Malkin proves a local stability result where trajectories converge to a point on

an equilibrium manifold. More general results for equilibrium manifolds are

presented by Aulbach in [6]. In [38], Krick et al emphasize the importance

of compactness for proving stability of the entire equilibrium manifold. Here,

we state a new result for stability of equilibrium manifolds and offer a concise

proof using center manifold theory.
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Consider the nonlinear autonomous dynamic system

ẋ = f(x), x ∈ <n (4.1)

where the function f is Cr, r ≥ 2 almost everywhere including a neighbour-

hood of the origin. Without loss of generality, suppose the origin is an equi-

librium point and that the Jacobian of f (we will use the notation Jf (x)) at

the origin has m eigenvalues with zero real part and n −m eigenvalues with

negative real part. Then (4.1) can be locally transformed into the following

form

θ̇ = Acθ + g1(θ, ρ)

ρ̇ = Asρ+ g2(θ, ρ), (θ, ρ) ∈ <m ×<n−m (4.2)

where Ac is a matrix having eigenvalues with zero real parts, As is a matrix

having eigenvalues with negative real parts, and the functions g1 and g2 satisfy

g1(0, 0) = 0, Jg1(0, 0) = 0

g2(0, 0) = 0, Jg2(0, 0) = 0. (4.3)

Definition 4.2.1. An invariant manifold is called a center manifold for (4.2)

if it can be locally represented as follows

W c(0) = {(θ, ρ) ∈ U ⊂ <m ×<n−m|ρ = h(θ)} (4.4)

for some sufficiently small neighbourhood of the origin U where the function

h satisfies h(0) = 0 and Jh(0) = 0.
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We have the following standard result.

Theorem 4.2.1 ( [79]). Consider (4.2) where Ac has eigenvalues with zero real

part, As has eigenvalues with negative real part, and g1 and g2 satisfy (4.3).

There exists a Cr center manifold for (4.2) with local representation function

h : <m → <n−m. The dynamics of (4.2) restricted to any such center manifold

is given by the following m-dimensional nonlinear system for ξ sufficiently

small

ξ̇ = Acξ + g1(ξ, h(ξ)), ξ ∈ <m. (4.5)

If the origin of (4.5) is stable (asymptotically stable) (unstable), then the ori-

gin of (4.2) is stable (asymptotically stable) (unstable). Suppose the origin of

(4.5) is stable. Then if (θ(t), ρ(t)) is a solution of (4.2) for sufficiently small

(θ(0), ρ(0)), there is a solution ξ(t) of (4.5) such that as t→∞

θ(t) = ξ(t) +O(e−γt)

ρ(t) = h(ξ(t)) +O(e−γt) (4.6)

where γ is a positive constant.

This result shows that in order to determine stability near the nonhy-

perbolic equilibrium point of (4.1), one can analyze a reduced-order system,

viz. (4.5). If the origin of the reduced-order system (4.5) is stable, then the

solutions of the original system converge exponentially to a trajectory on the

center manifold. This result however only applies when the nonhyperbolic

equilibrium point is isolated. In our formation shape control problem, we will
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see that there is a smooth manifold of equilibrium points. This requires a new

center manifold result, which we provide in the following section.

4.3 Center Manifold Result for a System with an Equi-
librium Manifold

We have the following result when there is a manifold of equilibria, and

we will contrast it with the result of [38]. There are two essential differences

with the result of [38], both related to the fact that [38] deals with undirected

formations and the simplifications they engender.

First the undirected nature of the formations renders the center man-

ifold underlying [38] compact. This is in fact quite crucial to the argument

in [38]. Ultimately the goal of [38], and indeed our goal, is to demonstrate ex-

ponential convergence to the center manifold. The lack of compactness of this

manifold, that unlike the setting of [38] is the case here, causes difficulties.1

The second difference stems from the fact that the undirected nature of

the formation considered in [38] makes the entire center manifold, under the

control law of [38], exponentially stable. In the directed formation case con-

sidered here that does not necessarily happen. This requires a fundamentally

new result provided in the theorem below. Observe that although the theorem

1Saying that a manifold is locally exponentially stable means that there is a single ex-
ponent γ such that all trajectories converge to the manifold from a sufficiently small neigh-
bourhood at least as fast as e−γt. One could envisage a non-compact manifold where any
single trajectory approaches the manifold exponentially fast but no single γ could be found
applicable to all trajectories.
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postulates and proves the existence of a center manifold, it makes no explicit

compactness assumptions, in contrast to [38].

Theorem 4.3.1. Consider (4.1) with f ∈ Cr, r ≥ 2 almost everywhere includ-

ing a neighbourhood of the origin. Suppose there is a smooth m-dimensional

(m > 0) manifold of equilibrium points M1 = {x ∈ <n|f(x) = 0} for (4.1) that

contains the origin. Suppose at the origin the Jacobian of f has m eigenvalues

with zero real part and n − m eigenvalues with negative real part. Then we

have the following

• M1 is a center manifold for (4.1).

• There are compact neighbourhoods Ω1 and Ω2 of the origin such that

M2 = Ω2 ∩ M1 is locally exponentially stable and for each x(0) ∈ Ω1

there is a point q ∈M2 such that limt→∞x(t) = q.

We shall prove Theorem 4.3.1 with the aid of the following lemma.

Lemma 4.3.2. Consider (4.2) where Ac has eigenvalues with zero real part,

As has eigenvalues with negative real part, and g1 and g2 satisfy (4.3). Suppose

that the equilibrium set is a smooth m-dimensional manifold M1. Then there

exists a smooth function h1 : <m → <n−m such that h1(0) = 0, Jh1(0) = 0

and in a suitably small neighborhood U of the origin, the equilibrium set can

be represented as ρ = h1(θ).

Proof. Consider the equation

g̃2(θ, ρ) = Asρ+ g2(θ, ρ) = 0 (4.7)
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As As is nonsingular and (4.3) holds, then by the implicit function theorem,

for any suitably small θ, there exists ρ, expressible as ρ = h1(θ), for a smooth

h1 satisfying h1(0) = 0, Jh1(0) = 0, and such that (4.7) holds.

Note that to prove (θ, ρ = h1(θ)) lies on the equilibrium manifold, we

must show in addition to (7) that the following equation holds:

Acθ + g1(θ, h1(θ)) = 0 (4.8)

To do this, we now appeal to the fact that M1 is an m-dimensional mani-

fold. As a result, there exists a neighborhood W of the origin in Rm and a

diffeomorphism φ = (φ1, φ2) such that for w ∈ W

[
φ1

φ2

]
: w →

[
θ
ρ

]
∈M1 ∩ U. (4.9)

Then the set of equilibria include θ = φ1(w), ρ = φ2(w) for all w ∈ W . Because

an equilibrium point necessarily satisfies (4.7), it is necessary that the function

h1(·) identified above is such that φ2(w) = h1(φ1(w)) ∀w ∈ W . The mapping

from w to the set of equilibria is then (φ1(w), h1(φ1(w))), and it is invertible,

being a diffeomorphism. Therefore, φ1 : w → θ itself must be invertible. Let

w = ψ(θ). Then the equilibria are (φ1(ψ(θ), h1(φ1(ψ(θ))) = (θ, h1(θ)). This

establishes the claim of the lemma.

Proof of Theorem 4.3.1. By assumption, there exists a similarity trans-

formation Q and a neighborhood U of the origin, such that for each x̄ ∈ U∩M1,

we can write

QJf (x̄)Q−1 =

[
Ac 0
0 As

]
. (4.10)
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Therefore, for any equilibrium point x̄ ∈ U ∩M1, we can write (4.1) in the

form given by (4.2). The first part of the theorem is then immediate, for M1,

being an equilibrium manifold, is invariant, and Lemma 4.3.2 demonstrates

the local representation condition required for M1 to be a center manifold.

Now, we turn to the second part of the theorem. Since M1 is a center

manifold, the dynamics restricted to M1 are stationary. Therefore, from (4.5)

we have ξ̇ = 0, which implies ξ(t) = ξ(0) ∀t. Thus, the reduced-order system

is stable. Theorem 4.2.1 then mandates that the origin is locally stable. This

together with the stated conditions of the Jacobian, ensures that there exist

compact neighbourhoods Ω1 and Ω2 of the origin such that (a) all trajectories

starting in Ω1 remain in Ω2, (b) with M2 defined in the theorem statement,

the Jacobian of f has m eigenvalues with zero real part and n−m eigenvalues

with negative real part everywhere in M2, and (c) there is a γ > 0 such that

for each x̄ ∈ M2, Re[eig(As(x̄))] < −γ. (The compactness of M2 is crucial.)

The exponential convergence mandated by Theorem 4.2.1 implies that Ω1 and

Ω2 can be chosen to have the additional property that trajectories starting

in Ω1 converge exponentially to a point on the center manifold and thus to a

point in M2 (though not necessarily to the origin).

Finally, this argument is valid for any point in M2. For each point in

M2, there is an open neighbourhood of attraction Ui. Further, M2 is a compact

subset of M1. By the Heine-Borel Theorem, there is a finite subcover Ω3 of

M2 constructible from a finite union of these neighbourhoods. The smallest

exponential convergence rate associated with the neighbourhoods of the finite
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subcover is valid to bound the speed of convergence for all trajectories starting

in Ω3. The final part immediately follows.

The distinction between LFF, LRF, and coleader formations is impor-

tant in the stability analysis for the formation shape maintenance control laws.

In particular, for LFF formations it is possible to define a global coordinate

basis to obtain a hyperbolic reduced-order system in which local stability can

be ascertained via eigenvalue analysis of the linearized system [83]. This is

so because in the framework of both [83] and this chapter, after its “small”

initial move, the leader stops moving. Thereafter, the algorithm of [83] forces

the first follower to move in the direction of the leader. Thus the direction of

movement of the first follower in the LFF framework is fixed. This direction

critically defines the stated coordinate basis in [83]. In contrast, for LRF for-

mations the direction associated with the remote follower’s DOF is not fixed

in space since it is following an agent other than the leader to satisfy its dis-

tance constraint. Similarly, for coleader formations the directions associated

with the coleader DOFs are not fixed in space. Thus, the device used in [83]

to obtain a global coordinate system that provides a hyperbolic reduced-order

system no longer applies. Consequently, one cannot draw conclusions about

the local stability of the nonlinear system near the desired formation shape

by analyzing the linearized system alone; more sophisticated techniques are

needed.

In contrast to [83], [38] does use center manifold theory to establish

stability of the closed-loop system, but their analysis is restricted to undirected
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graphs. It is possible to work with a reduced-order system, using the fact that

for the laws in question, the centroid of the formation is stationary. This allows

the full-order system to be reduced by 2 in dimension, and leaves one zero

eigenvalue for the linearized system. A critical feature of the center manifold

analysis of [38] is the observation that the set of equilibria of this reduced-

order system is then compact. For LRF formations, one can fix the position

of the leader to obtain a compact set of equilibria for a reduced-order system.

However, this is not possible in the coleader setting. In either case, separate

aspects of center manifold theory have to be used to establish a related de

facto compactness condition.

In the formation shape maintenance problem, the manifold of equilibria

will correspond to formation positions with the desired shape. In the plane,

the manifold is three-dimensional due to the three possible Euclidean motions

of the formation in the plane (two translational and one rotational). In the

following section, we develop equations of motion and apply Theorem 4.3.1 to

show local exponential stability of the desired shape.

4.4 Equations of Motion

In this section, we present equations of motion for the formation shape

maintenance problem and study the local stability properties of the desired

formation shape. Suppose the formation is initially in the desired shape. Then

the position of each agent is perturbed by a small amount and all agents (ex-

cept for the leader in a LRF formation) move under distance control laws
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to meet their distance specifications in order to restore the desired formation

shape. This shape is realized by every point on a smooth three-dimensional

equilibrium manifold. For LRF and coleader formations, we show that a di-

rect application of Theorem 4.3.1 proves local exponential convergence to the

invariant manifold, whether or not the equilibrium manifold is compact.

4.4.1 Nonlinear Equations of Motion

Consider a minimally persistent formation F (G, p) of n agents in the

plane. For LRF formations the leader and remote follower are agents n and

n − 1, respectively. For coleader formations the coleaders are agents n − 2,

n− 1, and n. Recall the rigidity function r from (2.1) and let d = [..., d∗2jk, ...]

represent a vector of the squares of the desired distances corresponding to each

edge of G. We assume that there exist agent positions p such that p = r−1(d),

i.e. the set of desired interagent distances is realizable. Formation shape is

controlled by controlling the interagent distance corresponding to each edge.

Following [83] and [38], we adopt a single integrator model for each

agent:

ṗi = ui. (4.11)

Consider an ordinary follower agent denoted by i that is required to maintain

constant distances d∗ij and d∗ik from agents j and k, respectively, and can mea-

sure the instantaneous relative positions of these agents. We use the same law

as in [83] for ordinary followers:

ui = Ki(p
∗
i − pi) = Kifi(pj − pi, pk − pi, d∗ij, d∗ik) (4.12)
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where Ki is a gain matrix and p∗i is the closest instantaneous target position

for agent i in which its distances from agents j and k are correct. Since the

perturbations from the desired shape are small, these instantaneous target

positions are well-defined and unique. For the remote follower (i = n − 1) or

the coleaders (i = n− 2, n− 1, n), we have

ui = Ki(p
∗
i − pi)

= Ki

||pj(i) − pi|| − d∗ij(i)
||pj(i) − pi||

(pj(i) − pi) (4.13)

where Ki is a gain matrix and agent j(i) is the agent from which the remote

follower or coleader i is maintaining the constant distance d∗ij(i) (note that each

coleader may follow a different agent). For the leader, we have

ṗn = 0. (4.14)

For a LRF formation, equations (4.12), (4.13), and (4.14) represent the dy-

namics of the autonomous closed-loop system, which may be written in the

form

ṗ =

[
fLRF (p)

0

]
(4.15)

where fLRF : <2n → <2n−2 is smooth almost everywhere including a neighbour-

hood of the desired formation. For a coleader formation, equations (4.12) and

(4.13) represent the dynamics of the autonomous closed-loop system, which

may be written in the form

ṗ = fC(p) (4.16)

where fC : <2n → <2n is smooth almost everywhere including a neighbourhood

of the desired formation.

94



There is a smooth manifold of equilibria for (4.15) and (4.16) given by

Ψ = {p ∈ <2n|p = r−1(d)} (4.17)

corresponding to formations where all distance constraints are satisfied. The

manifold Ψ is a three-dimensional manifold because a formation with correct

distances has three degrees of freedom associated with the planar Euclidean

motions (two for translation and one for rotation). Given these degrees of

freedom, it is evident that Ψ is not compact. For LRF formations, we can

define a reduced-order system by fixing the position of the leader and obtain

a compact equilibrium manifold.

4.4.2 Linearized Equations

We represent the position of the formation as p(t) = δp(t)+p̄, where p̄ is

any equilibrium position with desired shape close to the perturbed formation,

and the displacements δp(t) are assumed to be small. In particular, for agent

i we have pi(t) = δpi(t) + p̄i. Let pi(t) = [xi(t), yi(t)]
T , p̄i = [x̄i, ȳi]

T , and

δpi(t) = [δxi(t), δyi(t)]
T in a global coordinate system to be defined later.

From [83], the linear part for the ordinary followers is given by

[
δ̇xi
δ̇yi

]
= KiR

−1
ei Rij,ik


δxi
δyi
δxj
δyj
δxk
δyk

 (4.18)

where

Rei =

[
(p̄j − p̄i)T
(p̄k − p̄i)T

]
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and

Rij,ik =

[
(p̄i − p̄j)T (p̄j − p̄i)T 0
(p̄i − p̄k)T 0 (p̄k − p̄i)T

]
.

The matrix Rei is nonsingular because the equilibrium positions of i, j, k are

not collinear (collinearity would violate minimal rigidity). Similarly, the lin-

earized equation for the remote follower (i = n − 1) or the coleaders (i =

n− 2, n− 1, n) is given by

[
δ̇xi
δ̇yi

]
= KiR

−1
ei Rij(i),00


δxi
δyi
δxj(i)
δyj(i)

 (4.19)

where Ki is a 2× 2 gain matrix,

Rei =

[
x̄j(i) − x̄i ȳj(i) − ȳi
ȳi − ȳj(i) x̄j(i) − x̄i

]
and

Rij(i),00 =

[
(p̄i − p̄j(i))T (p̄j(i) − p̄i)T

0 0

]
.

For a LRF formation, the leader equations are of course[
δ̇xn
δ̇yn

]
= 0. (4.20)

Putting the equations together, we have for LRF

δ̇p = KR−1
e

[
R
0

]
δp (4.21)

and we have for coleaders

δ̇p = KR−1
e



R1,n−3

rn−2

0
rn−1

0
rn
0


δp (4.22)
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whereK = diag[K1, ..., Kn−1, 0] with 2×2Ki to be specified, Re = diag[Re1, ..., Re,n−1, I2]

with each Rei being a 2 × 2 submatrix of the rigidity matrix R ∈ <2n−3×2n.

For coleaders [RT
1,n−3, r

T
n−2, r

T
n−1, r

T
n ]T ∈ <2n−3×2n is the rigidity matrix.

4.4.3 A Reduced-Order System for LRF Formations

For LRF formations, we define a reduced-order system by neglecting

the stationary leader dynamics since ṗn(t) = 0. Let the global coordinate

basis have the leader at the origin and let the x-axis be an arbitrary direction.

Let z = [p1, ..., pn−1]T ∈ <2n−2, z̄ = [p̄1, ..., p̄n−1], and z = δz + z̄ where δz is

assumed to be small. The reduced-order nonlinear system may then be written

in the form

ż = f̄(z). (4.23)

The rigidity function associated with (4.23) is rz(z) = [..., ||zj−zk||2, ...]T where

the ith entry of rz corresponds to an edge ei ∈ E connecting two vertices j

and k. If a vertex l is connected to the leader, then the corresponding entry

in rz is ||zl||2. The equilibrium manifold associated with (4.23) is given by

Ψz = {z ∈ <2n−2|z = r−1
z (d)}. (4.24)

Ψz is a one-dimensional manifold that can be characterized by a rotation

around the leader since the the position of the leader is fixed. Therefore, since

Ψz is a closed and bounded subset of Euclidean space, it is compact.

