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Abstract— We present a method for dynamics-driven,
user-interface design for a human–automation system via sensor
selection. We define the user interface to be the output of
a multiple-input–multiple-output (MIMO) linear time-invariant
(LTI) system and formulate the design problem as one of selecting
an output matrix from a given set of candidate output matrices.
Necessary conditions for situation awareness are captured as
additional constraints on the selection of the output matrix. These
constraints depend on the level of trust the human has in the
automation. We show that the resulting user-interface design
problem is a combinatorial, set-cardinality minimization problem
with set function constraints. We propose tractable algorithms
to compute optimal or suboptimal solutions with suboptimality
bounds. Our approaches exploit monotonicity and submodularity
present in the design problem and rely on constraint program-
ming and submodular maximization. We apply this method to
the IEEE 118-bus, to construct correct-by-design interfaces under
various operating scenarios.

Index Terms— Human–automation interaction, observability,
output synthesis, sensor selection, user-interface design.

I. INTRODUCTION

S ITUATION awareness, a state of knowledge that relies
upon the ability to deduce the current state of the system

and predict the evolution of the state in the short term [1],
is essential for effective human–automation interaction. In
expensive, high-risk, and safety-critical systems, such as power

Manuscript received April 14, 2020; revised September 22, 2020; accepted
January 18, 2021. Manuscript received in final form January 29, 2021. This
work was supported in part by the National Science Foundation and in part
by the Army Research Office (ARO). The work of Abraham P. Vinod, Adam
J. Thorpe, Philip A. Olaniyi, and Meeko M. K. Oishi were supported by NSF
under Grant CMMI-1254990 and Grant OIA-1757207. The work of Tyler
H. Summers was supported in part by NSF under Grant CNS-1566127 and
Grant CMMI-1728605 and in part ARO under Grant W911NF-17-1-0058.
Recommended by Associate Editor T. Hatanaka. (Corresponding author:
Abraham P. Vinod.)

Abraham P. Vinod was with the Electrical and Computer Engineering
Department, The University of New Mexico, Albuquerque, NM 87131 USA.
He is now with Mitsubishi Electric Research Laboratories (MERL),
Cambridge, MA 02139 USA (e-mail: abraham.p.vinod@ieee.org).

Adam J. Thorpe and Meeko M. K. Oishi are with the Department of Electri-
cal and Computer Engineering, The University of New Mexico, Albuquerque,
NM 87131 USA (e-mail: ajthor@unm.edu; oishi@unm.edu).

Philip A. Olaniyi was with the Electrical and Computer Engineering
Department, The University of New Mexico, Albuquerque, NM 87131 USA.
He is now with Intel Corporation, Beaverton, OR 97007 USA (e-mail:
philip.olaniyi@intel.com).

Tyler H. Summers is with the Department of Mechanical Engineering,
The University of Texas at Dallas, Richardson, TX 75080 USA (e-mail:
tyler.summers@utdallas.edu).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TCST.2021.3056242.

Digital Object Identifier 10.1109/TCST.2021.3056242

Fig. 1. User interfaces for power grid operators facilitate situation awareness,
by providing information from which the power grid operator can estimate
the state and predict its evolution. The sheer volume of information war-
rants the use of constructive tools (as opposed to ad hoc guidelines) to
synthesize the information content of the interface. Image licensed under CC
BY-ND 2.0.

grid distribution systems, aircraft and other transportation
systems, biomedical devices, and nuclear power generation,
the user-interface helps the user maintain situation awareness
by providing critical information about the system to the
user [2], [3]. Indeed, a lack of situation awareness is known
to be a contributing factor to operator error in major grid
failures [4], [5]. A variety of recommendations and guidelines
for “good” user-interface design have been posited [6]–[8].
However, formal tools for user-interface design, which explic-
itly incorporate the underlying dynamics, could help avert
potential errors and mishaps, and reduce time consumption
and costly design and testing iterations.

We consider the user interface to be equivalent to an
output map of the dynamical system and pose the question
of user-interface design as one of sensor selection: among the
sensors that could be the elements of the interface, we aim
to identify a combination that is minimal [8], yet enables
necessary conditions for situation awareness, and dependent
upon the user’s trust in the automation. We focus solely on the
information content and not on the qualitative aspects of how
that information is provided. The need for minimal interfaces
is particularly evident in large systems (see Fig. 1), for
which providing too much information can render the interface
ineffective because it is overwhelming, and providing too little
information can result in perceived nondeterminism [9].

Sensor selection [10]–[14] is typically posed as a combina-
torial optimization problem, which becomes intractable even
for moderate problem sizes. While some heuristics, such as
convex relaxation [15], [16] and combinatorial algorithms that
avoid a full exhaustive search [17]–[19], have been employed,

1063-6536 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on September 27,2021 at 12:54:28 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-7955-9629
https://orcid.org/0000-0002-0113-8912
https://orcid.org/0000-0001-7120-0913
https://orcid.org/0000-0003-3722-8837


This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY

computational complexity remains a significant challenge.
For some problem classes (e.g., cardinality-constrained sub-
modular set function maximization [17], [20]), greedy algo-
rithms and other graph theoretic approaches can yield provably
optimal or near-optimal results [17]–[23]. Hence, we focus
heavily in this article on characterization of the computational
aspects of user-interface design via sensor selection.