Now, expanding in a Taylor series about the equilibrium position, we
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can rewrite (4.23) near the equilibrium position in the form

δ̇z = Jf̄ (z̄)δz + g(δz) (4.25)

where the first term represents the reduced-order linear system and the second

term represents the nonlinear part of order two or higher. The reduced-order

linear system may be written in the form

δ̇z = K̃R̃−1
e

[
R̃
0

]
δz (4.26)

where K̃ = diag[K1, ..., Kn−1], R̃e = diag[Re1, ..., Re,n−1], and R̃ is the subma-

trix of the rigidity matrix with the last two columns associated with the leader

removed.

Observe that the Jacobian Jf̄ (z̄) is rank deficient by one because of

the row of zeros below the rigidity matrix. Thus one of its eigenvalues is

zero. Thus, the equilibrium position is nonhyperbolic, and we can apply center

manifold theory as developed in Section 4.3 to try to determine local stability

of the equilibrium position. Since Jf̄ (z̄) has one zero eigenvalue, there exists

an invertible matrix Q such that

QJf̄ (z̄)Q−1 =

[
0 0
0 As

]
. (4.27)

where As ∈ <2n−3×2n−3 is a nonsingular matrix. Let [θ, ρ]T = Qδz where θ ∈ <

and ρ ∈ <2n−3. Then (4.25) can be written in the form

θ̇ = g1(θ, ρ)

ρ̇ = Asρ+ g2(θ, ρ) (4.28)
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where g1 is the first entry of Qg(Q−1[θ, ρ]T ) and satisfies g1(0, 0) = 0 and

Jg1(0, 0) = 0, and g2 is the last 2n − 3 entries of Qg(Q−1[θ, ρ]T ) and satisfies

g2(0, 0) = 0 and Jg2(0, 0) = 0. This is in the normal form for center manifold

theory.

To apply Theorem 4.3.1 we simply need the matrix As to be Hurwitz.

Here, due to cycles in the graph presenting the possibility of instability, As

must be made Hurwitz by a suitable choice of the gain matrices K1, ..., Kn−1.

It is not however obvious that this can be done, or how to do it.

4.4.4 Full-Order System for Coleader Formations

Expanding in a Taylor series about an equilibrium position, we can

express (4.16) in the form

δ̇p = Jf (p̄)δp+ gC(δp) (4.29)

where the first term represents the linearized system given by (4.22) and the

second term represents the nonlinear part of order two or higher. The Jacobian

Jf (p̄) is rank deficient by three because of the three rows of zeros; consequently,

three of its eigenvalues are zero. Thus the equilibrium position is nonhyper-

bolic. Since Jf (p̄) has three zero eigenvalues, there exists an invertible matrix

QC such that

QCJf (p̄)Q
−1
C =

[
0 0
0 AsC

]
. (4.30)
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where AsC ∈ <2n−3×2n−3 is a nonsingular matrix. Let [θC , ρC ]T = QCδp where

θC ∈ <3 and ρC ∈ <2n−3. Then (4.29) can be expressed in the form

˙θC = g1C(θC , ρC)

ρ̇C = AsCρ+ g2C(θC , ρC) (4.31)

where g1C comprises the first three entries of QCgC(Q−1
C [θC , ρC ]T ) and satisfies

g1C(0, 0) = 0 and Jg1C(0, 0) = 0, and g2C comprises the last 2n − 3 entries of

QCgC(Q−1
C [θC , ρC ]T ) and satisfies g2C(0, 0) = 0 and Jg2C(0, 0) = 0. This is in

the normal form for center manifold theory.

Again, to apply Theorem 4.3.1 we simply need the matrix AsC to be

Hurwitz, and due to cycles in the graph presenting the possibility of instability,

AsC must be made Hurwitz by a suitable choice of the gain matrices K1, ..., Kn.

Showing that such a choice of gains is indeed possible for both LRF and

coleader formations is the topic of the next section.

4.5 Choosing Gains and the Principal Minor Condition

In this section we show that it is possible to choose the gain matrices

for each agent such that all nonzero eigenvalues of the linearized system have

negative real parts. This is the case if a certain submatrix of the rigidity matrix

has all leading principal minors nonzero. That this condition is satisfied by all

LRF and coleader formations is shown in the following. The arguments are

similar but not identical to those of [83].
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4.5.1 LRF Formations

Let the gain matrices K1, ..., Kn−1 be chosen as follows:

Ki = ΛiRe,i, i = 1, ..., n− 1 (4.32)

where Λi is a diagonal matrix. Then we have

Jf̄ (z̄) = Λ

[
R̃
0

]
(4.33)

where Λ ∈ <2n−2×2n−2 is a diagonal matrix where the diagonal entries can be

chosen independently. The linearized system then has the following form

δ̇z = Λ

[
R̂ r12

0 0

]
δz = Jf̄ (z̄)δz (4.34)

where Λ ∈ <2n−2×2n−2 is a diagonal matrix whose diagonal entries can be

chosen independently and R̂ ∈ <2n−3×2n−3 is the rigidity matrix R with the

last three columns removed. We have the following result from [83].

Theorem 4.5.1 ( [83]). Suppose R̂ is a nonsingular matrix with every leading

principal minor nonzero and let Λ = diag(Λ1, λ2) with Λ1 ∈ <2n−3×2n−3 diag-

onal and λ2 ∈ <. Then there exists a diagonal matrix Λ1 such that the real

parts of all nonzero eigenvalues of the linearized system are negative.

Thus, 2n − 3 eigenvalues of Jf̄ (z) have negative real part and clearly

the remaining eigenvalue is zero due to the rank deficiency of Jf̄ (z). To make

use of Theorem 4.5.1, we now need to show that R̂ satisfies the principal

minor condition for LRF formations. Let V ′ = {v1, ..., vn−2} represent the set

of ordinary followers, and let agents vn−1 and vn correspond to the remote

follower and leader, respectively.
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Theorem 4.5.2. Consider any minimally persistent LRF formation F (G, p)

of n agents at generic positions in the plane. Then there exists an ordering

of the vertices of F and an ordering of the pair of outgoing edges for each

vertex such that all leading principal minors of the associated R̂ are generically

nonzero.

The proof is nearly identical to the proof in [83]. We note the following

partition of R̂, which contrasts with the LFF partition in [83]:

R̂ =

[
R(V ′) r̂12

r̂T21 x̄n−1 − x̄l

]
. (4.35)

R(V ′) is the principal submatrix of R̂ obtained by retaining columns corre-

sponding to the elements of V ′. The vector r̂T21 has nonzero entries in the

columns associated with vl and is zero elsewhere. The vector r̂12 has nonzero

entries in the rows associated to edges that are pointing to the remote follower

(there may be one or many nonzero entries), and is zero elsewhere. Addition-

ally, consider a subset of ordinary follower vertices V1 ⊆ V ′ and define R(V1)

as the principal submatrix of R̂ obtained by retaining columns corresponding

to the elements of V1. We have the following result, which is stated in [83] for

LFF formations and extends to LRF formations with identical proof.

Lemma 4.5.3. For any minimally persistent LRF formation, R̂ is generically

nonsingular and R(V1) is generically nonsingular for every V1 ⊆ V ′.

Remark. The proof of Lemma 4.5.3 for the LFF case in [83] is stated

for V1 ⊂ V ′ and trivially extends to the case for V1 ⊆ V ′.
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Lemma 4.5.3 establishes that R̂ is generically nonsingular and that all

even order principal minors are nonzero. Finally, the proof that all odd order

principal minors are also nonzero relies on an appropriate ordering of edges

and is identical to the proof in [83].

This result shows that one can choose the diagonal matrix Λ such that

the real parts of all nonzero eigenvalues of the reduced-order linearized system

(4.26) are negative (and accordingly the matrix As in (4.28) is Hurwitz). The

stabilizing gains are designed for a particular equilibrium point in the equilib-

rium manifold Ψz. It is important to note here that the control gains proposed

in (4.32) may not be stabilizing for all other points in Ψz. Theorem 4.3.1 can

be directly applied to show that for each z̄ ∈ Ψz, there is a neighbourhood

Ω(z̄) of z̄ such that for any initial formation position z(0) ∈ Ω(z̄) there is

a point z∗ ∈ Ψ such that limt→∞z(t) = z∗ at an exponential rate, i.e. the

formation converges locally exponentially to the desired shape.

4.5.2 Coleader Formations

Let the gain matrices K1, ..., Kn be chosen as follows:

Ki = ΛiRe,i, i = 1, ..., n (4.36)

where the Λi are diagonal matrices. Reorder the coleader coordinates as

q = [x1, y1, ..., xn−3, yn−3, xn−2, xn−1, yn, yn−2, yn−1, xn]T .
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An equilibrium position q̄ is defined from p̄ in the same manner as q is defined

from p. Then the linearized system has the form

δ̇q = Λ

[
R̂C R12

0 0

]
δq = Jq(q̄)δq (4.37)

where Λ ∈ <2n×2n is a diagonal matrix whose diagonal entries can be chosen

independently and R̂C ∈ <2n−3×2n−3 is a submatrix of the rigidity matrix R

that we will now define. Recall that R has two columns associated with each

agent: one comprised of x-coordinates and one of y-coordinates. The matrix

R̂C is obtained by removing the three columns from the rigidity matrix R

as follows: one associated with each coleader and not all of x or y-type (i.e.

one must remove two x-type and one y-type or vice versa). Theorem 4.5.1

extends to the coleader case; in particular, if R̂C is nonsingular with every

leading principal minor nonzero, then Λ can be chosen such that all nonzero

eigenvalues of the linearized system have negative real parts. Exactly three

eigenvalues are necessarily zero. Again, to make use of this fact we now need to

show that R̂C satisfies the principal minor condition for all coleader formations.

Let V ′ = {v1, ..., vn−3} represent the set of ordinary followers, and let agents

vn−2, vn−1, and vn correspond to the coleaders. We have the following result:

Theorem 4.5.4. Consider any minimally persistent coleader formation F (G, p)

of n agents at generic positions in the plane. Then there exists an ordering of

the vertices of F and an ordering of the pair of outgoing edges for each ver-

tex such that all leading principal minors of the associated R̂C are generically

nonzero.
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We note the following structure of R̂C ∈ <2n−3×2n−3

R̂C =

[
R(V ′) R̂12

R̂21 R̂22

]
. (4.38)

R(V ′) ∈ <2n−6×2n−6 is defined as before. Also, consider a subset of ordinary

follower vertices V1 ⊆ V ′ and define R(V1) as before. Again, we have the

following result from [83], which is stated for LFF formations and also extends

to coleader formations with identical proof.

Lemma 4.5.5. For any minimally persistent coleader formation, R̂C is gener-

ically nonsingular, and R(V1) is generically nonsingular for every V1 ⊆ V ′.

Lemma 4.5.5 establishes that the largest leading principal minor is

generically nonzero and that all even order leading principal minors up to size

2n− 6 are generically nonzero. The proof that all odd order leading principal

minors up to size 2n− 7 are also generically nonzero relies on an appropriate

ordering of edges and is identical to the proof in [83]. It now remains to show

that the second and third largest leading principal minors (of size 2n − 5 an

2n− 4) are generically nonzero. We have the following two results that treat

separately the case where the coleaders are connected and the case where the

coleaders are not connected.

Lemma 4.5.6. Suppose at most one coleader has its outgoing edge to V ′, the

set of ordinary followers. Then the second and third largest leading principal

minors of R̂C are generically nonzero.
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Figure 4.1: Coleader formation with only one coleader having its outgoing
edge to the set of ordinary followers V ′. There may be other edges from V ′ to
the coleaders.

Proof. If at most one coleader, say that labeled n, has its outgoing edge to V ′,

then another coleader, say that labeled n− 1, has its outgoing edge to n, and

the remaining coleader, labeled n−2, has its outgoing edge to either n−1 or n

(suppose without loss of generality it is to n− 1). This situation is illustrated

in Figure 4.1. Then the second and third largest leading principal submatrices

of R̂C have the structure

M2n−5 =

[
R(V ′) ×

0 xn−2 − xn−1

]
M2n−4 =

[
M2n−5 ×

0 xn−1 − xn

]
where × is a “don’t care” vector (only vn may have an edge to V ′). Since

R(V ′) is generically nonsingular, then M2n−5 is generically nonsingular, which

then implies that M2n−4 is generically nonsingular.

Before considering the case where the coleaders are not connected, we

shall need the following result.
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Lemma 4.5.7. Let G(V,E) be the graph of a minimally persistent coleader

formation with n agents and denote the coleaders n−2, n−1, and n. Suppose

we obtain a new graph G2(V2, E2) as follows. Introduce two new agents labeled

n + 1 and n + 2. Suppose that n + 1 has only one outgoing edge and that

to n + 2; n + 2 has no outgoing edge; n − 2 (which was a coleader) has an

additional outgoing edge to n+ 1, n− 1 an additional edge to n+ 2 and n an

additional edge to either n+ 1 or n+ 2. Then G2 is minimally persistent with

LFF structure, with n+ 2 the leader and n+ 1 the first follower.

Proof. First, we show that the underlying undirected graph G2 is minimally

rigid. Since G is minimally persistent, the underlying undirected graph is

minimally rigid and satisfies the conditions of Theorem 2.2.3 with |E| = 2|V |−

3. To obtain G2, we have added to G two new vertices and four new edges;

thus, |E2| = 2|V2| − 3 and so G2 satisfies the condition of Theorem 2.2.3 for

minimum edge count. Further, it is easy to check that no induced subgraph

of G2 involving vertices n + 1 and n + 2 violates the distribution condition

for rigidity of Theorem 2.2.1. Thus, the underlying directed graph of G2 is

minimally rigid.

Next, sinceG is minimally persistent with coleader structure, the colead-

ers each have exactly one outgoing edge, and all remaining vertices have exactly

two outgoing edges. To obtain G2 we have added one outgoing edge from each

coleader and so these vertices now have exactly two outgoing edges. Vertex

n+ 1 has exactly one outgoing edge to n, and n has no outgoing edges. Thus,
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Figure 4.2: Coleader formation with two coleaders having outgoing edges to
the set of ordinary followers V ′. There may be other edges from V ′ to the
coleaders.

G2 is minimally persistent by Theorem 2.2.3, and it has LFF structure with

n+ 2 the leader and n+ 1 the first follower.

Now we have the following result where the coleaders are not connected.

Lemma 4.5.8. Suppose at least two coleaders have their outgoing edges to

V ′, the set of ordinary followers. Then the second and third largest leading

principal minors of R̂C are generically nonzero.

Proof. Assume that coleaders labeled n − 2 and n − 1 have outgoing edges

to vertices i and j, respectively, both in V ′. This situation is illustrated in

Figure 4.2. Observe that the hypothesis permits i = j. The argument below

applies regardless of whether i = j and regardless of whether the sole outgoing

edge of n is to an element of V ′. Obtain a new LFF graph as described in

Lemma 4.5.7 by introducing two artificial agents labeled n+ 1 and n+ 2. Call

108



this new graph GLFF (V2, E2). Consider the matrices below where Bl is the

l-th order principal submatrix of the matrix obtained by removing the three

last columns of the rigidity matrix of the artificial graph of GLFF , where the

precise values of ai and bi are immaterial to the argument to be presented..

B2n−5 =

[
R(V ′) a1

b1 xn−2 − xi

]

B2n−4 =

 R(V ′) a1 a2

b1 xn−2 − xi yn−2 − yi
0 xn−2 − xn+1 xn−2 − xn+1



B2n−3 =


R(V ′) a1 a2 a3

b1 xn−2 − xi yn−2 − yi 0
0 xn−2 − xn+1 xn−2 − xn+1 0
b2 0 0 xn−1 − xj


B2n−2 =

R(V ′) a1 a2 a3 a4

b1 xn−2 − xi yn−2 − yi 0 0
0 xn−2 − xn+1 xn−2 − xn+1 0 0
b2 0 0 xn−1 − xj yn−1 − yj
0 0 0 xn−1 − xn+2 yn−1 − yn+2


We note that all the even-dimensioned submatrices above are generically non-

singular, since they are the even-dimensioned leading principal submatrices of

a LFF structure (see [83]).

The third largest leading principal submatrix of R̂C is given by M2n−5 =

B2n−5. Suppose B2n−5 is not generically nonsingular. Then it is singular

everywhere. Then because of the underlying symmetry of the x and y columns,

the same would be true of the matrix[
R(V ′) a2

b1 yn−2 − yi

]
.
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But this implies that B2n−4 is singular, which establishes a contradiction.

Therefore, M2n−5 is generically nonsingular.

The second largest leading principal submatrix of R̂C is

M2n−4 =

 R(V ′) a1 a2

b1 xn−2 − xi 0
b2 0 xn−1 − xj

 .
We now argue that this matrix is generically nonsingular. Since B2n−2 is

generically nonsingular, we assert the generic nonsingularity of B2n−3, which

implies the generic nonsingularity of

X =


R(V ′) a1 a2 a3

b1 xn−2 − xi yn−2 − yi 0
b2 0 0 xn−1 − xj
0 xn−2 − xn+1 xn−2 − xn+1 0

 .
Indeed, suppose B2n−3 is singular for all positions. Then the symmetry of

the x and y coordinates implies that the matrix obtained by replacing the

last column of B2n−3, by the first four elements of the last column of B2n−2

must also be singular for all positions. Consequently B2n−2 must be singular,

establishing a contradiction. Thus, B2n−3 is generically nonsingular and so is

X.

Now we assert that M2n−4 is generically nonsingular. To establish a

contradiction suppose M2n−4 is singular everywhere. Then again, the matrix

obtained by replacing the second column of M2n−4 by the first three elements

of the third column of X must be singular everywhere. Thus X is singular.

The contradiction proves the generic nonsingularity of M2n−4.
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Thus, all leading principal minors of R̂C are generically nonzero for

all coleader formations. Therefore, again one can choose the diagonal matrix

Λ such that the real parts of all nonzero eigenvalues of the linearized system

(4.37) are negative (and accordingly the matrix AsC in (4.31) is Hurwitz). The

stabilizing gains are designed for a particular equilibrium point in the equilib-

rium manifold Ψ. It is important to note here that the control gains proposed

in (4.36) may not be stabilizing for all other points in Ψ. Theorem 4.3.1 can

be directly applied to show that for each p̄ ∈ Ψ, there is a neighbourhood Ω(p̄)

of p̄ such that for any initial formation position p(0) ∈ Ω(p̄) there is a point

p∗ ∈ Ψ such that limt→∞p(t) = p∗ at an exponential rate, i.e. the formation

converges locally exponentially to the desired shape.

Remark. There is an important distinction to be made between de-

centralized design and decentralized implementation. The control laws in this

chapter are based on minimally persistent information architectures, and se-

lecting stabilizing gains requires a suitable ordering of the vertices and edges.

Therefore, the design of our control laws is inherently centralized. However,

persistent information architectures provide a basis from which we can design

control laws with decentralized implementation. Once the design is established,

our control laws require only local information.
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4.6 Simulations

4.6.1 LRF Formations

In this section, we demonstrate the performance of our algorithm via

simulation. Figure 4.3 shows a LRF formation in the plane where agents 1

and 2 are ordinary followers, agent 3 is the remote follower, and agent 4 is

the leader. Suppose the agents are in the desired formation shape in the posi-

tion p̄ = [0.3123,−0.1574, 0.7359, 0.5710,−0.0609, 0.6901, 0, 0]. We note that

if the gain matrices are all chosen to be identity, the nonzero eigenvalues of

the linearized system are {−1.5363 ± 0.9289i, 0.0726,−1,−1}, which implies

instability. Suppose the gain matrices are chosen with the structure given by

(4.32) where the diagonal multipliers are Λ1 = diag[−2, 2], Λ2 = diag[−2,−1],

and Λ3 = diag[2, 0.5]. Then the nonzero eigenvalues of the linearized system

are given by {−1.9521±0.3196i,−0.2521±0.3886i,−0.7532}, and the desired

formation shape is stable via the analysis in the previous sections. Figure 4.4

shows the agent trajectories in the plane under the formation shape mainte-

nance control laws. The desired formation shape is restored, though not to the

initial unperturbed formation. Figure 4.5 shows that the interagent distance

errors all converge to zero. Simulations for large perturbations are explored

for coleader formations.

4.6.2 Coleader Formations

Figure 4.6 shows a coleader formation in the plane where agent 1 is an

ordinary follower and agents 2, 3, and 4 are coleaders. Suppose the agents are
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Figure 4.3: LRF formation in unstable agent positions for identity gain.
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Figure 4.4: Agent trajectories in the plane: circles represent the initial desired
formation shape, triangles represent the perturbed agent positions, and X’s
represent the final agents positions under the formation shape maintenance
control laws. The desired shape has been restored. The leader does not move.
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Figure 4.5: The interagent distance errors, defined as eij = ||pi− pj|| − dij, all
converge to zero, thus recovering the desired formation shape.

in the desired formation shape in the position

p̄ = [0.7036, 0.485, 0.1146, 0.6649, 0.3654, 0.140, 0.5668, 0.823].

If the gain matrices are all chosen to be identity, the nonzero eigenvalues of

the linearized system are {−1.2339± 0.8376i,−1.5356,−1, 0.0034}, which im-

plies instability. Suppose the gain matrices are chosen with the structure

given by (4.36) where the diagonal multipliers are Λ1 = diag[−1.3,−0.9],

Λ2 = diag[0.5, 0.75], Λ3 = diag[1.2, 0.35], and Λ4 = diag[−2.7,−0.25]. Then

the nonzero eigenvalues of the linearized system are given by {−0.3655 ±

0.0933i,−0.5719,−0.9378,−1.0712}, and the desired formation shape is stable

via the analysis in the previous sections. Figure 4.7 shows the agent trajec-

tories in the plane under the formation shape maintenance control laws. The

desired formation shape is restored, though the final formation is translated
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Figure 4.6: Coleader formation in the plane in unstable agent positions for
identity gain.

and rotated from the original unperturbed formation. Figure 4.8 shows that

the interagent distance errors all converge to zero.

The stability result is local; thus, convergence is only guaranteed for

formations that are initially close enough to the desired shape. The follow-

ing simulations investigate potential outcomes for larger perturbations from

the desired shape. Figure 4.9 shows convergence to the desired shape despite

initial perturbations as large as 50% of the desired interagent distance, which

indicates a sizable region of attraction. Figure 4.10 shows the corresponding

interagent distance errors converging to zero. Another possible outcome is

shown in Figure 4.11 where the agents converge to a formation that is equiva-

lent, but not congruent, to the desired formation. In Figure 4.12 all interagent
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Figure 4.7: Agent trajectories in the plane: circles represent the initial desired
formation shape, triangles represent the perturbed agent positions, and X’s
represent the final agents positions under the formation shape maintenance
control laws. The desired shape has been restored, though the final formation
is translated and rotated from the original unperturbed formation.

distance errors corresponding to an edge in the graph converge to zero, whereas

the only interagent distance error that does not correspond to an edge, viz.

e24, converges to a non-zero value. The position of agent 2 (green) has been

reflected about the line connecting agents 1 and 3 (blue and red). Despite

the fact that the linearized system is locally stable, there remains a possibility

of instability given sufficiently large initial perturbations, as illustrated in the

agent trajectories in Figure 4.13 and the interagent distance errors in Figure

4.14.
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Figure 4.8: The interagent distance errors all converge to zero, thus recovering
the desired formation shape. That e24, which does not correspond to an edge
of the formation graph, goes to zero is due to the underlying rigidity and the
convergence of the other eij to zero.
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Figure 4.9: Agent trajectories after a larger perturbations: the desired shape
has been restored, though the final formation is translated and rotated from
the original unperturbed formation. The circles, triangles and X’s are as for
Figure 7.
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Figure 4.10: The interagent distance errors all converge to zero, thus recovering
the desired formation shape.
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Figure 4.11: Agent trajectories in the plane after large perturbations: the
formation converges to an equivalent, but not congruent, shape.
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Figure 4.12: All interagent distance errors except one converge to zero.
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Figure 4.13: Agent trajectories in the plane after larger perturbations: insta-
bility.

119



0 5 10 15
−1

0

1
x 10

13

Time (s)

e1
2

0 5 10 15
−5

0

5
x 10

13

Time (s)

e2
3

0 5 10 15
−5

0

5
x 10

13

Time (s)

e3
4

0 5 10 15
−2

0

2
x 10

12

Time (s)

e1
4

0 5 10 15
−5

0

5
x 10

13

Time (s)

e1
3

0 5 10 15
−1

0

1
x 10

13

Time (s)

e2
4

Figure 4.14: The interagent distance errors all blow up.

4.7 Concluding Remarks

This chapter has solved a n-agent formation shape maintenance prob-

lem for minimally persistent leader-remote-follower and coleader formations.

We presented decentralized nonlinear control laws that restore the desired for-

mation shape in the presence of small perturbations from the desired shape.

The nonlinear system has a manifold of equilibria, which implies that the lin-

earized system is nonhyperbolic. We applied center manifold theory to show

local exponential stability of the equilibrium formation with desired shape.

We have also shown that a principal minor condition holds for all LRF and

coleader formations, which allows a choice of stabilizing gain matrices. Finally,

we demonstrated our results through numerical simulation.

The stability results in this chapter are local in that convergence to

the desired shape is only guaranteed under sufficiently small perturbations
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from the desired shape. Global stability, which guarantees convergence to

the desired shape for any initial condition, is a significant challenge in rigidity-

based formation control. The next chapter builds theory for the global stability

of a four-agent formation and identifies open research questions in this area.
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Chapter 5

Formation Shape Control: Global Asymptotic

Stability of a Four-Agent Formation

5.1 Introduction

Global stability, where a desired formation shape is produced from any

initial configuration, remains a challenging open problem in rigidity-based for-

mation shape control problems. This is largely due to the inherent nonlinearity

of these problems and the potential existence of additional equilibrium shapes.

Nonlinear systems do not always admit closed form analytical solutions, and,

in order to show that one point in a multiple equilibrium point system is glob-

ally stable, all other equilibrium points must be shown to be unstable. The

global stability properties in nonlinear systems are difficult to characterize.

Almost1 global stability is demonstrated for a directed, cyclic, three-

agent formation in [1] and for a directed, acyclic three-agent formation in

[13, 14]. It is noted in [19] that these results extend easily to the undirected

three-agent case. In [12], almost2 global stability is demonstrated for directed,

1The formations converge to a desired triangular shape from any non-collinear initial
configuration, so what is demonstrated is actually almost global stability since the set of
collinear configurations is thin (Lebesgue measure zero).

2Again, convergence is shown from all initial configurations outside of a thin set.
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acyclic, n-agent formations. In [38], Krick et al study an undirected n-agent

rigidity-based formation control problem. They prove for undirected rigid for-

mations that the desired formation shape is locally asymptotically stable under

a gradient control law if the information architecture is rigid. An interesting

simulation from [38] relating to global stability properties involves a four-agent

formation with a complete graph information architecture (i.e. all interagent

distances are actively controlled). The formation appears to converge to an

incorrect shape, with interagent distances not all the same as those in the

desired shape, and the paper concluded that the desired shape is not globally

asymptotically stable. The complete graph architecture on four agents is of

particular interest because it is the only globally rigid graph on four agents;

thus, it is the only graph in which the distances specify a unique shape.

This chapter elaborates on this example from [38]. Section 5.2 presents

the equations of motion for the four-agent formation shape control problem

and shows that the observed incorrect equilibrium formation shape from [38] is

in fact an unstable saddle. We provide an easily checkable condition for local

instability of an equilibrium shape and use this condition to show that the

class of rectangular incorrect shapes identified in [38] is unstable. Section 5.3

shows how to compute a desired equilibrium shape from a supposed incorrect

equilibrium shape. Section 5.4 gives concluding remarks.
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5.2 Equations of Motion and Examples

In this section, we present equations of motion for the four-agent for-

mation shape control problem in the plane. We then examine the example

from [38] that illustrates existence of an incorrect equilibrium formation shape

and show that this shape is an unstable saddle.

5.2.1 Equations of Motion

Let p = [p1, p2, p3, p4]T ∈ <8 be a vector of the four agent positions in

the plane. Following [38], we use a single integrator agent model to describe

the motion of each agent

ṗi = ui

where ui is the control input to be specified. Let d̄ = [d̄12, d̄13, d̄14, d̄23, d̄24, d̄34]T

be a vector of desired interagent distances that define the formation shape

and are to be actively controlled. We assume that the entries of d̄ correspond

to a realizable shape. Let d(p) = [d12(p), d13(p), d14(p), d23(p), d24(p), d34(p)]T

denote instantaneous interagent distances. The rigidity function is given by

r(p) = d2(p) = [||p1 − p2||2, ||p1 − p3||2, ||p1 − p4||2,

||p2 − p3||2, ||p2 − p4||2, ||p3 − p4||2]T

We define the the error function

e(p) = d2(p)− d̄2

= [e12, e13, e14, e23, e24, e34]T
(5.1)

The desired formation shape is a three-dimensional manifold in <8 given by

Pd = {p ∈ <8|d2(p) = d̄2} (5.2)
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Figure 5.1: A desired formation configuration and its reflection in the plane
both satisfy the same prescribed interagent distance constraints.

which is non-empty for a realizable d̄. Note the following symmetry for any

planar formation: two distinct formation orientations both correspond to a

correct formation shape: one orientation and its reflection in the plane, as

illustrated in Figure 5.1.

Now consider the potential function

V (p) =
1

2
||e(p)||2

=
1

2
(e2

12 + e2
13 + e2

14 + e2
23 + e2

24 + e2
34).

The function quantifies the total interagent distance error between the current

formation and the desired formation d̄. Note that V ≥ 0 and V = 0 if and only

if e(p) = 0, that is if and only if the formation is in the desired shape. Thus,

V is a suitable potential function from which to derive a gradient control law.

Accordingly, let the control input be given by

u = −∇V (p)T . (5.3)
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Then the closed-loop system is given by

ṗ = −∇V (p)T

= −[Jr(p)]
T e(p) (5.4)

where Jr(p) is the Jacobian of the rigidity function r(p) (also known as the

rigidity matrix ). This can be expressed in the following form

ṗ = −(E(p)⊗ I2)p (5.5)

where the matrix E(p) is given by

E(p) =
e12 + e13 + e14 −e12 −e13 −e14

−e12 e12 + e23 + e24 −e23 −e24

−e13 −e23 e13 + e23 + e34 −e34

−e14 −e24 −e34 e14 + e24 + e34

 (5.6)

where ⊗ is the Kronecker product. Agent-wise, the equations of motion are

ṗ1 = e12(p2 − p1) + e13(p3 − p1) + e14(p4 − p1)

ṗ2 = e12(p1 − p2) + e23(p3 − p2) + e24(p4 − p2)

ṗ3 = e13(p1 − p3) + e23(p2 − p3) + e34(p4 − p3)

ṗ4 = e14(p1 − p4) + e24(p2 − p4) + e34(p3 − p4)

(5.7)

Note that the development above is identical if the formation evolves in three

dimensions, with the pi becoming 3-vectors.

A standard argument appealing to LaSalle’s Invariance Principle estab-

lishes that from any initial configuration, the system trajectories tend to an

equilibrium in which (E(p) ⊗ I2)p = 0. The equilibrium points of the closed-

loop system (7.18) are the same as the critical points of the potential function
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V . The Jacobian of the right side of (7.18), which we denote as Jf (p), is the

same as the negative of the Hessian of V , which we denote as HV (p). These

are given by

HV (p) = 2Jr(p)
TJr(p) + E(p)⊗ I2 = −Jf (p). (5.8)

Therefore, a study of the stability of the equilibrium points of (7.18) amounts

to a study of the nature of the critical points of V : minima are locally stable

and maxima and saddle points are locally unstable. Note that the stabil-

ity of an equilibrium point is independent of rotation and translation of the

formation shape; only relative positions matter.

Since we actively control every interagent distance, the information

architecture is the complete graph K4. It turns out that there are formations

positions p∗ for which e(p∗) 6= 0 (i.e. d2(p∗) 6= d̄2 and so p∗ /∈ Pd) and

(E(p∗)⊗ I2)p∗ = 0. Such a position is called an incorrect equilibrium shape.

5.2.2 Krick Example

In [38], Krick et al prove for an n-agent formation that under the gra-

dient control law (5.3), the desired formation is locally asymptotically stable

(in the sense that for ||e(p(0))|| sufficiently small, ||e(p(t))|| → 0 as t→∞) if

the underlying information architecture is rigid.

The paper also shows a four-agent example with K4 information ar-

chitecture in which the formation appears to converge to an incorrect equilib-

rium shape. The example is as follows. Suppose the desired formation is a
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1 × 2 rectangle given by d̄2 = [1, 5, 4, 4, 5, 1]T . It is easy to verify that when

we use the desired distances specified by d̄, any formation with distance set

d∗2 = [11
3
, 7

3
, 4

3
, 4

3
, 7

3
, 11

3
]T is an incorrect equilibrium shape. The incorrect equi-

librium is a “twisted rectangle” with the term twisted referring to a change in

agent ordering, as illustrated in the middle formation of Figure 5.2 (it turns

out there is a further incorrect equilibrium shape, which we discuss later).

Krick et al concluded that the desired shape is not globally attractive since

the control law appears to cause convergence to an incorrect equilibrium shape.

However, the convergence is only apparent, occurring along the ridge of a sad-

dle. The eigenvalues of the negative of the Hessian evaluated at the incorrect

shape (i.e. eig[Jf (p
∗)] = eig[−HV (p∗)] where p∗ satisfies d2(p∗) = d̄2) are

{0, 0, 0,−22.78,−14.67,−6.56, 1.33, 5.33}. Since there are both positive and

negative eigenvalues, then the incorrect equilibrium shape is in fact a saddle

and is therefore unstable.

The question becomes: given an arbitrary (realizable) desired shape,

are there any attractive incorrect equilibrium shapes? In other words, is there

any p∗ ∈ <8 with e(p∗) 6= 0 and (E(p∗)⊗ I2)p∗ = 0 for which pTHV (p∗)p ≥ 0

∀p ∈ <8? For arbitrary desired shapes, this question remains open. The next

section considers the special case of rectangular desired shapes.

5.3 Rectangular Formations

For rectangular desired formations of arbitrary size, we can calcu-

late two possible rectangular incorrect equilibrium shapes which manifest as
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“twisted rectangles” with a change in agent ordering. We shall show that the

incorrect equilibrium shapes are unstable saddles.