Other approaches to user-interface analysis and design have
focused on related aspects of human–automation interaction.
Model checking has been used to detect mode confusion in
discrete-event systems [7], [24], [25], and finite-state machine
reduction techniques have been used to synthesize user inter-
faces of minimal cardinality for discrete-state abstractions
of hybrid systems [9], [26]. Interfaces have been designed
to assure internal and external awareness [27], to facilitate
the transfer of control authority between the human and the
automation, and to articulate information related to the role
of regret in human decision aids [28]. In [29] and [30],
the effect of transparency on workload and trust was evaluated,
and a feedback scheme developed that alters transparency
of the interface. Other interface design approaches focus
on moderating human input [31], [32] despite uncertainty
and on mixed-initiative control [33], [34] for human–robot
interaction.

Our approach is based on observability conditions that pre-
sume the human is a special type of observer, to assess whether
the interface provides sufficient information for the human to
accomplish a given task [35]–[37]. Hence, in contrast to stan-
dard sensor placement problems, additional constraints arise to
ensure necessary conditions for situation awareness and to cap-
ture the effect of the user’s trust in the automation. The main
contributions of this article are: 1) assurances of optimality and
suboptimality via submodularity and monotonicity properties,
specific to the user-interface design problem, and 2) efficient
numerical implementations that employ constraint program-
ming, greedy heuristics for submodular maximization, and a
novel enumeration framework for large user-interface design
problems. The algorithmic advances proposed here enable
the application to problems that would be computationally
prohibitive with our preliminary approach [38]. Furthermore,
the model proposed here captures gradated user trust in the
automation, a more subtle characterization than the simplistic,
no trust or full trust, characterization that was used in [38].

This article is organized as follows. Section II provides
the problem formation. Section III formulates user-interface
design as a combinatorial optimization problem. Section IV
describes a novel enumeration framework that enables com-
putationally efficient search for feasible user interfaces.
Section V demonstrates our approach on user-interface design
for a large system, the IEEE 118-bus, and Section VI provides
the conclusions.

II. PRELIMINARIES AND PROBLEM STATEMENT

A finite set S has cardinality |S | and power set 2S . A
set function f : 2S → R takes as input a subset of S and
returns a real number. For natural numbers a, b ∈ N with
a ≤ b, we define the set N[a,b] = {c ∈ N : a ≤ c ≤ b}. For a

Fig. 2. Human–automation system in which the human provides a reference
trajectory, and the automation synthesizes a low-level control to achieve it.

matrix M ∈ R
p×q , we denote its column rank by rank(M) and

its column space (range) by R(M). We define a matrix whose
column space coincides with a subspace V as basis(V). Recall
that basis(R(M)) is not unique. Given two vector spaces V1

and V2, their sum (V1 + V2 = {v1 + v2 : v1 ∈ V1, v2 ∈ V2})
and their intersection are vector spaces [39, p. 22].

Consider a human–automation system (see Fig. 2) in which
the human provides a reference trajectory ξR(t) ∈ R

p,
and the automation synthesizes a low-level controller to
achieve reference tracking [36]. We presume a multiple-input–
multiple-output (MIMO) linear time-invariant (LTI) system

ẋ(t) = Ax(t) + Bu(t) (1a)

y(t) = CS x(t) (1b)

with state x(t) ∈ X = R
n , input u(t) ∈ R

m , output y(t) ∈ R
p,

and known matrices A ∈ R
n×n and B ∈ R

n×m . The user
receives information about the plant via the user interface.

Definition 1 (User Interface and Sensors): We define the
output y(t) as the user interface of the system (1), with the
candidate rows of CS referred to as the sensors si ∈ R

n .
By Definition 1, a sensor is a potential element of the

user interface. We denote the set of all sensors as S =
{s1, . . . , s|S |} for a finite |S | ∈ N. For any sensor combination
S ∈ 2S , the output matrix CS is a matrix whose rows consist
of the elements si ∈ S, and the total number of outputs
associated with CS is p = |S|.

Definition 2 (Task): A task is characterized by the tuple
(�, CStask ), with a known task matrix CStask ∈ R

|Stask |×n asso-
ciated with Stask ∈ 2S , and a known, possibly nonlinear,
function � : R

|Stask | → R. The task (�, CStask ) is a specification
of the form always x(t) ∈ F(t) or eventually x(t) ∈ F(t), for
F(t) = {x(t) : �

(
CStask x(t)

) ≥ 0}.
The task is defined in terms of safety or liveness speci-

fications, i.e., a desirable phenomenon that should always or
eventually happen [36], [40]. The task may also be interpreted
as imposing a specification on the output ytask(t) = CStask x(t).