Suppose that the desired formation is an a × b rectangle given by

d̄2 = [a2, a2 + b2, b2, b2, a2 + b2, a2]T with agents 1,2,3,4 in counterclockwise

order. Suppose there is a rectangular incorrect equilibrium shape p∗1 with

agents 1,3,2,4 in counterclockwise order with d13(p∗) = d24(p∗) = a∗1 and

d23(p∗) = d14(p∗) = b∗1. Evaluating each component in the equilibrium condi-

tion for agent 1 in (5.7) yields the following two relationships

a∗21 = a2 +
1

3
b2

b∗21 =
1

3
b2

(5.9)

Thus, any twisted rectangle with interagent distances given by

d∗21 =

[
a2 +

2

3
b2, a2 +

1

3
b2,

1

3
b2,

1

3
b2, a2 +

1

3
b2, a2 +

2

3
b2

]T
is an incorrect equilibrium shape. Now suppose there is a different rectangular

incorrect equilibrium shape p∗2 with agents 1,3,4,2 in counterclockwise order

with d13(p∗) = d24(p∗) = a∗2 and d12(p∗) = d34(p∗) = b∗2. A similar argument

yields

a∗22 =
1

3
a2 + b2

b∗22 =
1

3
a2

(5.10)

and shows that the twisted rectangle with interagent distances given by

d∗22 =

[
1

3
a2,

1

3
a2 + b2,

2

3
a2 + b2,

2

3
a2 + b2,

1

3
a2 + b2,

1

3
a2

]T
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Figure 5.2: The desired formation is rectangular and there are two possible
“twisted rectangles” that are incorrect equilibrium shapes. Note that each
formation has two different pairs of agents on the diagonals of the rectangle:
(a) 13 and 24, (b) 12 and 34, and (c) 14 and 23.

is also an incorrect equilibrium shape. The desired and both twisted equilib-

rium shapes are illustrated in Figure 5.2 for the Krick example where a = 1

and b = 2.

We now show that both of these incorrect equilibrium shapes are un-

stable via direction calculation on the Hessian. Consider the first incorrect

equilibrium shape p∗1. The Hessian evaluated at p∗1 can be easily calculated

given d̄ and d∗21 (for example, with agent 1 at the origin and agent 3 on the

x-axis). The eigenvalues of the 4 × 4 leading principal submatrix can be cal-
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culated analytically and are given by

eig(H(1 : 4, 1 : 4)) =


−2

3
b2

2a2 − 2
3
b2

3a2 + 2b2 −
√

9a4 + 8
3
a2b2 + 8

9
b4

3a2 + 2b2 +
√

9a4 + 8
3
a2b2 + 8

9
b4

 (5.11)

Since this leading principal submatrix has both positive and negative values,

the Hessian is not sign semidefinite. Therefore, the closed-loop system (7.18)

is an unstable saddle at p∗1. The same argument shows the instability of the

closed-loop system at p∗2.

We cannot say whether or not the desired shape given by d̄ is globally

stable or not because we do now know if the incorrect equilibrium shapes given

by d∗1 and d∗2 are the only ones associated with d̄. The set of algebraic equi-

librium equations obtained by setting (5.7) to zero are nonlinear and difficult

solve for a K4 information architecture.

5.4 Computing a Desired Equilibrium Shape from an
Incorrect Equilibrium Shape

This section describes how one can compute a desired equilibrium given

a supposed incorrect equilibrium shape. Take an arbitrary generic p∗ ∈ <8

and suppose it is an incorrect equilibrium shape with interagent distances

d∗ij(p
∗) corresponding to some desired shape with distances d̄ij. Recall that

eij(p
∗) = d∗2ij (p∗)−d̄2

ij. It follows from (5.4) that the error vector e(p∗) lies in the

left null space of the rigidity matrix Jr(p
∗) (since p∗ is an equilibrium point).

The left null space of the rigidity matrix Jr(p
∗) ∈ <8×6 is one-dimensional
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since rank[Jr(p
∗)] = 5 from Theorem 2.2.2 in Chapter 2. Thus, e(p∗) can

always be computed up to a scaling constant:

e(p∗) = d∗2ij (p∗)− d̄2
ij = λẽ (5.12)

where ẽ is any left null vector of Jr(p
∗) and λ ∈ < is a constant.

The scaling constant λ can be determined through the Cayley-Menger

determinant, which is widely used in distance geometry [11]. The Cayley-

Menger matrix of a set of n points {p1, ..., pn}, with pi ∈ <m, is defined as

M(p1, ..., pn) =


0 ||p1 − p2||2 · · · ||p1 − pn||2 1

||p1 − p2||2 0 · · · ||p2 − pn||2 1
...

...
. . .

...
...

||p1 − pn||2 ||p2 − pn||2 · · · 0 1
1 1 · · · 1 0

 (5.13)

The determinant of the Cayley-Menger matrix M gives an expression for the

hyper-volume of a simplex3 in terms of the edge lengths. For our four-agent

formation, this gives the volume of the tetrahedron defined by the four agent

positions. And since our formation evolves in the plane, this volume must be

zero, so the Cayley-Menger determinant is zero.

Now consider the Cayley-Menger determinant at the desired equilib-

3A simplex of n points is the smallest n − 1 dimensional convex hull that contains the
points.
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rium. We have

det(M) =

∣∣∣∣∣∣∣∣∣∣
0 d̄2

12 d̄2
13 d̄2

14 1
d̄2

12 0 d̄2
23 d̄2

24 1
d̄2

13 d̄2
23 0 d̄2

34 1
d̄2

14 d̄2
24 d̄2

34 0 1
1 1 1 1 0

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣
0 d∗212(p∗)− λẽ12 d∗213(p∗)− λẽ13 d∗214(p∗)− λẽ14 1

d∗212(p∗)− λẽ12 0 d∗223(p∗)− λẽ23 d∗224(p∗)− λẽ24 1
d∗213(p∗)− λẽ13 d∗223(p∗)− λẽ23 0 d∗234(p∗)− λẽ34 1
d∗214(p∗)− λẽ14 d∗224(p∗)− λẽ24 d∗234(p∗)− λẽ34 0 1

1 1 1 1 0

∣∣∣∣∣∣∣∣∣∣
(5.14)

Setting det(M) to zero yields a third-order polynomial in λ. Since the Cayley-

Menger determinant must also be zero at the incorrect equilibrium, then λ = 0

is always a solution. Thus, there are at most two possible desired equilibrium

shapes corresponding to the incorrect equilibrium shape. However, there are

a few circumstances in which the non-zero solutions for λ do not result in an

actual desired equilibrium. These circumstances are listed as follows, with an

indication of whether they have been observed in simulations in which a ran-

dom incorrect equilibrium is generated and the associated desired equilibrium

is calculated:

• If the non-zero solutions for λ are complex, then there is no desired

equilibrium. This has not been observed in simulations

• Real solutions for λ give real solutions for the d̄2
ij via (5.12), but if these

are negative, then there is no desired equilibrium. This has been observed

in simulations.
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• Real solutions for the d̄ij must satisfy certain triangle inequalities; if

not, there is no desired equilibrium. This has not been observed in

simulations.

Simulations, in which incorrect equilibrium shapes are generated randomly

and potential corresponding desired equilibrium shapes are computed, indicate

that there is almost always only one desired equilibrium shape corresponding

to a supposed incorrect equilibrium shape, and that the incorrect equilibrium

shape is an unstable saddle. Interestingly, note that for a square incorrect

equilibrium shape (i.e. a∗2 = b∗2), neither (5.9) nor (5.10) give a corresponding

non-degenerate desired equilibrium shape.

5.5 Concluding Remarks

This chapter has studied a four-agent formation shape control problem

using gradient-based interagent distance control laws with relative position

measurements. When the information architecture is a complete graph, we

showed that there may exist incorrect equilibrium shapes and proved that a

class of rectangular incorrect shapes are unstable. We also showed how to

compute a desired equilibrium shape from a supposed incorrect equilibrium

shape. The most significant remaining open question is: can there ever exists

an attractive incorrect equilibrium shape given some desired shape?

The previous three chapters have demonstrated that rigid and persis-

tent information architectures play a crucial role in solving certain formation
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shape control problems. They provide insight into the problem of realizing the

advantage of improved sensing capability in autonomous vehicle formations,

which crucially depends on maintaining the formation in a prescribed shape.

The next chapter returns to another strong motivation for autonomous vehicle

formations: ensuring that a formation can control its shape in the event of the

failure of a single agent. To provide robustness to agent loss, we must design

information architectures to recover or preserve desirable properties.
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Chapter 6

Addressing Agent Loss in Vehicle Formations

and Sensor Networks

6.1 Introduction

A primary motivation for using large-scale vehicle formations and sen-

sor networks is their potential robustness to loss of a single agent or a small

number of agents. This chapter addresses agent loss in planar formations via

two separate approaches: (1) perform a “self-repair” operation in the event

of agent loss to recover rigidity or global rigidity, or (2) introduce robustness

into the information architecture a priori such that agent loss does not de-

stroy rigidity or global rigidity. Information architectures with these properties

would allow formation shape control or self-localization tasks to be performed

in the event of loss of any single agent. The “self-repair” approach is reactive

in that the formation reacts to an agent loss event. The robustness approach is

proactive in that redundancy is built into the formation a priori in anticipation

of an agent loss event.

The “self-repair” approach is an instance of the closing ranks problem.

Previous work by Eren et al [20] demonstrated a solution to the closing ranks

problem that cannot always be implemented using only local information. We
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contribute decentralized sub-optimal solutions to the closing ranks problem,

providing algorithms to recover both rigidity and global rigidity. The solutions

are sub-optimal in that they potentially add more links than required by a

minimal solution, but only up to twice as many. However, this trade-off allows

decentralized implementation, highlighting the need to sacrifice a measure of

optimality when faced with constraints.

The robustness approach requires graphs with the property that rigidity

or global rigidity is preserved after removing any single vertex, which we call

2-vertex-rigidity1 or 2-vertex-global-rigidity, respectively. In [67], Servatius

identified some subtle graph theoretic features that make obtaining a complete

theoretic characterization of these properties difficult. She characterized a

particular class of 2-vertex-rigid graphs, which we call strongly minimal and

posed an open question about other types of 2-vertex-rigid graphs. We answer

this open question by developing a separate class of 2-vertex-rigidity, which

we call weakly minimal. We also characterize a class of 2-vertex-globally-rigid

graphs called strongly minimal 2-vertex-global-rigidity.

The self repair approach is described in Section 6.2, where we review the

closing ranks problem and discuss previous solutions. We then present our new

decentralized solutions, recovers rigidity or global rigidity in the information

architecture. In Section 6.3, we discuss implementation and illustrates our

results with algorithms and examples. Section 6.4 describes the robustness

1We use the term 2-vertex-rigidity, rather than 1-vertex-rigidity because these definitions
are analogous to the standard definitions for graph connectivity.
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approach for rigid graphs. We review the work of Servatius [67] and Yu and

Anderson [82] on redundant rigidity concepts and develop weakly minimal

2-vertex-rigidity. Section 6.5 describes the robustness approach for globally

rigid graphs. We characterize a class of redundantly globally rigid graphs

called strongly minimal 2-vertex-global-rigidity. Finally, Section 6.6 provides

concluding remarks.

6.2 The Self-Repair Approach

This section describes the “self-repair” approach for addressing agent

loss. We describe the closing ranks problem and show that while previous re-

sults permit local repair of the information architecture involving only neigh-

bours of the lost agent, the repair cannot always be implemented using only

local information. We then introduce new results that can be implemented

in a decentralized way, using only local information. The new results permit

decentralized recovery of both rigidity and global rigidity for formations and

sensor networks in two dimensions.

6.2.1 The Closing Ranks Problem

The closing ranks problem is the problem of determining new sens-

ing/communication links in the event of an agent loss to recover rigidity or

global rigidity [20]. Consider a rigid (globally rigid) graph G(V,E) which is

the underlying graph of a formation in real d-dimensional space. Let vi de-

note a vertex in V , and let Ei denote the set of edges incident to vi. Now
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Figure 6.1: Illustration of Closing Ranks: (a) original rigid formation (b) a vertex
and incident edges are removed (c) the minimum number of new edges are added
to regain rigidity. It is sufficient to add edges to neighbours of the lost vertex.

suppose that vi and Ei are removed from G and denote the resulting graph

G∗(V ∗, E∗), where V ∗ = V \ vi and E∗ = E \Ei. The closing ranks problem is

to determine the new edges Enew to add to G∗ such that the resulting graph

G′(V ∗, E∗ ∪ Enew) is rigid (globally rigid). We call a solution a rigid cover

(globally rigid cover). A minimal cover is one where |Enew| is minimum. A

minimal cover for a closing ranks problem is illustrated in Figure 6.1.

We desire the cover to be decentralized, which encompasses two prop-

erties: (1) local repair involving only neighbours of the lost agent, and (2)

designing the repair, i.e. determining which agent pairs acquire an edge be-

tween them, using only local information. Local repair is provided by the

following result from [73]:

Theorem 6.2.1. Let G be a minimally rigid graph with a vertex vi of degree
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k. Then there exists at least one set of k− 2 edges among the neighbours of vi

such that a minimally rigid graph is obtained by removing vi and its incident

edges and adding the set of k − 2 edges.

Thus, it is sufficient to add edges only between neighbours of the lost

agent to recover rigidity. However, the difficulty in applying this theorem is

to select the k − 2 edges. If though we drop the requirement for minimality,

one straightforward solution to the closing ranks problem is a complete cover :

simply add every possible edge between neighbours of the lost vertex. Thus,

if a vertex of degree k is lost, then k(k − 1) edges are added (O(k2)). This

may be significantly more than the necessary k − 2 edges for vertices of large

degree.

It turns out that the minimal cover cannot always be implemented using

only local information. The systematic method presented in [20] to determine

a minimal cover may involve decomposing the entire graph, which uses an

inherently global perspective. Indeed, when adding only the minimal number

of required edges, one must ensure that each added edge is independent. To

identify whether a proposed new edge will be independent or not, one must

check whether or not there is a minimally rigid subgraph containing the two

vertices on which the proposed new edge will be incident. A simple observation

shows that generally such a minimally rigid subgraph may be arbitrarily large,

and thus looking for it is not a procedure that involves just local operations;

given a minimally rigid subgraph on three or more vertices, the edge splitting

operation may always be used to increase indefinitely the size of the minimally
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(a) (b) 

(c) (d) 

Figure 6.2: Edge splitting creates edge dependency between the highlighted ver-
tices. Repeatedly applying edge splitting increases the size of the dependent sub-
graph.

rigid subgraph. This is illustrated in Figure 6.2. Further, when checking for

edge independence, there is no way to know a priori which subgraph to check,

and consequently, one may end up checking the entire graph.

For large formations, it is crucial to be able to implement a closing

ranks solution in a decentralized way. There is an inherent conflict between

the desire to add a minimum number of new edges and the constraint of using

only local information. Thus, we will seek a decentralized cover that is sub-

optimal in the sense that we may have to add more than the minimum number

of required new edges.
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6.2.2 Decentralized Rigidity Recovery

We have seen from Theorem 6.2.1 that there exists a rigid cover among

neighbours of the lost vertex. We now present a substitution principle for rigid

graphs, originally introduced in [78].

Theorem 6.2.2 ( [78]). Given a rigid graph G(V,E) in d-dimensional space,

if for any vertex subset V ′ the induced subgraph G′(V ′, E ′) is replaced with a

minimally rigid graph Ḡ(V ′, Ē) on those vertices (V ′), then the modified graph

G̃(V, Ẽ) where Ẽ = (E \E ′) ∪ Ē is also a rigid graph in d-dimensional space.

Here, G corresponds to a graph that has lost a vertex and has been

repaired via the method from [20], and V ′ corresponds to the former neighbours

of the lost vertex. Theorem 6.2.2 shows that implementing a minimally rigid

subgraph, which we refer to as a minimally rigid patch (Ḡ in the theorem), on

the former neighbours of a lost vertex will recover rigidity. It is not necessary to

first make the repair via the method from [20]; one can immediately implement

the minimally rigid patch. The requirement of a minimally rigid patch is only

to reduce the number of new edges added; the theorem is equally valid with

a rigid patch. Effectively, every minimally rigid patch contains at least one

cover which recovers rigidity. Note that the theorem is valid in any dimension.

The following proposition provides a way to implement such a patch in 2

dimensions.

Proposition 6.2.3. In 2 dimensions, the following “Double Patch” imple-

mented on the neighbours of a lost vertex is a rigid cover for the closing ranks
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Figure 6.3: Illustration of the Double Patch: The two highlighted vertices serve as
coordinators to which every other vertex is connected.

problem.

• Double Patch: Choose two vertices among the neighbours of the lost

vertex to serve as “coordinators” and connect them with an edge. Then

add edges between every other neighbour and the coordinators.

The Double Patch is illustrated in Figure 6.3. This process creates a particular

minimally rigid graph on the neighbours of the lost vertex. We are stacking

together triangles with a common base edge, which is a rigid structure. Equiv-

alently, we start with a complete graph on the coordinators, and the remaining

vertices are added via the vertex addition operation, which is a rigid struc-

ture. The choice of the two coordinators is arbitrary and the structure does

not depend on the rest of the graph. Thus, the patch can be created using

only local information.

When a vertex of degree k is lost, we are adding 2k− 3 edges using the

minimally rigid patch. Although we add more edges than with the minimal
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(a) (b) 

(c) 

Figure 6.4: Utilizing existing cover edges with the Double Patch: (a) the lost vertex
has degree 6, (b) edges exist among neighbours of the lost vertex, (c) coordinators
for the Double Patch are chosen to utilize these existing edges, and 4 new edges are
added - a minimal cover.

cover (where k − 2 edges are added), the number of added edges is still linear

in the lost vertex degree, as opposed to quadratic for a complete cover.

By appropriate choice of coordinators, one could utilize existing edges

among neighbours of the lost vertex, which we call existing cover edges, to

minimize the number of new added edges. Simple counting arguments can be

used to show that there could be up to k−1 existing cover edges. In fact, there

are certain scenarios in which one adds 2k − 3 − (k − 1) = k − 2 new edges,

utilizing the existing cover edges to obtain a minimal cover. This scenario is

illustrated in Figure 6.4.

Remark. One might ask whether a “single patch” is sufficient to recover

rigidity. That is, could one chose only one vertex among neighbours of the lost

vertex as a coordinator? In this case, we add k−1 edges - i.e. potentially only
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Figure 6.5: Single Patch Counterexample. The two dependent edges cause the
single patch to fail.

one more edge than for a minimal cover. Simulations support the conjecture

that there always exists at least one vertex among neighbours of the lost vertex

on which a single patch works. In fact, one can show that in 2 dimensions there

are two such vertices. However, we are again faced with the task of choosing

the appropriate vertex; once again, local information will not suffice to effect

the choice.