Illustrative Example: Consider an LTI model of a
jerk-controlled robot constrained to move in a line, which is
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tasked with maintaining a velocity above a minimum speed
vmin. The robot has a mounted camera with independent
dynamics. The position dynamics (3-D) and camera heading
dynamics (1-D) result in

A =

⎡
⎢⎢⎣

0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦, B =

⎡
⎢⎢⎣

0 0
0 0
1 0
0 1

⎤
⎥⎥⎦ (2)

with states that include position, velocity, acceleration, and
the camera heading. We consider a suite of sensors based on
measurements of each state, i.e., S = {sp, sv , sa, sh} with
sp = [1 0 0 0], sv = [0 1 0 0], sa = [0 0 1 0], and sh =
[0 0 0 1]. The task is defined by (�, CStask ), with Stask = {sv},
CStask = sv , �(z) = z − vmin, and F(t) = {x(t) : CStask x(t) ≥
vmin}.

For a given task (�, CStask ), we seek to design a user interface
CS that satisfies, in order of importance.

1) C1: Necessary conditions for situation awareness.
2) C2: Compatibility with the user’s trust in the automation.
3) C3: Conciseness.

These properties represent human factors that are key for
effective human–automation interaction and will be described
in detail in Section III. Briefly, constraint C1 considers the
limitations of the human operator and the complexity of the
task. Constraint C2 requires that more information is provided
to the user when the user’s trust in the automation is low
and vice versa. Constraint C3 prevents high cognitive load
associated with excessive data.

We embed these properties as constraints in the sensor
selection problem for user-interface design

minimize
S∈2S

|S| (conciseness) (3a)

subject to S ∈ Ssit-aware (situation awareness) (3b)

S ∈ Strust (trust) (3c)

in which (3a) arises from C3, (3b) arises from C2, and (3c)
arises from C1.

Problem 1: Given a task (�, CStask ) and a human–automation
system (1), find a succinct characterization of the constraint
for necessary conditions for situation awareness Ssit-aware and
the constraint for trust compatibility Strust .

Problem 2: Construct tractable combinatorial optimization
algorithms to solve (3), with guarantees of optimality or
suboptimality, as appropriate.

Because combinatorial optimization problems are typically
hard to solve due to their large feasible solution space, solv-
ing (3) directly is a challenging endeavor. Problem 1 provides
a structure that we can exploit to address Problem 2 so that (3)
can be addressed through tractable reformulation.

III. USER-INTERFACE DESIGN AS SENSOR SELECTION

A. Necessary Conditions for Situation Awareness via
Observability

Situation awareness has three necessary conditions: percep-
tion, comprehension, and projection, more formally defined
in [1] as “perception of the elements in an environment

within a volume of time and space, the comprehension of
their meaning, and the projection of their status in the near
future.” These three elements are related: perception is a
necessary condition for comprehension and comprehension is
a necessary condition for projection. As in [35], [37], and [41],
we interpret these three elements, respectively, as the ability
to reconstruct those elements of the state that are relevant for
the task at hand, the ability to understand the output and its
time derivatives, and the ability to reconstruct those elements
of the state derivative relevant to the task at hand. These
definitions bear significant resemblance to standard notions of
observability, modified to focus on the task, as opposed to the
state [35], [36], which motivates our approach.

We focus primarily on information necessary for perception,
comprehension, and projection. Perception is not possible if
incorrect or inadequate information is provided through the
display, and comprehension and perception are not possible
if perception is not possible or if the additional information
needed for comprehension and perception is not available.
While a complex set of factors are known to impact per-
ception, comprehension, and perception, including memory,
experience, workload, mental models, and ability to classify
information and respond to cues [1], [42], we limit our
focus to information content provided to the user, as it is a
necessary condition for perception, comprehension, projection,
and ultimately, situation awareness. Furthermore, information
content is important for systems in which the dynamics are
complex and potentially nonintuitive. In addition, although
qualitative aspects of user-interface design are key for effective
human–automation interaction [3], [43], we focus solely on
quantitative aspects and presume that information content will
be presented in a human-centric manner.

Assumption 1 (Necessary Conditions for Situation Aware-
ness): For a given user interface, constructed from elements
S ∈ 2S , the user can reconstruct the output of the system,
y(t) = CSx(t), the unforced higher derivatives of the output,
and their linear combinations.

We make the assumption that if the information necessary
for perception, comprehension, and projection is available,
the user’s perception, comprehension, and projection will
inevitably follow. While this is a strong assumption for many
practical circumstances, we invoke it here solely for the
purpose of analyzing the content of the designed interface.
This assumption is required to isolate the effect of information
content on necessary conditions for situation awareness, that is,
in order to focus solely on the impact of information content
on the feasibility of situation awareness, we must presume
that all other elements and circumstances that enable situation
awareness are in place, in order to avoid confounding factors.
Finally, we note that while our approach does not in theory
limit the size of the dynamical system or task, in practice,
limits on workload and attention would constrain the validity
of this approach (although experience, automatic processes,
and other phenomena may mitigate their impact) [1].

As in [35], [37], and [38], we employ input–output
linearization to capture the user’s interaction with the
system (1). We presume that the user provides a reference
trajectory ξR(t) that is smooth. Given an output matrix CS
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TABLE I

APPLICATION OF VARIOUS DEFINITIONS TO THE ILLUSTRATIVE EXAMPLE GIVEN IN SECTION II. HERE, S = {sp, sv , sa, sh}, Stask = {sv }, AND Sreduced =
{sp, sv , sa}. INTERFACES THAT SATISFY BOTH SITUATION AWARENESS AND TRUST CONSTRAINTS FOR A GIVEN LEVEL OF USER TRUST IN THE

AUTOMATION ARE FEASIBLE FOR (3); INTERFACES THAT ARE OPTIMAL FOR A GIVEN TRUST LEVEL ARE INDICATED IN BOLD

with S = {s1, s2, . . . , s|S|} ∈ 2S , we construct a similarity
transform PS ∈ R

n×n[
ξ(t)
η(t)

]
= PS x(t) =

[
TS
T ⊥
S

]
x(t) (4)

that results in observable states ξ(t) ∈ R(TS) and
unobservable states η(t) ∈ R(

T ⊥
S

)
. The linear transformation

TS is defined using Tsi for some si ∈ S as

Tsi =
[
si (s�

i A)
�

(s�
i A2)

�
. . . (s�

i Aγ (si)−1)
�]�

(5)

TS = basis

(
R

([
T �

s1
T �

s2
. . . T �

s|S|

])�)
(6)

where γ : S → N[1,n] is the relative degree of the MISO
system with the single output s�

i x(t). By (5), R(TS) is
the state subspace spanned by the outputs characterized by
y(t) = CSx(t) and their unforced higher derivatives.

Assumption 2: (Correctly Designed Automation) The
automation generates u(t) such that (ξ(t), ξ̇ (t)) tracks the
reference trajectory (ξR(t), ξ̇R(t)).

The implications of Assumptions 1 and 2 are twofold: 1) the
user can reconstruct ξ(t) and predict its evolution (because
ξ̇ (t) can be reconstructed) and 2) the user delegates control of
the internal dynamics η(t) to the automation.

To tractably enumerate Ssit-aware, we propose the user
information index, a set function that measures the dimension
of the state subspace the user can reconstruct and predict from
the information presented in the user interface.

Definition 3 (User Information Index): The user information
index is the set function � : 2S → N[1,n]

�(S) = dim(R(TS)) = rank(TS). (7)

The user information index �(S) characterizes the dimen-
sions of ξ(t) and η(t) since ξ(t) ∈ R

�(S) and η(t) ∈ R
n−�(S).

Table I shows �(S) for the illustrative example.
Proposition 1 (Sufficient Information for Task Completion):

If R(
CStask

) ⊆ R(TS), then the user interface CS provides
sufficient information to complete the task (�, CStask ).

Proof: If R(
CStask

) ⊆ R(TS), we can express the task
output ytask(t) = CStask x(t) ∈ R(

CStask

)
as a linear combination

of the observable state ξ(t) ∈ R(TS). Hence, under Assump-
tions 1 and 2, the user can estimate ytask(t) and ẏtask(t) from
the user-interface output y(t) = CSx(t).

Proposition 1 states that a user interface satisfies necessary
conditions for situation awareness with the task at hand,
provided that ytask(t) is contained in the observable subspace
R(TS). However, the conditions in Proposition 1 are not
amenable to tractable computation. Hence, we reframe Propo-
sition 1 in terms of the user information index.

Lemma 1: Given any P,Q ∈ 2S , the following conditions
hold.

1) P ⊆ Q implies that R(TP) ⊆ R(TQ) and �(P) ≤
�(Q).

2) �(P ∪ Q) = �(P) + �(Q) − dim(R(TP) ∩ R(TQ)).
3) �(P ∩ Q) ≤ dim(R(TP) ∩ R(TQ)).
4) �(P ∪ Q) = �(P) if and only if R(TP∪Q) = R(TP).

The proof of Lemma 1 is provided in Appendix B.
Proposition 2 (Necessary Conditions for Situation Aware-

ness via User Information Index): For every S ∈ Ssit-aware,
defined as

Ssit-aware �
{S ∈ 2S : �(S) = �(S ∪ Stask)

}
(8)

the user interface CS provides sufficient information to com-
plete the task.

Proof: By (6), R(
CStask

) ⊆ R(
TStask

)
. By Lemma 14,

we have Ssit-aware = {S ∈ 2S : R(TS) = R(
TS∪Stask

)}
. Fur-

thermore, R(
TStask

) ⊆ R(
TS∪Stask

)
for any S ∈ Ssit-aware by

Lemma 11. Hence, we have R(
TStask

) ⊆ R(
TS∪Stask

) = R(TS)
for any S ∈ Ssit-aware. Thus, R(

CStask

) ⊆ R(TS). Applying
Proposition 1 completes the proof.

Table I shows Ssit-aware for the illustrative example, and
two possible interfaces are shown in Fig. 3. As expected,
{sh} �∈ Ssit-aware since the heading measurement sh alone
provides no information about velocity (the task), due to
the decoupled dynamics (2). Furthermore, {sa} �∈ Ssit-aware

since reconstructing velocity from acceleration measurements
requires integration. Thus, all sensor combinations in 2S\
{{sa}, {sh}, {sa, sh}} provide sufficient information, enabling
task completion.