The counterexample in Figure 6.5 shows a case where a vertex with no

existing cover edges fails using a single patch even though k− 1 new edges are

added. Ultimately, the single patch repair approach fails to be decentralized

for the same reason as the minimal cover - one must resort to possibly non-local

checking of each new edge for dependency in order to choose the appropriate

vertex.
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6.2.3 Decentralized Global Rigidity Recovery

The ideas discussed above for recovering rigidity can also be applied

to recovering global rigidity. The following theorem extends the substitution

principle to globally rigid graphs.

Theorem 6.2.4. Given a globally rigid graph G(V,E) in d-dimensional space,

if any subgraph G′(V ′, E ′) is replaced with a globally rigid graph on those

vertices (V ′), then the modified graph is also a globally rigid graph in d-

dimensional space.

Proof.2 Assume formation F (G, p) is globally rigid, and G′(p) is created

by the substitution of a globally rigid formation F ′(p) for a sub-formation F (p)

in G(p). By Theorem 6.2.2, G′(p) is certainly rigid. If G′(p) is not globally

rigid, then there is a second realization, i.e. formation whose edge lengths

equal those of G′(p), G′(q) which is not congruent. There is a pair of vertices

(i, j) for which the corresponding inter-agent distance is different for G′(p) and

G′(q). By assumption on F ′, F ′(p) must be congruent to F ′(q). So i, j cannot

both be in F ′ (or F ). If we now replace F ′(q) with F (q) (which will also be

congruent to F (p)) then we will have G(p) and G(q) with all edge lengths the

same, but not congruent. This contradicts the original assumption that G(p)

was globally rigid. �

Theorem 6.2.4 shows that placing a globally rigid subgraph, which we

refer to as a globally rigid patch, on neighbours of the lost vertex will recover

2Thanks to Professor Walter Whiteley for his help in contributing this proof.
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global rigidity. Again, the theorem is valid in any dimension. Proposition 2

provides a way to implement such a patch in 2 dimensions.

Proposition 6.2.5. In 2 dimensions, the following “Wheel Patch” imple-

mented on the neighbours of a lost agent is a globally rigid cover for the closing

ranks problem.

• Wheel Patch: Choose one vertex among the neighbours of the lost

agent to serve as “coordinator” and connect it with every other neigh-

bour of the lost agent. Then create a cycle among the neighbours that

excluding the coordinator.

The Wheel Patch is illustrated in Figure 6.6. This process creates a

wheel graph on the neighbours of the lost agent, which is a particular minimally

globally rigid graph. A wheel graph on n vertices is a graph that contains a

single vertex (the “hub”) connected to all vertices of an (n − 1)-cycle. The

choice of hub or coordinator is arbitrary and the structure does not depend

on the rest of the graph. Thus, the patch can be created using only local

information. Again, the coordinator can be chosen to minimize the number of

new edges added.

6.3 Implementation

This section describes implementation of our decentralized closing ranks

solutions and illustrate with examples. An explicit discussion of underlying
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Figure 6.6: Illustration of the Wheel Patch: the highlighted vertex serves as the
coordinator and connects to every other vertex in the cycle.

assumptions is worthwhile. First, we assume that neighbours of a lost agent

recognize the loss immediately. That is, we are not dealing with the separate

problem of determining whether agent loss has occurred. Agent loss could

occur when an agent has been deployed for another task, or in the event of

agent failure. There are in principle many different ways in which an agent

could fail, from complete loss of an entire agent (e.g. a UAV crashes) to failure

of a single sensor, actuator, or communication link. Of course, recognizing

various failure modes is an important consideration for actual implementation,

but here we use a “vaporize” agent failure model (that is, regard any failure as

complete loss of agent) and assume neighbour agents immediately recognize the

loss. Second, we assume that each agent has a unique ID. This is necessary so

that the agents can distinguish amongst one another when determining which

new links to add.

Each agent stores the following local information: a list of links for

all neighbours and 2-hop neighbours. This information is local in the sense
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that it is independent of the size of the formation or sensor network. Since all

neighbours of a lost agent will be at most 2-hop neighbours of one another, they

each can search the aforementioned list of links to form the subgraph involving

all neighbours of the lost agent and existing cover edges. From this subgraph,

each neighbour of the lost agent can choose coordinators and determine the

new links to add in order to implement one of the patches discussed previously.

This can be done in two ways: (1) choose coordinator(s) based on agent ID

(e.g. agents with lowest two IDs are coordinators for the double patch), or (2)

choose coordinator(s) to minimize number of links added. For the wheel patch,

the cycle can also be created using agent ID. Then, the agents establish the

appropriate links to recover rigidity or global rigidity. The process is captured

in the following algorithms (using agent ID to choose coordinators and cycle

order) and illustrated in Figures 6.7 and 6.8.

Remark. Establishing an link between two agents effectively requires

the ability of each agent to sense IDs. Existence of a link between two agents

means that the agents actively maintain the Euclidean distance constant via

control of agent motion. As noted before, this requires sensing relative po-

sition. Any given agent will have multiple links to maintain and may also

have other non-neighbour agents within its sensing range. For each particular

link, each agent must be able to distinguish ID through sensing amongst other

agents in its sensing range in order to adjust its distance to the appropriate

agent.
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agent has a unique ID. This is necessary so that the agents
can distinguish amongst one another when determining which
new links to add.

At each agent store the following local information: a
list of links for all neighbours and 2-hop neighbours. This
information is local in the sense that it is independent of the
size of the formation or sensor network. Since all neighbours
of a lost agent will be at most 2-hop neighbours of one
another, they each can search the aforementioned list of links
to form the subgraph involving all neighbours of the lost agent
and existing cover edges. From this subgraph, each neighbour
of the lost agent can choose coordinators and determine the
new links to add in order to implement one of the patches
discussed previously. This can be done in two ways: (1) choose
coordinator(s) based on agent ID (e.g. agents with lowest two
IDs are coordinators for the double patch), or (2) choose
coordinator(s) to minimize number of links added. For the
wheel patch, the cycle can also be created using agent ID.
Then, the agents establish the appropriate links to recover
rigidity or global rigidity. The process in captured in the
following algorithms (using agent ID to choose coordinators
and cycle order) and illustrated in Figures 8 and 9.

Remark 2: Establishing an link between two agents effec-
tively requires the ability of each agent to sense IDs. Existence
of a link between two agents means that the agents actively
maintain the Euclidean distance constant. As noted before,
this involves sensing relative position. Any given agent will
have multiple links to maintain and may also have other non-
neighbour agents within its sensing range. For each particular
link, each agent must be able to distinguish ID through sensing
amongst other agents in its sensing range in order to adjust its
distance to the appropriate agent.

if agent fails then
for neighbours of lost agent do

n = get(lost agent neighbours);
coordinator1 = minID(n);
coordinator2 = secondMinID(n);
if I am a coordinator then

establish links w/ all n;
else

establish links w/ coordinators;
end

end
end

Algorithm 1: Double Patch

V. CONCLUDING REMARKS
In summary, we have presented decentralized solutions for

the closing ranks problem in vehicle formations and sensor
networks. The results can be used for self-repair in formations
and sensor networks in the event of agent failure. We reviewed
rigid graph theoretic ideas that have been used as high-level
models for information architectures. We described an existing
solution (the minimal cover) and showed that while repair can
be made among neighbours of the lost agent, it cannot be
implemented using only local information. By contrast, our
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Fig. 8. Double Patch: (a) rigid formation with agent IDs, (b) agent 0
fails, neighbours recognize the loss (c) coordinators 1 and 2 are chosen via
minimum agent ID and links established.

if agent fails then
for neighbours of lost agent do

n = get(lost agent neighbours);
coordinator = minID(n);
cycle = orderID(n\coordinator);
m = getCycleNeighbours(cycle);
if I am coordinator then

establish links w/ all n;
else

establish links w/ coordinator & m;
end

end
end

Algorithm 2: Wheel Patch
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Fig. 9. Wheel Patch: (a) globally rigid formation with agent IDs, (b) agent 0
fails, neighbours recognize the loss, (c) coordinator 1 is chosen via minimum
agent ID, cycle formed via agent ID ordering, and links established.

solutions are decentralized, i.e. (1) the repair involves only
neighbours of the lost agent, and (2) the repair requires only
local information, independent of formation size. We described
implementation of the results and illustrated with examples.

The ideas in this paper could be extended in other directions.
First, as noted previously, another way to deal with losing
an agent is to robustify the formation or sensor network a
priori by adding certain redundant edges. For example, given a
minimally rigid graph, how could one add edges in such a way
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Figure 6.7: Double Patch: (a) rigid formation with agent IDs, (b) agent 0 fails,
neighbours recognize the loss, (c) coordinators 1 and 2 are chosen via minimum
agent ID and links established.

6.4 Redundant Information Architectures

This section describes the robustness approach to addressing agent loss.

In particular, we investigate the structure of graphs in the plane with the

property that rigidity is preserved when any single vertex and its incident
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agent has a unique ID. This is necessary so that the agents
can distinguish amongst one another when determining which
new links to add.

At each agent store the following local information: a
list of links for all neighbours and 2-hop neighbours. This
information is local in the sense that it is independent of the
size of the formation or sensor network. Since all neighbours
of a lost agent will be at most 2-hop neighbours of one
another, they each can search the aforementioned list of links
to form the subgraph involving all neighbours of the lost agent
and existing cover edges. From this subgraph, each neighbour
of the lost agent can choose coordinators and determine the
new links to add in order to implement one of the patches
discussed previously. This can be done in two ways: (1) choose
coordinator(s) based on agent ID (e.g. agents with lowest two
IDs are coordinators for the double patch), or (2) choose
coordinator(s) to minimize number of links added. For the
wheel patch, the cycle can also be created using agent ID.
Then, the agents establish the appropriate links to recover
rigidity or global rigidity. The process in captured in the
following algorithms (using agent ID to choose coordinators
and cycle order) and illustrated in Figures 8 and 9.

Remark 2: Establishing an link between two agents effec-
tively requires the ability of each agent to sense IDs. Existence
of a link between two agents means that the agents actively
maintain the Euclidean distance constant. As noted before,
this involves sensing relative position. Any given agent will
have multiple links to maintain and may also have other non-
neighbour agents within its sensing range. For each particular
link, each agent must be able to distinguish ID through sensing
amongst other agents in its sensing range in order to adjust its
distance to the appropriate agent.

if agent fails then
for neighbours of lost agent do

n = get(lost agent neighbours);
coordinator1 = minID(n);
coordinator2 = secondMinID(n);
if I am a coordinator then

establish links w/ all n;
else

establish links w/ coordinators;
end

end
end

Algorithm 1: Double Patch

V. CONCLUDING REMARKS
In summary, we have presented decentralized solutions for

the closing ranks problem in vehicle formations and sensor
networks. The results can be used for self-repair in formations
and sensor networks in the event of agent failure. We reviewed
rigid graph theoretic ideas that have been used as high-level
models for information architectures. We described an existing
solution (the minimal cover) and showed that while repair can
be made among neighbours of the lost agent, it cannot be
implemented using only local information. By contrast, our
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Fig. 8. Double Patch: (a) rigid formation with agent IDs, (b) agent 0
fails, neighbours recognize the loss (c) coordinators 1 and 2 are chosen via
minimum agent ID and links established.

if agent fails then
for neighbours of lost agent do

n = get(lost agent neighbours);
coordinator = minID(n);
cycle = orderID(n\coordinator);
m = getCycleNeighbours(cycle);
if I am coordinator then

establish links w/ all n;
else

establish links w/ coordinator & m;
end

end
end

Algorithm 2: Wheel Patch
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Fig. 9. Wheel Patch: (a) globally rigid formation with agent IDs, (b) agent 0
fails, neighbours recognize the loss, (c) coordinator 1 is chosen via minimum
agent ID, cycle formed via agent ID ordering, and links established.

solutions are decentralized, i.e. (1) the repair involves only
neighbours of the lost agent, and (2) the repair requires only
local information, independent of formation size. We described
implementation of the results and illustrated with examples.

The ideas in this paper could be extended in other directions.
First, as noted previously, another way to deal with losing
an agent is to robustify the formation or sensor network a
priori by adding certain redundant edges. For example, given a
minimally rigid graph, how could one add edges in such a way
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Figure 6.8: Wheel Patch: (a) globally rigid formation with agent IDs, (b) agent 0
fails, neighbours recognize the loss, (c) coordinator 1 is chosen via minimum agent
ID, cycle formed via agent ID ordering, and links established.

edges are removed. Information architectures with this structure would allow

vehicle formations to maintain formation shape even in the event of agent loss.

We review general redundant rigidity definitions and concepts, and overview

characterization of a particular class of 2-vertex-rigidity, which we call strongly

minimal, given by Servatius in [67]. We then present new developments of a
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particular class of 2-vertex-rigidity, which we call weakly minimal, making

significant strides toward a complete characterization.

6.4.1 Redundant Rigidity Concepts

In [67], Servatius introduced the notions of edge birigidity and vertex

birigidity of a graph. A graph is called edge birigid if it remains rigid after

removing any edge. As discussed previously, this property is used to charac-

terize global rigidity (it is simply called redundant rigidity in that context).

A graph is called vertex birigid if the graph remains rigid after removing any

vertex and its incident edges.

In [82], Yu and Anderson introduced the generalized terms k-edge-

rigidity and k-vertex-rigidity. A graph is called k-edge-rigid if it remains rigid

after removing any k − 1 edge(s). Similarly, a graph is called k-vertex-rigid

if it remains rigid after removing any k − 1 vertices. (For consistency of the

results, it is convenient to define any graph with fewer than 3 vertices in two

dimensions as nonrigid.) This notation is analogous to the standard nota-

tion for connectivity: a graph is k-edge-connected (k-vertex-connected) if it

remains connected after removing any k − 1 edges (vertices). Conventionally,

the simplified term k-connectivity is used to refer to k-vertex-connectivity.

In [82], Yu and Anderson characterize the relationship between k-edge-rigidity

and k-vertex-rigidity, confirming the natural intuition that vertex-rigidity is

a more demanding concept than edge-rigidity. They also explore redundant

rigidity properties for special types of graphs, including the complete graph,
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the wheel graph, and powers of a graph. We shall use the terminology of [82]

and restrict our attention in this chapter to 2-vertex-rigidity.

Remark. A graph is more vulnerable to loss of a vertex with large

degree than a vertex with smaller degree because more edges are removed.

For example, consider the wheel graph on n vertices, which consists of a single

vertex (the “hub”) connected to every vertex in a (n−1)-cycle. If any vertex in

the cycle is removed, the graph remains rigid. However, if the hub is removed,

the resulting graph is not rigid, and one must add n− 3 new edges to recover

rigidity. The hub is in a sense more important than the other vertices since

the health of the formation is more vulnerable to its failure than to failure of

any other vertex.

In [82], Yu and Anderson differentiate between deterministic and sta-

tistical metrics of redundant rigidity. For example, one might regard a wheel

graph as nearly 2-vertex-rigid in a statistical sense. Loss of rigidity occurs

when just one particular vertex (out of n) is removed. In an application where

the concern is random failure, such as enemy attack on a random agent of a

military UAV formation, we could say that the formation is statistically n−1
n

2-vertex-rigid. However, in this chapter we focus on deterministic 2-vertex-

rigidity.

6.4.2 Strongly Minimal 2-Vertex-Rigidity

It is natural to seek a characterization of minimal 2-vertex rigidity anal-

ogous to the way that a graph being rigid implies existence of a minimally rigid
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subgraph. However, as we will show in the following, the concept of minimality

in 2-vertex-rigid graphs gives rise to a subtlety that contrasts with minimal-

ity in rigid graphs. Given a rigid graph G(V,E), minimality is characterized

equivalently by either of the following statements: (1) G has the minimum

possible number of edges (|E| = 2|V |−3), and (2) removing any edge destroys

rigidity. For 2-vertex-rigid graphs, an attempt to generalize these statements

gives rise to two distinct types minimally 2-vertex-rigid graphs, which we call

strongly minimal and weakly minimal :

• A 2-vertex-rigid graph is called strongly minimal if it has the minimum

possible number of edges on a given number of vertices.

• A 2-vertex-rigid graph is called weakly minimal if it has more than the

minimum possible number of edges on a given number of vertices, but

has the property that removing any edge destroys 2-vertex-rigidity.

In [67], Servatius provides a characterization of strongly minimal 2-vertex-

rigidity and gives an example that shows existence of a weakly minimal 2-

vertex-rigid graph, which we now review.

We begin with the following result, which gives a lower bound on the

number of edges in a 2-vertex-rigid graph in terms of the number of vertices.

Lemma 6.4.1. If G(V,E) is a 2-vertex-rigid graph on 5 or more vertices, then

|E| ≥ 2|V | − 1.
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Proof. Suppose G(V,E) is a 2-vertex-rigid graph on 5 or more vertices

with |E| = 2|V | − 2. The average degree in a graph on |V | vertices with

|E| = 2|V | − 2 is 4 − 4/|V |. Thus, such a graph on 5 or more vertices has

a vertex of degree at least 4. Removing such a vertex results in a graph

G′(V ′, E ′) where |E ′| = 2|V ′| − 4. Thus, G′ cannot be rigid, which contradicts

our original assumption that G was 2-vertex-rigid. �

Servatius uses the concept of excess to distinguish between our terms

strongly and weakly minimal. The excess of a rigid graph G(V,E) in 2 dimen-

sions is defined as |E| − (2|V | − 3). A minimally rigid graph has excess zero

(i.e. |E| = 2|V | − 3). A minimally globally rigid graph has excess one (i.e.

|E| = 2|V |−2). On 4 or fewer vertices, it is impossible to have |E| ≥ 2|V |−1,

and a graph must be complete to be 2-vertex-rigid. A strongly minimal graph

(on 5 or more vertices) has excess two while a weakly minimal graph has excess

more than two.