Since enumerating 2S to compute Ssit-aware is computation-
ally expensive for large |S |, we propose Algorithm 1 for a
tractable enumeration of Ssit-aware. We construct a reduced set
of admissible sensors Sreduced

Sreduced � {s ∈ S : �(s) + �(Stask) > �(s ∪ Stask)} (9)

= {s ∈ S : dim
(R(Ts) ∩ R(

TStask

))
> 0} (10)
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Fig. 3. User interfaces for the illustrative example in Section II. The user
interface on the left enables situation awareness for the task of keeping
v(t) ≥ vmin and is appropriate for all levels of user trust. In contrast, the
user interface on the right does not enable situation awareness and meets the
trust requirement only for high levels of trust.

Algorithm 1 Efficient Enumeration of Ssit-aware via Charac-
terization of Ssit-aware,reduced

(where (10) follows from (9) and Lemma 12), to construct an
easily computable subset of Ssit-aware

Ssit-aware,reduced = {P ∈ 2Sreduced |�(P ∪ Stask) = �(P)}. (11)

The set Ssit-aware,reduced is “minimal,” in that removing
any sensor from the sensor combinations in Ssit-aware,reduced

will violate the constraint for necessary conditions for sit-
uation awareness (8). Additional elements are appended to
Ssit-aware,reduced (line ??) so that Algorithm 1 provides an
exact enumeration of the members of Ssit-aware. Algorithm 1
is computationally tractable since enumeration is done over
2Sreduced and |2Sreduced | � |2S |.

Theorem 1 (Correctness of Algorithm 1): The set Ssit-aware

can be constructed as the union of two sets

Ssit-aware =
{
S ∈ S

∣∣∣∣ P = S ∩ Sreduced,
�(P ∪ Stask) = �(P)

}
(12)

= {P × 2S \P |P ∈ Ssit-aware,reduced}. (13)

Proof: We show that �(S ∪ Stask) − �(S) = �(P ∪
Stask) − �(P), which implies that �(S ∪ Stask) − �(S) = 0
if and only if �(P ∪ Stask) − �(P) = 0. This implies (12)
by Proposition 2, and (13) follows from (12). The complete
proof is in Appendix C.

Table I shows Ssit-aware,reduced for the illustrative example,
with |Ssit-aware,reduced| = 6 and |Ssit-aware| = 12. For this
problem, 2Sreduced has only seven elements, while 2S has 15.

The computational savings become far more dramatic for
larger problems, as shown in Section V.

Lemma 2: Stask is a subset of Sreduced, and Stask is a member
of Ssit-aware,reduced and Ssit-aware.

Lemma 2 describes the intuitive observation that construct-
ing a user interface using only the sensors that describe the
task should also be sufficient to complete the task. The proof
of Lemma 2 is given in Appendix D.

B. User Trust in the Automation

User trust in the automation depends on many factors,
including the expertise of the user, the performance and
reliability of the automation, and the difficulty of the task.
While some dimensions of trust may be static (i.e., dispo-
sitional trust), other dimensions may be highly dynamic (i.e.,
situational or learned trust) [44], [45]. Both low and high levels
of trust in the automation are known to be problematic, as they
are related to disuse of the automation due to underreliance
and misuse due to overreliance, respectively [46].

The main principle driving the trust constraint (3b) is that
the information presented to the user should be responsive
to, and appropriate for, the user’s current level of trust in the
automation [47]. We focus on the challenges associated with
low levels of trust, although extensions to overtrust may be
possible. We presume that additional information would be
helpful when the user’s trust in the automation is relatively
low, but that when the user’s trust is relatively high, additional
information is not warranted and may actually be detrimental,
if it is overwhelming to the user [8], [48]. Mathematically,
we account for this phenomenon by constraining the user
information index by the user’s level of trust in the automation.

Definition 4 (Trust Constraint): For a given level of trust
in the automation, described by ktrust ∈ N[1,�(S )], we define
the set of sensors that are compatible with trust level ktrust as
those whose user information index is above ktrust

Strust = {S ∈ 2S : �(S) ≥ ktrust}. (14)

The trust level ktrust could correspond to a variety of
trust metrics, depending on the problem at hand [49] (see
Fig. 4). Although considerable variability exists among
questionnaire-based trust metrics [50]–[52], many seek a
summative assessment of trust. For example, in the SHAPE
Automation Trust Index (SATI) instrument, the “overall
amount of trust in the total” system, which solicits trust
as a percentage, would be most relevant to our framework
[50]. A quantized, affine transformation from the SATI scale,
ranging from 0% (no trust) to 100% (full trust), to our trust
level scale, ranging from �(S ) (low trust) to 1 (high trust),
respectively, would map the SATI “overall trust” to our trust
level ktrust, resulting in a static value for a given user. A similar
transformation could be applied to recent efforts in dynamic
trust sensing via behavioral [33], [53] and psychophysiological
data [45] (which feature either real-valued, bounded trust
variables, i.e., T (t) ∈ [0, 1] for some trust value T (t),
or discrete-valued trust variables, i.e., “low,” “medium,” and
“high”), which would allow ktrust to vary over time.