The following two results from [67] give a complete characterization of

the structure of strongly minimal 2-vertex-rigid graphs.

Theorem 6.4.2. Let G(V,E) be a strongly minimal 2-vertex-rigid graph on

5 or more vertices. Then G has exactly two vertices with degree 3 and the

remaining have degree 4, which implies |E| = 2|V | − 1.

Theorem 6.4.3. A graph G(V,E) is strongly minimal 2-vertex-rigid if and

only if G has exactly two vertices of degree 3 and there is a partition of the

edge set E

E = E1 ∪ E2 ∪ · · · ∪ Ek
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 (a) (b) 

Figure 6.9: Examples of the two possible partitions of the edge set for strongly
minimal 2-vertex-rigid graphs: (a) the degree three vertices are adjacent, and (b)
the degree three vertices are non-adjacent.

such that the graph induced by E \Ei is minimally redundantly rigid for all i,

and either

• E1 and E2 are the edges incident to the two non-adjacent vertices of

degree 3, respectively, and Ei is a single edge for 3 ≤ i ≤ k

• E1 is the union of the edges incident to the two adjacent vertices of

degree 3, and Ei is a single edge for 2 ≤ i ≤ k.

This can be thought of as a Laman-type characterization, analogous to

minimal rigidity: there must be a minimum number of edges (|E| = 2|V | −

1), and the edges must be properly distributed, as described in the theorem

conditions. The two possible partitions of the edge set correspond to whether

or not the two degree 3 vertices are adjacent.

Figure 6.9, originally from [67], shows examples of strongly minimal

2-vertex-rigid graphs with each type of partition. Note that triangles could be
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“stacked” together in such a fashion to produce arbitrarily large 2-vertex-rigid

graphs of excess two.

In fact, Servatius also provides a way to “grow” all strongly minimal 2-

vertex-rigid graphs using an operation similar to the edge splitting operation

discussed previously. This operation gives an increase of |V | by 1 and an

increase of |E| by 2, and thus preserves the constraint |E| = 2|V | − 1. Thus,

we have a complete characterization and a way to obtain all strongly minimal

2-vertex-rigid graphs.

6.4.3 Weakly Minimal 2-Vertex-Rigidity

Can one simply add edges to a strongly minimal 2-vertex-rigid graph

to obtain every (non-minimal) 2-vertex-rigid graph (as can be done for rigid

graphs)? The answer to this question is no. The example in Figure 6.10,

originally shown in [67], shows existence of a weakly minimal 2-vertex-rigid

graph, which contains more than the minimum possible number of edges yet

has the property that removing any edge destroys 2-vertex-rigidity.

Proposition 6.4.4. The graph G(V,E) in Figure 6.10 is weakly minimal 2-

vertex-rigid.

Proof. Every vertex has degree 4; thus, |E| = 2|V |, which is excess

three. Observe that the subgraphs induced by the left and right nine vertices

(call them GL and GR) both have excess one. Removing any vertex in G

results in a graph of excess one that has exactly one subgraph of excess one,

which is rigid. Thus, the graph is 2-vertex-rigid. �

157



 

Figure 6.10: Example of a weakly minimal 2-vertex-rigid graph. The graph has an
excess of three, but removing any edge destroys 2-vertex-rigidity. Thus, this graph
cannot be obtained by adding an edge to a graph described by Theorem 6.4.3.

Now remove any edge outside of GL; call the new graph G′. Then

remove any degree 4 vertex in G′ \GL. The resulting graph, call it G′′, has an

excess of zero with a subgraph of excess one (viz GL), and so G′′ is not rigid

by Laman’s theorem. Therefore, G′ is not 2-vertex-rigid. Obviously, the same

argument applies if we remove any edge outside of GR. Hence, removing any

edge in G destroys 2-vertex-rigidity, and thus G is weakly minimal 2-vertex-

rigid.

This example points to a particular class of weakly minimal 2-vertex-

rigid graphs that generally consist of two redundantly rigid subgraphs con-

nected by four edges. The smallest such graph, presented here for the first

time in Figure 6.11, consists of two complete graphs on four vertices con-
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Figure 6.11: Smallest example of a weakly minimal 2-vertex-rigid graph in the class
defined by the Servatius example.

nected by four edges. Further, we can use what is called the X-replacement

operation, which is shown to preserve rigidity and redundant rigidity in [9], to

“grow” arbitrarily large weakly minimal 2-vertex-rigid graphs. The operation

is illustrated in Figure 6.12 and described below.

Definition 6.4.1. Given two non-adjacent edges ux and wy in a graphG(V,E),

an X-replacement adds a degree 4 vertex z to construct the graph G′(V ′, E ′),

where V ′ = V ∪ {z} and E ′ = E \ {ux,wy} ∪ {uz, wz, xz, yz}.

Since the X-replacement preserves redundant rigidity, it can be applied

successively to each redundantly rigid subgraph in Figure 6.11 (that is, each

complete subgraph on four vertices) to create a class of weakly minimal 2-

vertex-rigid graphs with excess three, which includes the Servatius example in

Figure 6.10. Indeed, one can easily verify that the graph in Figure 6.11 can be

obtained by repeatedly applying the reverse X-replacement operation on the
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Figure 6.12: Representation of the X-replacement operation.

left and right subgraphs in Figure 6.10.

In [67], Servatius poses an open question regarding existence of other

weakly minimal 2-vertex-rigid graphs with larger excess. We have discovered

such a new class that can have arbitrarily large excess. The graph shown in

Figure 6.13(a) illustrates an example with excess three, and the graph shown

in Figure 6.13(b) illustrates an example with excess four obtained by applying

what we call a degree 3 vertex addition. Let i, j, and k be three distinct vertices

in a graph G(V,E). A degree 3 vertex addition operation adds a vertex l and

edges il, jl, and kl. This operation preserves weakly minimal 2-vertex-rigidity

under certain conditions given in [67] and also increases the excess by one. By

successively applying the operation as shown, one can obtain weakly minimal

2-vertex-rigid graphs with arbitrarily large excess.

Proposition 6.4.5. The class of graphs illustrated in Figure 6.13 is weakly

minimal 2-vertex-rigid.

Proof. Let G(V,E) be the graph in Figure 6.13(a). One can easily
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 (b) (a) 

Figure 6.13: A new class of weakly minimal 2-vertex-rigidity: (a) a weakly minimal
2-vertex-rigid graph with excess three, (b) adding a degree 3 vertex to create a
weakly minimal 2-vertex-rigid graph with excess four. By successively adding a
degree 3 vertex to either end, one can obtain weakly minimal 2-vertex-rigid graphs
with arbitrarily large excess.

verify that |E| = 2|V | (excess three) and that removing any vertex from G

results in a rigid graph; thus, G is 2-vertex-rigid. Now, remove any edge not

incident to the top vertex, then remove the top vertex, resulting in a graph

G′(V ′, E ′). We have |E ′| = 2|V ′| − 4, which implies that G′ is not rigid. The

same argument holds when removing any edge not incident to the bottom

vertex, then removing the bottom vertex. Thus, removing any edge in G

destroys 2-vertex-rigidity, and therefore G is weakly minimal 2-vertex-rigid.

The same analysis holds for the graph in Figure 6.13(b) and all other graphs

in this class. �

Clearly, the existence of weakly minimal 2-vertex-rigid graphs make a

complete characterization of 2-vertex-rigidity rather subtle and difficult. We

conclude this section with a conjecture that the X-replacement and degree

3 vertex addition operations are sufficient to “grow” all weakly minimal 2-
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vertex-rigid graphs. We have already observed that these operations preserve

weakly minimal 2-vertex-rigidity under certain conditions. For a complete

characterization, we need to show that the reverse operations can always be

applied to a weakly minimal 2-vertex-rigid graph.

Conjecture 1. Let G(V,E) be a weakly minimal 2-vertex-rigid graph with at

least 9 vertices. Then there exists either (a) a degree 4 vertex on which a

reverse X-replacement operation can be performed to obtain a weakly minimal

2-vertex-rigid graph, or (b) there exists a degree three vertex on which a reverse

degree 3 vertex addition can be performed to obtain a weakly minimal 2-vertex-

rigid graph.

6.5 Strongly Minimal 2-Vertex-Global-Rigidity

In this section, we investigate the structure of graphs with the property

that global rigidity is preserved when any single vertex and its incident edges

are removed. Analogously, a graph is called 2-vertex-globally-rigid if it remains

globally rigid after removing any single vertex. Information architectures with

this structure would allow self-localization in sensor networks to be performed

even in the event of loss of any one. We provide a complete characterization

of strongly minimal 2-vertex-global-rigidity.

We begin with the following result, which gives a lower bound on the

number of edges necessary for 2-vertex-globally-rigidity.

Lemma 6.5.1. If G(V,E) is a 2-vertex-globally-rigid graph on 5 or more
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vertices, then |E| ≥ 2|V | (excess three or more).

Proof. Suppose G(V,E) is a 2-vertex-globally-rigid graph on 5 or more

vertices with |E| = 2|V |−1. The average degree in a graph on |V | vertices with

|E| = 2|V |−1 is 4−2/|V |. Thus, such a graph on 5 or more vertices has a vertex

of degree at least 4. Removing such a vertex results in a graph G′(V ′, E ′) with

|E ′| = 2|V ′| − 3, which cannot be redundantly rigid and therefore cannot be

globally rigid. This contradicts our original assumption that G was 2-vertex-

globally-rigid. �

The following two results completely characterize the structure of strongly

minimal 2-vertex-globally-rigid graphs.

Theorem 6.5.2. Let G(V,E) be a strongly minimal 2-vertex-globally-rigid on

5 or more vertices. Then we have the following:

• |E| = 2|V |.

• Every vertex in G has degree 4.

Proof. For the first condition, removing an edge results in a graph

of excess two, which is not 2-vertex-globally-rigid by Lemma 6.5.1. Further,

Figure 6.14 shows a 2-vertex-globally rigid graph where |E| = 2|V |. For the

second condition, since G is globally rigid, it contains no vertex of degree less

than 3. Suppose v is a vertex of degree 3. Remove a neighbour of v. In the

resulting graph, v has degree 2 and this graph is not globally rigid. Thus,

there cannot be a vertex of degree 3.
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Since |E| = 2|V |, then the average vertex degree is 4. Since there

cannot be a vertex of degree 3 or fewer, then there cannot be any vertices of

degree 5 or more. Thus, all vertices must have degree 4, which completes the

proof. �

Theorem 6.5.3. A graph G(V,E) is strongly minimal 2-vertex-globally-rigid

if and only if the following conditions hold

• |E| = 2|V |

• G is 4-connected

• G is redundantly strongly minimal 2-vertex-rigid (i.e. removing any edge

results in a strongly minimal 2-vertex-rigid graph).

Proof. For sufficiency, suppose the conditions hold for a graph G. Note

first that since G is 4-connected, a graph obtained by removing a vertex and

its incident edges is 3-connected. Further, 4-connectivity implies that every

vertex has degree at least 4, (see e.g. [29]), and since |E| = 2|V | then every

vertex has precisely degree 4. Now choose any vertex v in G and remove

any edge incident to this vertex. The resulting graph is 2-vertex-rigid by the

third condition. Remove another edge incident to v. Via the edge partition

in Theorem 6.4.3, the resulting graph consists of v with degree 2 attached to

a redundantly rigid graph. Now we can remove v and the resulting graph is

redundantly rigid. By the second condition, it is also 3-vertex-connected and
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therefore is globally rigid. The argument holds for any vertex v in G, which

proves that G is 2-vertex-globally-rigid, and thus the conditions are sufficient.

The 4-connectivity of G is obviously necessary because G minus any

vertex must be 3-connected. Further, |E| = 2|V | is necessary because if |E| <

2|V | then there is a vertex with degree 3, which implies that G is not 4-

connected. Now we need to prove the necessity of the final condition. To obtain

a contradiction, suppose G is a 2-vertex-globally-rigid graph with an edge e

that when removed does not result in a 2-vertex-rigid graph. Remove such an

edge e and call the resulting graph G′. This implies that there exists a vertex v

in G′ that when removed results in a non-rigid graph G′′. There are two cases:

First, if e is incident to v, then effectively we have removed v from G to obtain

a non-rigid graph G′′. Thus, G is not 2-vertex-globally-rigid, contradicting our

assumption. Second, if e is not incident to v, then if G is 2-vertex-globally-

rigid, we should be able to reinsert e into G′′ to obtain a globally rigid graph.

However, it is impossible to add a single edge to a non-rigid graph to make it

redundantly rigid. This again contradicts our assumption, which proves the

necessity of the final condition and completes the proof. �

Theorem 6.5.3 is clearly analogous to the characterization of global

rigidity given by Theorem 2.3.1. An example of a 2-vertex-globally-rigid graph

is given in Figure 6.14. This example is a C2 graph, which can be obtained

starting with a cycle on n vertices and connecting 2-hop neighbours. One

could also obtain a different 2-vertex-globally-rigid graph by starting with a

cycle on n vertices and connecting 3-hop neighbours. The smallest strongly
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Figure 6.14: Example of a strongly minimal 2-vertex-globally-rigid graph described
in Theorem 6.5.3.

minimal 2-vertex-globally-rigid graph is the complete graph on 5 vertices.

Operations to “grow” all strongly minimal 2-vertex-globally-rigid graphs

and existence of weakly minimal 2-vertex-globally-rigid graphs remain open

questions. In addition, note that generalizing Theorem 6.5.3 will require a

complete characterization of 2-vertex-rigidity, again emphasizing the impor-

tance of resolving the difficulties discussed in the previous section.

6.6 Concluding Remarks

This chapter has addressed the problem of agent loss via two separate

approaches. The first is to perform a “self-repair” operation in the event

of agent loss to recover rigidity or global rigidity. The second is to build

robustness into the information architecture a priori such that agent loss does

not destroy rigidity or global rigidity.
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The self-repair approach utilized in this chapter to address the problem

of agent loss has allowed a decentralized solution of the closing ranks prob-

lem. This self-repair involves only neighbors of the lost agent and requires

only local information that is independent of formation size. The results can

be implemented to recover rigidity and global rigidity. This chapter has also

approached the problem of agent loss by building robustness into the informa-

tion architecture. This progressed the theory of 2-vertex-rigid and 2-vertex-

global-rigid graphs. Information architectures with these properties would

allow formation shape control or self-localization tasks to be performed even

in the event of the loss of any single agent. We developed weakly minimal 2-

vertex-rigidity and characterized strongly minimal 2-vertex-global-rigidity. The

existence of weakly minimal 2-vertex-rigid graphs makes a complete character-

ization of 2-vertex-rigidity subtle and difficult, in comparison to rigidity. The

existence of weakly minimal 2-vertex-global-rigidity remains an open question.

This dissertation has addressed rigidity-based formation shape control

problems and the design of robust information architectures to recover or pre-

serve rigidity or global rigidity in the event of agent loss. In formation shape

control problems, the agents can be suitably modeled by points, neglecting

the individual agent orientation, or attitude. However, the orientations of the

agents in a formation are also crucial to realizing certain advantages. The next

chapter considers a rigid body attitude synchronization problem, in which the

objective is to design torque control laws to asymptotically synchronize the

attitudes of a team of rigid bodies.
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Chapter 7

Rigid Body Attitude Synchronization with

Communication Time Delays

7.1 Introduction

A fundamental problem for autonomous vehicle formations, in addition

to ensuring the precise control of formation shape, is ensuring the precise con-

trol of formation orientation, or attitude. This chapter addresses the problem

of formation attitude synchronization by engaging with two discrete areas in

the literature: synchronization/consensus problems, and the rigid body atti-

tude synchronization problem.

The rigid body attitude synchronization problem is to design torque

control laws to asymptotically synchronize the attitude of a team or rigid bod-

ies. The agents communicate attitude information with one another, and this

communication architecture is modeled as a graph. In synchronization/consensus

problems, spectral graph theory, rather than rigid graph theory, yields the prop-

erties that relate to the stability of the synchronized configuration.

The synchronization/consensus problems addressed in this chapter have

double integrator agent dynamics and time delays. Double integrators are

appropriate for mechanical systems, which are generally controlled through
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acceleration, while the effect of time delays on stability becomes an impor-

tant consideration when agents communicate state information. Previous sta-

bility results in the literature are in need of generalization when there are

double integrator dynamics and time delays. Recent progress has been made

in [51, 68, 85]. In [85], necessary and sufficient stability conditions are given

for a directed communication architecture with homogeneous1 delay, but the

study assumes that there is a self-delay on each agent’s own state feedback sig-

nal. However, this assumption is restrictive when the value of the time delay is

unknown. In [68], sufficient stability conditions are given for directed architec-

tures with homogeneous delay and without self-delay, but the results depend

on the restrictive assumption that the degree matrix is a scalar multiple of the

identity matrix. In [51], sufficient stability conditions are given for heteroge-

neous delays, but the results are only given for undirected architectures. Two

other studies consider higher-order agent dynamics [44, 52], in which double

integrators are a special case, but these results do not readily provide explicit

conditions on the control gains that guarantee stability. Moreover, the result

in [44] provides only sufficient conditions, and the results [52] are restricted

to directed graphs. Necessary and sufficient stability conditions have not yet

been determined for directed architectures with homogeneous delay without

self-delay. This chapter addresses this gap and develops these conditions by

obtaining a new synchronization result. We then apply this result to the rigid

body attitude synchronization problem.