Because our system model (see Fig. 2) presumes that the
user dictates high-level reference tracking, and the automation
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Fig. 4. Parameter ktrust indicates the level of trust the user has in the
automation, with high values corresponding to low trust, and vice versa.

carries out low-level control, Assumption 2 in effect implies
that the the user delegates the control of the unobservable state
η(t) ∈ R

n−�(S) to the automation. Hence, by imposing a lower
bound on the user information index �(·) in (14), we impose
an upper bound on the dimension of the unobservable states.
In essence, this bound ensures that the unobservable state
space does not become so large that it causes further decrease
in trust.

For example, in off-nominal operation (i.e., scenarios in
which the user may not trust the automation), high values of
ktrust ensure that the unobservable state is low dimensional, and
the user retains a large degree of control. On the other hand,
in nominal operation, low values of ktrust allow the dimension
of the unobservable states to increase, potentially reducing
cognitive workload as the user delegates control over these
variables to the automation.

Table I shows Strust for the illustrative example under
various levels of trust. We see that Strust = 2S when ktrust = 1,
meaning that all possible interfaces satisfy the trust constraint
when the user’s trust level is high. With higher ktrust (i.e.,
lower trust level), the number of sensor combinations that
need to be considered for the user-interface design drastically
reduces. For ktrust = 4, only four user interfaces are feasible;
the observable state is 0-D for these user interfaces.

C. Dynamics-Driven User-Interface Design as Tractable,
Combinatorial Optimization Problems

With the constraint for necessary conditions for situation
awareness (8) and trust constraint (14) established, we refor-
mulate (3) as the combinatorial optimization problem

minimize
S∈2S

|S| (15a)

subject to �(S) = �(S ∪ Stask) (15b)

�(S) ≥ ktrust. (15c)

Problem (15) is well-posed since S is a feasible solution:
�(S ) = �(S ∪ Stask) and �(S ) ≥ ktrust, by definition.
In other words, the user interface constructed using all the
sensors in S is always a feasible solution to (15), irrespective
of the task Stask and the value of ktrust.

However, solving (15) directly is hard, due to the potentially
large number of sensor combinations in consideration 2S .
We propose different tractable methods to solve (15) using
the properties of �(·). First, using Theorem 1, we reformulate

(15) into (16) without introducing any approximation

minimize
S∈2S ,P∈2Sreduced

|S| (16a)

subject to P ∈ Ssit-aware,reduced (16b)

P = S ∩ Sreduced (16c)

�(S) ≥ ktrust. (16d)

We denote the optimal solution of (16) as S∗ and P∗.
Next, we investigate the submodularity and monotonicity

of �(·) since these properties enable greedy heuristics for
computing efficient, near-optimal solutions (see Appendix A).
We refer the reader to [19], [21], and [54]–[56] for more
details.

Definition 5 (Submodularity): A set function f (·) is sub-
modular if for all sets P,Q ∈ 2S

f (P) + f (Q) ≥ f (P ∪ Q) + f (P ∩ Q). (17)

Definition 6 (Monotone Increasing): A set function f (·) is
monotone increasing if for all sets P,Q ∈ 2S

P ⊆ Q ⇒ f (P) ≤ f (Q). (18)

Submodular functions demonstrate diminishing returns, i.e.,
adding an element to a smaller set results in a higher gain
compared to adding it to a larger set. Monotone increasing
functions preserve the inclusion ordering in 2S .

Proposition 3: The user information index �(·) is a sub-
modular monotone increasing function.

Proof: Submodularity: For any P,Q ∈ 2S , we show that
�(·) meets (17) using Lemma 12 and Lemma 13

�(P ∪ Q) = �(P) + �(Q) − dim(R(TP) ∩ R(TQ))

≤ �(P) + �(Q) − �(P ∩ Q). (19)

Monotone Increasing Property: It follows from Lemma 11.

Corollary 1: For any S ∈ Ssit-aware, �(S) ≥ �(Stask).
Corollary 2: Given Stask ∈ 2S , the following conditions

hold.

1) If ktrust ≤ �(Stask), then Ssit-aware ⊆ Strust.
2) If ktrust = �(S ), then Strust ⊆ Ssit-aware.

Corollary 1 provides a lower bound on �(S) for S ∈
Ssit-aware. Corollary 21 states that the trust constraint (14)
is trivially satisfied, if the user interface enables necessary
conditions for situation awareness and ktrust is low enough (i.e.,
user’s trust level is high enough). On other hand, when ktrust

is as high as possible (i.e., lowest trust level), user-interface
design is task agnostic, and trust constraint satisfaction auto-
matically enables necessary conditions for situation awareness.

For the illustrative example given in Section II, note that
�(Stask) = �({sv }) = 2 in Table I. As stated in Corollary 2,
we see that Ssit-aware ⊂ Strust when ktrust ≤2= �(Stask).
Furthermore, Strust ⊂ Ssit-aware when ktrust =4= �(S ).

We propose three different approaches to compute a solution
to (16) under different ranges of ktrust.
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Algorithm 2 Optimal Solution to (16) When ktrust ≤ �(Stask)

1) Optimal Solution When ktrust ≤ �(Stask): With a high
level of trust, by Corollary 21, the trust constraint (16d) is
trivially satisfied by any choice of S ∈ Ssit-aware. Because we
seek sensor combinations with minimum cardinality, we search
only in Ssit-aware,reduced. Since Stask is a feasible solution
by Lemma 2, we can reformulate (16) into (20) without
introducing any approximation

minimize
P∈Ssit-aware,reduced

|P | (20a)

subject to |P | ≤ |Stask|. (20b)

The optimal solution to (20) is also the optimal solution
to (16). The constraint (20b) requires a brute force search,
and hence, the numerical implementation in Algorithm 2 has
a worst case computation complexity of O

(∑|Stask |
i=1

(|Sreduced |
i

))
.

2) Greedy Suboptimal Solution When ktrust = �(S ): With
the lowest level of trust, the situation awareness constraints
(16b) and (16c) are trivially satisfied for any S ∈ Strust by
Corollary 22. By Proposition 3, (16) simplifies to the following
submodular optimization problem (Appendix A):

minimize
S∈2S

|S| (21a)

subject to �(S) ≥ �(S ). (21b)

We compute a suboptimal solution with provable subopti-
mality guarantees via a greedy algorithm (Algorithm 4 in
Appendix A).

3) Suboptimal Solution for �(Stask) < ktrust < �(S ): For
trust values in between, we propose Algorithm 3, which solves
a submodular optimization problem [(32), Appendix A] for
every P ∈ Ssit-aware,reduced

minimize
QP⊆S \P

|QP | (22a)

subject to �(P ∪ QP) ≥ ktrust. (22b)

By Theorem 1, the optimal solution to (16) is the minimum
cardinality set in the following:

Ssubopt = ⋃
P∈Ssit-aware,reduced

{P ∪ QP |QP solves (22)}. (23)

However, solving (22) for each P ∈ Ssit-aware,reduced is compu-
tationally expensive for large |S |. We know that �(P∪QP) is
a submodular monotone function in QP for any P ∈ 2S [56,
Sec. 1.2]. Therefore, (22) is also a submodular optimization
problem. We again use the greedy approach (Algorithm 4 in
Appendix A) to compute a suboptimal solution Q†

P . Note that
lines 3–6 of Algorithm 3 is trivially parallelizable.

Algorithm 3 Suboptimal Solution to (16) for �(Stask) <
ktrust < �(S )

To quantify the suboptimality bound for Algorithm 3, we
define a real-valued function �� : N[1,�(S )] × 2S → R as

��(k,S) =
{

log
(

�(S )
k−�(S)

)
�(S) < k

∞ otherwise.
(24)

Proposition 4 (Suboptimality Bound for Algorithm 3): For
�(Stask) < ktrust < �(S ), Algorithm 3 computes a suboptimal
solution Ssubopt to (16) that satisfies

1 ≤ |Ssubopt|
|S∗| ≤ (

1 + maxP∈Ssit-aware,reduced ��(ktrust,P ∪ Q−
P)

)
(25)

where P ∪Q−
P is the solution prior to the termination step of

Algorithm 4 in Line 4 of Algorithm 3.
Proof: Let S∗ = P∗ ∪ Q∗

P∗ be the (unknown) optimal
solution to (16), where P∗ ⊆ Ssit-aware,reduced. Such a decom-
position is guaranteed by Theorem 1. Let Q†

P∗ be the solution
of (22) for P∗ computed using Algorithm 4, and Q−

P∗ be
the solution prior to the termination step. By Lemma 3 in
Appendix A

|Q†
P∗ | ≤ |Q∗

P∗ |(1 + ��(ktrust,P∗ ∪ Q−
P∗)

)
. (26)

Equation (26) uses the observation that �(∅) = 0 and upper
bounds the suboptimality bound in Lemma 3 in Appendix A
using �� . The upper bound and the finiteness of �� follow
from the fact that �(P∗ ∪ Q†

P∗) ≥ ktrust > �(P∗ ∪ Q−
P∗) by

the termination rule of Algorithm 4.
By line 7 of Algorithm 3, we have

|S∗| = |P∗| + |QP∗ | ≤ |Ssubopt| ≤ |P∗| + |Q†
P∗ |. (27)

Applying (26) to and rearranging the resulting terms

1 ≤ |Ssubopt|
|S∗| ≤

(
1 + |Q∗

P∗ |
|S∗| ��(ktrust,P∗ ∪ Q−

P∗)

)
≤ (

1 + ��(ktrust,P∗ ∪ Q−
P∗)

)
≤

(
1 + max

P∈Ssit-aware,reduced

��(ktrust,P ∪ Q−
P)

)

since |Q∗
P∗ | ≤ |S∗| and ��(ktrust,P∗ ∪Q−

P∗) is bounded from
above by max

P∈Ssit-aware,reduced

��(ktrust,P ∪ Q−
P). For every P ∈
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TABLE II

SOLUTION METHODS TO (16) FOR ktrust ∈ [1, �(S )]

Ssit-aware,reduced, ��(ktrust,P∪Q−
P ) is finite since �(P∪Q−

P ) <
ktrust by the termination rule of Algorithm 4.