1The term homogeneous means that all time delays are assumed to have the same value.
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In the rigid body attitude synchronization problem, communication

time delays have not yet been considered. This chapter applies the synchro-

nization result described above to the rigid body attitude synchronization

problem. Our application of the synchronization result is nontrivial because

the agent dynamics are nonlinear and the presence of communication time

delays. It is assumed that the communicated state feedback signals have ho-

mogeneous time delay, but that each agent’s own state information is instanta-

neously available, i.e. there is no self-delay. This allows feedback linearization

of a modified Rodrigues parameter (MRP) representation of each agent’s atti-

tude kinematics [66]. Accordingly, the control effort for each agent is split into

two parts. One term linearizes the dynamics, and the second term achieves

consensus using a standard consensus protocol. Global exponential conver-

gence of the rigid body attitudes to a synchronized attitude is shown when-

ever the control gains and time delay satisfy a necessary and sufficient stability

condition. Delay-independent results are obtained for a range of control gains.

These results hold for any directed communication graph with a spanning

tree, which is the most general directed communication architecture required

to achieve consensus. Leader-follower and undirected architectures are special

cases. Tracking of a prescribed desired leader trajectory can be achieved for

leader-follower architectures provided all the follower agents have feedforward

information of the leader’s desired trajectory.

Section 7.2 overviews spectral graph theory. Section 7.3 presents a new

second-order consensus theory result with time delays. Section 7.4 reviews a
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method for feedback linearization of an MRP representation of the attitude

dynamics. Section 7.5 then applies the second-order consensus result to the

feedback linearized rigid body attitude dynamics to solve the attitude synchro-

nization problem. Section 7.6 illustrates the theory via simulations. Section

7.7 gives concluding remarks.

7.2 Problem Statement and Graph Theory Preliminar-
ies

7.2.1 Rigid Body Attitude Synchronization

The rigid body attitude synchronization problem is to design torque

control laws in a feedback fashion to asymptotically synchronize the attitude

orientation of a team of rigid bodies. Suppose there are N rigid bodies. The

rotational kinematics and dynamics of the ith agent can be expressed using

the Modified Rodrigues Parameters (MRP) attitude representation as

σ̇i(t) =
1

4
B(σi(t))ωi(t) (7.1)

Jiω̇i(t) = −ωi(t)×Jiωi(t) + ui(t) (7.2)

where σi(t) ∈ R3 is the MRP vector, ωi(t) ∈ R3 is the angular velocity vector

in a body fixed reference frame, Ji = JT
i ∈ R3×3 is the ith agent’s inertia

matrix, and ui(t) ∈ R3 is the torque control input. For any a, b ∈ R3, the skew

symmetric matrix operator a× represents the cross product between a and b

with a×b = a× b, and

B(σi) = [(1− σT
i σi)I3 + 2σ×i + 2σiσ

T
i ] (7.3)
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Shuster gives a comprehensive survey of attitude representations and their

associated kinematics and dynamics in [69]. Our objective is to design the

torque control laws ui(t) for each agent such that the attitudes of each rigid

body synchronize to the same inertial orientation and the formation comes to

rest asymptotically, i.e.

lim
t→∞

σi(t) = lim
t→∞

σj(t) ∀i, j, lim
t→∞

ωi(t) = 0 ∀i (7.4)

7.2.2 Spectral Graph Theory Preliminaries

This section reviews spectral graph theory concepts related to consensus

theory. To achieve the synchronization objective, each agent may receive,

via communication, certain local state information from other agents. The

communication architecture is modeled as a directed graph G = (V,E), where

V is a set of vertices V = {1, 2, ..., N} representing the agents and a set of

edges E ⊆ V ×V representing information flow amongst the agents. If agent j

receives state information from agent i, then there is a directed edge (j, i) ∈ E

from vertex i to vertex j. The in degree of vertex i, denoted d(i), is the number

of incoming edges to which it is incident. The weighted adjacency matrix of a

graph G, denoted A = [aij], is an N ×N matrix with diagonal entries aii = 0

and positive off-diagonal entries aij > 0 if (j, i) ∈ E. The weighted Laplacian

matrix of a graph G, denoted L = [lij], is an N × N matrix with diagonal

entries lii =
∑

i aij and off-diagonal entries lij = −aij.

1For undirected graphs aij = aji which means that A is symmetric. For directed graphs
A is not necessarily symmetric.
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It will be advantageous to utilize a particular weighted adjacency ma-

trix, which we denote Ā, which has off-diagonal entries that sum to unity:∑
i āij = 1.2 The Laplacian corresponding to this weighted adjacency matrix

is denoted L̄.

For an undirected graph, it is somewhat obvious that the graph nec-

essarily must be connected to achieve synchronization. For directed graphs,

however, there are multiple notions of connectivity: weak connectivity, in

which the underlying undirected graph is connected; strong connectivity, in

which there is a directed path between every pair of vertices; and containing

a spanning tree, in which there is at least one vertex from which there is a

directed path to every other vertex. It is less obvious which of these directed

notions is necessary to achieve synchronization. It turns out that a directed

graph that contain a spanning tree is necessary, and sufficient depending on the

agent dynamics3. We therefore focus on directed graphs with a spanning tree

in this chapter. Clearly, every strongly connected graph contains a directed

spanning tree (indeed, every vertex is a root for some spanning tree), but a

graph does not need to be strongly connected to contain a directed spanning

tree.

It is useful to distinguish two types of directed graphs with a spanning

2One way to achieve this particular weighting is to set āij = 1/d(i) if (j, i) ∈ E and d(i)
is non-zero.

3Having a directed spanning tree is necessary and sufficient to achieve synchronization
for single integrator agents with a standard consensus control law [60].
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tree. A leader-follower 4 graph is one that contains a spanning tree with a

single root. This root corresponds to the leader, which transmits its own state

information, but does not receive state information from other agents, and is

therefore free to move independently. A leaderless graph is one that contains

a spanning tree but has multiple roots.

The advantage of working with the particular weighted adjacency and

Laplacian matrices Ā and L̄ is that their eigenvalues are related by a spectral

shift, which we now demonstrate.

For leaderless graphs,
∑N

j=1 āij = d(i) 1
d(i)

= 1, for i = 1, . . . , N and the

weighted Laplacian is given by

L̄ = IN − Ā (7.5)

Thus, λi(L̄) = 1− λi(Ā) where λi(M) denotes the ith eigenvalues of a square

matrix M .

For leader-follower graphs, we denote the 1st agent as the leader without

loss of generality. We have
∑N

j=1 ā1j = 0 and
∑N

j=1 āij = 1, for i = 2, . . . , N .

In this case, Ā has the form

Ā =

[
0 . . . 0

ν Ã

]
(7.6)

where ν ∈ R(n−1)×1 and Ã ∈ R(n−1)×(n−1) and L̄ is given by

L̄ =

[
0 . . . 0
0 IN−1

]
−
[

0 . . . 0

ν Ã

]
. (7.7)

4The leader-follower graphs discussed in this chapter are not related to the leader-follower
type graphs associated with persistent formations as discussed in Chapters 2-4.
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Here, all eigenvalues of L̄ and Ā except one are related by a spectral shift:

λ1(L̄) = λ1(Ā) = 0 and λi(L̄) = 1− λi(Ā) for i = 2, ..., N .

We can now use the two results on the spectrum of the weighted Lapla-

cian matrix to parameterize the spectrum of the weighted adjacency matrix.

We first recall the following result from [61].

Theorem 7.2.1. The weighted Laplacian matrix L of a directed graph G has

a simple eigenvalue at zero iff G contains a directed spanning tree.

Consequently, (7.5) implies that Ā has a simple eigenvalue at 1 for

leaderless graphs, and does not have an eigenvalue at 1 for leader-follower

graphs. In acyclic leader-follower graphs, Ā has all eigenvalues at 0 [23].

Further, we recall the Gershgorin circle theorem [25,26], first stated in

1931.

Theorem 7.2.2 (Gershgorin Circle Theorem). For any square matrix M ∈

Rn×n,

λi(M) ⊆
n⋃
i=1

Di (7.8)

where Di
.
= {z ∈ C : |z −Mii| ≤

∑n
j 6=i |Mij|}.

Applying Theorem 7.2.2 to the weighted adjacency matrix, we can con-

clude that the eigenvalues of Ā all lie inside a unit circle in the complex plane

centered at the origin. Accordingly, we can parameterize the spectrum of Ā
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as follows. For leaderless graphs, we have

λ1(Ā) = 1, λi(Ā) = ρie
jθi , i = 2, ..., N

ρi ∈ [−1, 1], θi ∈ [0, π]

λi(Ā) 6= 1 ∀i 6= 1

(7.9)

For cyclic leader-follower graphs, we have

λ1(Ā) = 0, λi(Ā) = ρie
jθi , i = 2, ..., N

ρi ∈ [−1, 1], θi ∈ [0, π]

λi(Ā) 6= 1 ∀i

(7.10)

The next section discusses the design of the control law for consensus

of double integrator agents. In our framework, there is no self-delay, i.e. each

agent has instantaneous access to its own state for feedback purposes. There

is a homogenous unknown delay in all communicated position state signals.

We do not require the communication of rate information. To solve the rigid

body attitude synchronization problem, part of the external torque control

input for each agent will be used to linearize governing nonlinear attitude

dynamics (7.1-7.2), using the development in [66]. After linearization, each

agent’s dynamics will have the form of three double integrators, decoupled

from each other and with connections to corresponding double integrators of

the neighbor agents. The remainder of the control effort will be employed in

order to drive the linearized dynamics formation to consensus.
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7.3 Consensus of Second-Order Systems with Commu-
nication Time Delays

In this section, we derive a consensus result for a team of double integra-

tors with an directed communication architecture and a constant homogeneous

time delay, but without self-delay. Let xi ∈ R be a scalar state value associated

with vertex i governed by the double integrator dynamics

ẍi(t) = ui(t) (7.11)

where ui(t) is a control input to be specified. The pair (G, x) with x =

[x1, x2, ..., xN ]T denotes a formation with communication architecture G. We

say the formation achieves consensus5 if

lim
t→∞

xi(t) = lim
t→∞

xj(t) ∀i, j ∈ V and lim
t→∞

ẋi(t) = 0.

For leaderless formations, consider the following control input for sub-

system i:

ui(t) = α
N∑
j=1

āij(xj(t− τ)− xi(t))− βẋi(t) (7.12)

where
∑N

i āij = 1 ∀i, α > 0 is a position gain, β > 0 is a velocity gain,

and τ > 0 is a constant, unknown time delay. For leader-follower formations,

we can prescribe a desired consensus position xc to the leader and design the

5Our objective in this chapter is to obtain position consensus and drive the velocities to
zero. By contrast, other work, e.g. [52, 85], design the control laws to obtain consensus for
both positions and velocities (and higher order derivaties in [52]).
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control law for the leader and the agents i = 2, . . . , N to respectively be

u1(t) = −α(xi(t)− xc)− βẋi(t) (7.13)

ui(t) = α

N∑
j=1

āij(xj(t− τ)− xi(t))− βẋi(t) (7.14)

We state a delay-independent result for the two cases of graph archi-

tecture.

7.3.1 Delay-independent stability

Theorem 7.3.1. Let G be directed graph with a directed spanning tree as-

sociated with formation (G, x). The formation agents have double integrator

dynamics in (7.11) with control laws in (7.12) or (7.13-7.14) for leaderless or

leader-follower formations, respectively. The formation achieves a consensus

with exponential convergence ∀ τ > 0 if and only if

• β2 ≥ 2α if G is cyclic

• α > 0 and β > 0 if G is acyclic

Proof. The closed-loop dynamics for leaderless formations are given by

ẍi(t) = α

N∑
j=1

āij(xj(t− τ)− xi(t))− βẋi(t) (7.15)

For leader-follower formations, defining ei(t) = xi(t) − xc, i = 1, . . . , N and

e(t) = [ e1(t) e2(t) . . . eN(t)]T, the closed-loop dynamics are given by

ë1(t) = −αe1(t)− βė1(t) (7.16)

ëi(t) = α

N∑
j=1

āij(ej(t− τ)− ei(t))− βėi(t), i = 2, . . . , N (7.17)
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In both cases, the state-space equations have the form

Ẋ(t) = A0X(t) + A1X(t− τ) (7.18)

with X(t) = [x(t)T , ẋ(t)T ]T for leaderless and X(t) = [e(t)T , ė(t)T ]T for leader-

follower, where

A0 =

[
0N IN
−αIN −βIN

]
; A1 =

[
0N 0N
αĀ 0N

]
where 0N and IN are the N ×N zero and identity matrices, respectively. The

characteristic equation for the formation can be written as

det(sI2N − A0 − e−sτA1) = det

[
sIN −IN

α(IN − e−sτ Ā) (s+ β)IN

]
= det[s2IN + βsIN + α(IN − e−sτ Ā)]

=
N∏
i=1

[s2 + βs+ α(1− e−sτλi(Ā))] = 0

(7.19)

Note that the justification of going from the second to third line in (7.19)

depends crucially on the spectral shift relationship between the particular

weighted adjacency and Laplacian matrices. Recall from the Gershgorin circle

theorem that we can parameterize the eigenvalues of Ā as λi(Ā) = ρie
jθi ,

i = 1, . . . , N with ρi ∈ [−1, 1], θi ∈ [0, π). The multiplicative term in the

characteristic equation for a specified λi(Ā) is

s2 + βs+ α(1− e−sτλi(Ā)) = 0 (7.20)

We first consider the leaderless case. The closed-loop system (7.18)

is stable if and only if the roots of (7.19) all have negative real parts. Our
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analysis focuses on proving this for all λi(A) which lie in the closed disc of

radius 1 centered at the origin in the complex plane. For λ1(Ā) = 1, we have

s2 + βs+ α(1− e−sτ ) = 0 (7.21)

Clearly, s = 0 is a root of (7.21) ∀ α, β, τ > 0. Moreover if we differentiate

the left hand side expression of (7.21) and evaluate at s = 0, we get β + ατ ,

which is positive ∀ α, β, τ > 0. Hence, s = 0 is a simple root. It is also easy

to observe that any s ∈ R such that s > 0 is not a root of (7.21) because each

term on the left hand side would be positive. Thus, the roots of (7.21) can

only be in the right half plane if there is a jω axis crossing in the complex

plane for some α, β, τ . For this situation, let s = jω and use (7.21) to obtain

(jω)2 + jβω + α(1− e−jωτ ) = 0 (7.22)

Separating the real and imaginary parts and some algebra yields the following

quadratic equation in ω2

ω2[ω2 + (β2 − 2α)] = 0 (7.23)

ω = 0 corresponds to the root at the origin. It is clear that there are no real

roots if and only if β2 ≥ 2α. In summary, for λi(Ā) = 1, we have shown

∀ τ > 0, that the characteristic equation has a simple root at s = 0 and has

no roots with positive real parts if and only if β2 > 2α. For the rest of the

eigenvalues, we have

s2 + βs+ α(1− ρie−sτejθi) = 0 (7.24)
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Consider s = 0 in the above expression. Separating the real and imaginary

parts in (7.24) leads to sin(θi) = 0 and cos(θi) = ρi. There is no θi ∈ (0, π)

which satisfies these expressions, which leads to the fact that s = 0 is not a

root. Consider s ∈ R+. The imaginary part of the characteristic equation in

(7.24) yields sin(θi) = 0, which means that θi = π. Hence, there can be no

characteristic roots s ∈ R+ for (7.24) ∀ α, β > 0. It now remains to ensure that

s = jω is not a characteristic root. Separating the real and imaginary parts of

the characteristic equation (7.24) leads to the following quadratic expression

for ω2

ω4 + (β2 − 2α)ω2 + α2(1− ρ2
i ) = 0 (7.25)

Since ρi ≤ 1 ∀i, then β2 ≥ 2α is necessary and sufficient to ensure that there

are no real and positive roots for ω2.

We now focus on cyclic leader-follower formations. In this case, the

eigenvalues of Ā are characterized by (7.10). The characteristic equation term

corresponding to λi = 0 is

s2 + βs+ α = 0 (7.26)

which is stable ∀ τ > 0, ∀ α, β > 0. Since there is no eigenvalue at 1, the

closed loop characteristic equation has no roots at the origin. For the rest of

the eigenvalues, the same analysis as above leads to β2 ≥ 2α as a necessary

and sufficient condition to ensure that there is no imaginary axis crossing of

the characteristic roots.
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Finally, for acyclic leader-follower graphs, λi(Ā) = 0 ∀i and hence the

closed loop characteristic equation (7.19) becomes

(s2 + βs+ α)N = 0 (7.27)

which has stable roots ∀ α, β > 0, i.e. delay-independent stability is obtained

for all positive gain values.

In the stability proof, we use the position consensus xc for analysis

purposes only. In leader-follower formations, the consensus value is prescribed

by the leader. For a leaderless formation, the analysis shows that a consensus

position exists, but we have not yet determined what value it takes. An

expression for the consensus position is derived analytically in the next section.

7.3.2 Characterization of the Consensus Position

As shown in the previous section, the consensus position in leader-

follower formations is directly controlled by the leader. In leaderless forma-

tions, the consensus position is determined by the initial conditions, con-

trol gains, and communication time delay. In this section, we derive an

expression for the consensus position for leaderless formations in terms of

the initial conditions, control gains, and communication time delay. We as-

sume that the initial state conditions x(−τ) = xτ = [x1τ , x2τ , ..., xnτ ]
T and

ẋ(−τ) = ẋτ = [ẋ1τ , ẋ2τ , ..., ẋnτ ]
T are given and the state trajectories xi(t)
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during −τ < t < 0 are specified. The communicated signals are received at

t = 0.

For leaderless formations, the weighted adjacency matrix Ā has a simple

eigenvalue at unity and the remaining eigenvalues are contained in the unit

disk. Then the adjacency matrix can be expressed as

Ā = QJĀQ
−1 (7.28)

where Q is a matrix whose columns are the eigenvalues of Ā and JĀ is the

Jordan block of Ā with the structure

JĀ =

[
J̄Ā 0
0 1

]
. (7.29)

Consider the coordinate transformation z(t) = Q−1x(t). Then we have

z̈(t) = Q−1ẍ(t)

= −βż(t)− αz(t) + JĀz(t− τ) (7.30)

Now define z(t) = [zT1 (t), z2(t)]T , where z1 ∈ Rn−1 and z2 ∈ R. Then we have

z̈1(t) = βż1(t)− αz1(t) + αJ̄Āz1(t− τ) (7.31)

z̈2(t) = βż2(t)− αz2(t) + αz2(t− τ) (7.32)

Based on the analysis in the previous section, the control gains can be chosen

such that the characteristic equation of Equation (7.31) has roots in the open

left half-plane ∀τ > 0; thus, z1 → 0 exponentially. Therefore, the consensus
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position is determined by the steady-state value of z2(t). Taking the Laplace

transform of Eq. (7.32) and solving for z2(s) yields

z2(s) =
(s+ β)z20 + ż20 + α

∫ 0

−τ z2(σ)e−(σ+τ)sdσ

s2 + βs+ α(1− e−sτ ) (7.33)

From the final value theorem, we evaluate the following limit to obtain the

steady-state value of z2

zc = lim
t→∞

z2(t) = lim
s→0

sz2(s) =
β

β + ατ
z20 +

1

β + ατ
ż20 +

α

β + ατ

∫ 0

−τ
z2(σ)dσ

(7.34)

In the original coordinates, we have

xc = lim
t→∞

x(t) = Q lim
t→∞

z(t) = Q

[
0
zc

]
= zc1 (7.35)

where 1 = [1, ..., 1]T ∈ RN is the eigenvector corresponding to the simple

eigenvalue of Ā at unity. Thus,

xc = zc1 (7.36)

i.e. all of the position coordinates converge to zc as t → ∞. Since z(t) =

Q−1x(t), then

z2(t) = qTnx(t) (7.37)

where qTn is the last row of Q−1. Therefore, z20 = qTnx0 and ż20 = qTn ẋ0, and

the consensus position is then given by

zc =
β

β + ατ
qTnx0 +

1

β + ατ
qTn ẋ0 +

α

β + ατ

∫ 0

−τ
qTnx(σ)dσ (7.38)
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It remains to specify the dynamics of each system over the time interval

−τ < t < 0 during which no communicated signals are available due to the

time delay. This will allow us to explicitly evaluate the final term of Eq. (7.38)

and evaluate the state values at t = 0. Assume that xi(−τ) = [xiτ , ẋiτ ]
T is

given, and let us suppose that each agent performs the feedback linearization

scheme detailed in the next section, and the remainder of the control effort,

denoted by vi(t), is simply a linear feedback of its own instantaneous position

and velocity states:

vi(t) = −αxi(t)− βẋi(t) − τ < t < 0 (7.39)

Then each agent has the following trajectory over −τ < t < 0

xi(t) =
λ2xiτ − ẋiτ
λ2 − λ1

eλ1(t+τ) +
ẋiτ − λ1xiτ
λ2 − λ1

eλ2(t+τ) (7.40)

where

γ1,2 =
1

2
(−β ±

√
β2 − 4α). (7.41)

Integrating over −τ < t < 0 yields∫ 0

−τ
xi(σ)dσ =

γ2xiτ − ẋiτ
γ1(γ2 − γ1)

(eγ1τ − 1) +
ẋiτ − γ1xiτ
γ2(γ2 − γ1)

(eγ2τ − 1). (7.42)

Finally, the state values at t = 0 are given by

xi(0) = xi0 =
γ2xiτ − ẋiτ
γ2 − γ1

eγ1τ +
ẋiτ − γ1xiτ
γ2 − γ1

eγ2τ (7.43)

ẋi(0) = ẋi0 = γ1
γ2xiτ − ẋiτ
γ2 − γ1

eγ1τ + γ2
ẋiτ − γ1xiτ
γ2 − γ1

eγ2τ . (7.44)
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7.4 Feedback linearization and linear closed loop dy-
namics

In this section, we employ feedback linearization following the develop-

ment in [66] in order to express the attitude dynamics equations as a system

of interconnected double integrators with time-delay. We desire to obtain the

following closed-loop linear dynamics

σ̈i(t) = vi(t) (7.45)

where vi(t) = α
∑|Ni|

j=1
1
di

(σj(t− τ)− σi(t))− βσ̇i(t) as dictated by (7.12) is the

control effort that achieves consensus for the linearized dynamics via Theorem

7.3.1. The actual nonlinear MRP dynamics are given by differentiating (7.1)

σ̈i =
1

4
B(σi)[−J−1

i ω×i Jiωi + ui] +
1

4
Ḃ(σi)ωi (7.46)

Setting (7.45) equal to (7.46), the linearizing torque control input for the ith

agent can be extracted as

ui = ω×i Jiωi + Ji(ωiω
T
i −

1

2
ωTi ωiI3)σi +

4

(1 + σTi σi)
2
JiB

T (σi)vi (7.47)

This extraction depends on the following expression for the inverse of B(σi),

which is always valid as long as σi remains bounded.

Remark 7.4.1. The control law (7.47) consists of two parts. The first set of

terms ensures feedback linearization of the attitude dynamics. The last term

in (7.47) is designed using consensus theory for double integrator agents with

communication delay from the previous section.
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7.5 Simulations

This section presents simulations that illustrate the results from the

previous sections. We examine an eight-agent formation for two cases: (1)

a leaderless communication architecture shown in Figure 1, and (2) a leader-

follower communication architecture shown in Figure 2. The inertia matrix

Figure 7.1: Leaderless directed communication architecture.

for all the agents is given by

J =

 20 2 3
2 19 2
3 2 25

 .
For both cases, the initial conditions for each of the eight agents are given by

Table 7.1.

For the leader-follower case, we demonstrate the delay-independent

stability result. The control gains are α = 1 and β = 2, which is in the
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Figure 7.2: Leader-follower directed communication architecture. Agent 1 is
the leader.

Table 7.1: Initial conditions for agents
Agent σ(−τ) ω(−τ)

1 [−0.1,−0.2, 0.3]T [0.01,−0.01,−0.02]T

2 [0.1, 0.2,−0.3]T [−0.01, 0.01, 0.02]T

3 [0.3, 0.1,−0.1]T [0.02,−0.03,−0.01]T

4 [−0.3,−0.1, 0.1]T [−0.02, 0.03, 0.01]T

5 [−0.2, 0.3,−0.2]T [0.01,−0.02,−0.03]T

6 [0.1, 0.4,−0.3]T [0.03,−0.05,−0.04]T

7 [0, 0,−0.1]T [0, 0, 0]T

8 [0, 0, 0]T [0,−0.01, 0]T

delay-independent range β2 > 2α. The prescribed consensus attitude is σc =

[−0.1, 0, 0.2]T . For a communication delay of 6.91, Figure 5 shows the time

evolution of the composite MRP and angular velocity errors defined by

eσ =
∑
i

||σi − σc||, eω =
∑
i

||ωi||.

The formation achieves consensus.
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Figure 7.3: Leader-follower directed communication architecture, α = 1, β =
2, τ = 6.91.

For the leaderless case, we demonstrate that consensus can still be

achieved if β2 < 2α. However, there is a critical time-delay above which con-

sensus will not be achieved; a corresponding delay-dependent stability result

is given in [17]. The control gains are α = 1 and β = 1.2, which is not in

the delay-independent range β2 ≥ 2α. The corresponding critical time-delay

is τc = 6.9060 [17]. For a communication delay of 4, Figure 3 shows the

time evolution of the composite MRP and angular velocity errors where here

the consensus MRP is σc = [0.0121, 0.0165,−0.0318]T from (7.38). Since the

communication delay is less than the critical delay, the formation achieves con-

sensus. For a communication delay of 6.91, Figure 4 shows the time evolution

of the composite MRP and angular velocity errors. Instability is evident as

the communication delay is greater than the critical delay.
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Figure 7.4: Leaderless directed communication architecture, α = 1, β = 1.2,
τ = 4.

Figure 7.5: Leaderless directed communication architecture, α = 1, β = 1.2,
τ = 6.91.
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7.6 Conclusions

This chapter has applied a new synchronization result for double in-

tegrator agent dynamics with communication time delays to the rigid body

attitude synchronization problem. Instantaneous availability of each agent’s

own state allowed feedback linearization of each agent’s dynamics. The result

holds for any directed communication graph with a spanning tree. We obtained

a necessary and sufficient delay-independent condition that is independent of

the structure of the graph. Sufficiently large velocity gain ensures stability.

The assumption of homogeneous delay is of course restrictive; there may be

different delays associated with different communicated states. However, the

homogeneous delay formulation allowed us to obtain the simple necessary and

sufficient stability condition.

The next chapter summarizes the work in this dissertation and discusses

future research directions.
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Chapter 8

Conclusion

8.1 Summary

This dissertation has solved mathematical variations on three problems

for autonomous vehicle formations: formation shape control, robust informa-

tion architecture design, and rigid body attitude synchronization. Chapter

3 demonstrated how instances of persistent information architectures, which

are related to rigid graph theory, could inform the control law design in a

coordinated standoff tracking problem. The analysis featured nonlinear, non-

holonomic agent models, kinematic constraints, and adaptive control, and the

persistent graph properties allowed the cooperative formation objectives to be

achieved. Chapter 4 solved a formation shape problem for a class of persis-

tent information architectures, completing the stabilizability characterization

for minimally persistent formations. Chapter 5 turned to the global stability

analysis of a four-agent formation and showed that a class of rectangular in-

correct equilibrium shapes, which was thought to be attractive, is in fact an

unstable saddle. It also showed how to compute a desired equilibrium shape

from a supposed incorrect equilibrium shape and emphasized several open

problems for the general case. Chapter 6 illustrated two methods to allow

robustness to the loss of an agent from the formation. One method repaired
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the information architecture by adding new links in the event of agent loss to

recover properties that are required for formation shape control and localiza-

tion. The other built robustness into the information architecture a priori so

that the these properties were preserved. Chapter 7 solved a rigid body atti-

tude synchronization problem with communication time delays. The solution

utilized spectral graph theory and gave simple and precise delay-independent

conditions for asymptotic stability of the in terms of the control gains.

8.2 Future Research Directions for Control of
Autonomous Vehicle Formations

There remain many research challenges to be addressed in the control

of autonomous vehicle formations, and there are many active efforts in several

research communities to address these challenges. This section describes some

potential future research directions arising from the work in this dissertation.

8.2.1 Formation Shape Control

The analysis and results in Chapter 3 were restricted to wind and tar-

get motion with unknown, but constant velocity. A similar adaptive control

approach could be used to accommodate time-varying wind and target motion.

Chapter 4 demonstrated the local stabilizability of directed minimally

persistent leader-remote-follower and coleader formations in the plane. How-

ever, while the choice of stabilizing gains does not depend on the position of

the entire formation, it does depend on the orientation of the entire formation.
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In other words, the stability properties of the control law are translation, but

not rotation invariant. One could investigate whether or not it is possible to

constrain the gain matrices in order to obtain rotational invariance. Prelimi-

nary calculations suggest that this will not always be possible. Additionally,

non-minimally persistent formations will eventually be of interest because it

may be desirable to control more than the minimum number of distances for

formation shape maintenance in order to obtain a level of robustness. A sig-

nificant future research goal would be to prove local stabilizability for any

persistent formation.

The most significant open problem in the global stability analysis of an

undirected four-agent formation in which every interagent distance is actively

controlled is to show whether or not there can ever exist an incorrect, locally

attractive equilibrium shape. Further open problems include calculating in-

correct equilibrium shapes, or at least counting the number possible, given an

arbitrary desired shape. The ultimate goal is to characterize global stability

of an n-agent formation, for both undirected and directed information archi-

tectures. The four-agent undirected problem will be an important special case

for the general theory.

There are several broad future research directions for both directed and

undirected rigidity-based formation shape control. The first is the use of more

general models for agent dynamics. The current literature has only considered

single integrators to obtain stability results for classes of rigid or persistent
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formations1. While these have been a reasonable starting point in the initial

stages of theoretical development, this agent model needs to be generalized to

more accurately describe vehicle physics.2 A good starting point for general-

ized models might be undirected, rigid formations with double integrator agent

models. Other models might include n-integrators, linear systems, unicycles,

under-actuated rigid bodies (these can model helicopters or vertical-takeoff-

and-landing aircraft), or fully-actuated rigid bodies. Of course, many other

linear or nonlinear models could be investigated depending on the specific ap-

plication. Also, the translational models could be allowed to evolve in three

dimensional space. However, obtaining complete results for rigidity-based for-

mation shape control would depend on finding a three-dimensional analog to

Laman’s theorem for graph rigidity in two dimensions, which unfortunately

remains a significant and elusive unsolved problem in rigid graph theory.

A second broad future research direction is utilizing different types of

measurements. Typically, it is assumed that certain relative positions measure-

1The coordinated standoff tracking problem in this dissertation used a more general
unicycle model, which is nonlinear and non-holonomic, but assumed a particular instance of
a persistent formation and also required a circular orbit around the target. Similarly, other
areas in the literature, e.g. in robotics, may use more general models for agent dynamics,
but the analyses are always for particular instances of rigid or persistent formations rather
than for classes of formations, as considered in this dissertation.

2In contrast, consensus-based formation shape control results have been obtained for
general linear agent models [23], which include single and double integrators as special
cases, and unicycle models. This difference can be attributed to the facts that rigidity-
based distance control is inherently nonlinear in the position states whereas consensus-based
relative position control is linear. While rigidity-based control is relatively under-developed
at present, it has the advantage of permitting the agents to operate with arbitrary local
coordinate bases.
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ments are available. Relative position measurements involve both a distance

and a bearing. We have already noted how the solution approach changes

drastically based on whether or not each agent has knowledge of a global coor-

dinate system. One might consider how the strategy would change if instead

the measurements were only interagent distances or bearings, or some combi-

nation thereof. Bearing-based formation shape control has been studied very

recently for a three-agent formation in [8], in which global stability of the

desired shape (with a scaling ambiguity) is demonstrated. It is not yet clear

how to extend this approach to more than three agents. Some combination of

distance and bearing control may allow an arbitrary shape to be obtained with

fewer measurements and may be instrumental in achieving global stability re-

sults. Also, noisy and indirect measurements (e.g. estimating an interagent

distance based on the strength of a received signal) an will be an important

consideration in implementations.

Another area where rigidity-based formation shape control currently

lags behind consensus-based control is in analyzing time-varying information

architectures. In a time-varying information architectures, the neighbors of

each agent are permitted to change with time. This is useful, for example,

when agents have limited sensing or communication ranges. It would be in-

teresting to study analogous problems in rigidity-based formations.

Finally, rigidity-based formation shape control algorithms should be

implemented on an experimental testbed using wheeled robots, UAVs, or au-

tonomous underwater vehicles to identify specific aspects of the current theory
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that are most in need of generalization.

8.2.2 Robust Information Architecture Design

Chapter 6 elucidated a fundamental, yet subtle, difference between min-

imal rigidity and minimal 2-vertex rigidity. In particular, there are two dif-

ferent ways one can define minimal 2-vertex-rigidity, which are equivalent for

minimal rigidity. This difference currently prevents a complete characteriza-

tion for (non-minimal) 2-vertex-rigidity. It also therefore prevents a complete

characterization of (non-minimal) 2-vertex-global rigidity. A complete char-

acterization of 2-vertex-rigidity could take the form of either Laman-like nec-

essary and sufficient conditions on a graph or Henneberg-like operations that

would provably allow one to construct all 2-vertex-rigid graphs. Such a result

will of course be fundamental for characterizing k-vertex-rigidity and k-vertex-

global-rigidity for k > 2, which would allow robustness to loss of more than

one agent.

One could also consider how the strategy might change if the failure just

involved a single sensor, actuator, or communication link. For example, if the

failure just involved a single sensor, then the effected agent could potentially

accommodate the failure by communicating with nearby agents and leveraging

their sensing and communication capabilities. Finally, these ideas could be

extended to formations in three dimensions. However, this again would depend

on finding a three-dimensional analog to Laman’s theorem for graph rigidity

in two dimensions.
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8.2.3 Rigid Body Attitude Synchronization

The simple conditions on the control gains that yielded delay-independent

stability in the rigid body attitude synchronization problem relied on an as-

sumption of homogeneous delay, i.e. that delays were assumed to be the same

value for all communicated signals. In general, these delays may have different

values and so one future research problem is to consider heterogeneous de-

lays, though obtaining simple and precise stability conditions may be difficult

in this case. There are several optimization problems that could be formu-

lated. One could begin with a directed graph with a spanning tree and add a

given number of edges to the graph so that the convergence rate is maximized.

One could also consider choosing the adjacency matrix and control gains to

maximize the convergence rate or minimize the control energy. Finally, the

feedback linearization of the modified Rodrigues parameter attitude represen-

tation depended on instantaneous availability of each agent’s own state and

on exact knowledge of inertia parameters. One could consider the nonlinear

consensus problem that results from relaxing either of these two requirements.

8.3 Conclusion

Broadly, this dissertation is about the relationship between information

architectures and stability in autonomous vehicle formations. Autonomous ve-

hicle formations can be thought of as complex networks of dynamical systems,

in which many subsystems and controllers interact dynamically through in-

formation exchange. Crucially, the controllers each have access to limited
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and different information about the state of the whole system, and the chal-

lenge of cooperatively meeting common stability and performance objectives

is highly non-trivial. This type of analysis represents a new trend in the field

of control theory as control theorists attempt to apply their ideas and tech-

niques to ever larger, more complex systems and relate the discrete graphical

structure of such systems to continuous stability and performance proper-

ties. Exciting new application areas include autonomous vehicle formations,

regional/national power grids, systems biology, the Internet, national/global

economies, and urban traffic networks. These systems feature immense and

stunning complexity, challenging our ability to understand and control them.

Much interesting and important research lies ahead.
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