We simplify (25) to obtain a weaker upper bound

|S∗| ≤ |Ssubopt| ≤ |S∗|(1 + log(�(S ))). (28)

Equation (28) follows from the observation that ��(ktrust,P ∪
Q−

P) ≤ log(�(S )) for every P ∈ Ssit-aware,reduced. Therefore,
max

P∈Ssit-aware,reduced

��(ktrust,P∪Q−
P) ≤ log(�(S ))). Equation (28)

shows that the upper bound in (25) can not be arbitrarily loose.
Proposition 5 (Computational Complexity Bound for Algo-

rithm 3): For �(Stask) < ktrust < �(S ), Algorithm 3 has a
worst case computational complexity of O(

2|Sreduced ||S |2).
Proof: In Algorithm 3, the evaluation of lines 2, 3–6, and 7

have a worst case computational complexity of O(2|Sreduced |),
O(|Ssit-aware,reduced||S |2) (from Lemma 3 in Appendix A), and
O(|Ssit-aware,reduced|), respectively. The worst case computa-
tional complexity of Algorithm 3 is O(|Ssit-aware,reduced||S |2 +
|Ssit-aware,reduced| + |2Sreduced |). Using the observation that
|Ssit-aware,reduced| ≤ 2|Sreduced |, we obtain the simplified worst
case complexity bound.

An alternative heuristic to Algorithm 3 is to use Algorithm 2
to solve (20) to obtain P† ⊆ Ssit-aware,reduced that enables
necessary conditions for situation awareness and then solve
the associated submodular maximization problem (22) with
P†. This approach may provide a faster solution since the
search for P† is assisted by the cardinality constraint (20b).
Furthermore, it only requires the solution of a single sub-
modular maximization problem, as opposed to a collection
of |Ssit-aware,reduced| problems in Algorithm 3. However, the
suboptimality bound of Algorithm 3 no longer holds for this
approach since (27) fails to hold.

The approaches proposed in this section are summarized
in Table II.

IV. EFFICIENT IMPLEMENTATION OF ALGORITHM 1

We propose a computationally efficient implementation of
Algorithm 1 using constraint programming and a novel enu-
meration framework based on binary number representation.
The proposed approach exploits the monotonicity properties
of the user information index function.

A. Enumerating Ssit-aware,reduced via Constraint Programming

Constraint programming exploits transitivity properties in
set functions to reduce the search space [57] (for example, for

a monotone increasing constraint f (S) ≤ k for some k ∈ N,
infeasibility of P ∈ 2S implies infeasibility of all Q ∈ 2S

such that P ⊆ Q). To avoid enumeration in Algorithm 1 of
the set Ssit-aware,reduced (11) using Theorem 1, we construct the
feasibility problem corresponding to (16)

find all
P ∈ 2Sreduced ,
t ∈ N[�(Stask),�(Sreduced)]

(29a)

subject to �(P) ≥ t (29b)

�(P ∪ Stask) ≤ t . (29c)

Since �(·) is monotone increasing (Proposition 3), we can
prune the search space when a tuple (P, t) that does not
satisfy (29c) is encountered. Specifically, given P1 ∈ Sreduced

such that �(P1 ∪ Stask) �≤ t0 for some t0 ∈ N[�(Stask),�(Sreduced)],
then for every superset P2 ∈ Sreduced, P1 ⊆ P2, and t ≤ t0,
we know �(P2 ∪ Stask) �≤ t . We can also incorporate the
cardinality constraint (20b) to further restrict the search space
in Algorithm 2.

Proposition 6: A set P ⊆ Sreduced is feasible for (29) for
some t ∈ N[�(Stask),�(Sreduced)] if and only if P ∈ Ssit-aware,reduced.

Proof: The constraints (29b) and (29c) together are equiv-
alent to the following equality constraint [identical to (11)]

t = �(P) = �(P ∪ Stask).

We have t ∈ N[�(Stask),�(Sreduced)] since �(·) is monotone
increasing (Proposition 3) and Corollary 1.

B. Computationally Efficient Enumeration of the Search
Space

We employ constraint propagation to enumerate the search
space, which, for ease of discussion, we presume is 2S . We
desire to create an oracle, referred to as a generator, that
provides the next sensor combination in 2S which needs to
be evaluated. The generator must satisfy three requirements.

1) R1: Produce sensor combinations within 2S in an
exhaustive manner.

2) R2: Eliminate sensor combinations that are a superset
of a given set.

3) R3: Enforce cardinality constraints.

Any sensor combination S ∈ 2S can be associated with a
unique |S |-bit long binary number representation, with the bit
values set to one at the respective positions of every selected
sensor. We also use a bijection of this representation to the
corresponding decimal number NS ∈ N[0,2|S |−1]. Therefore,
any generator over N[0,2|S |−1] exhaustively enumerates 2S .

A naive approach to enumerate 2S is to use a linear
generator, which enumerates N[0,2|S |−1] by incrementing NS
by 1. However, satisfying R2 and R3 with a linear generator
is difficult. We propose a generator that satisfies all three
requirements by enumerating over a tabular representation of
2S . We associate a unique column number ColS ∈ N[0,|S |−1]
and row number RowS ∈ N[0,2|S |−1−1] with every sensor
combination S ∈ 2S

ColS = �log2(NS)� (30a)

RowS = NS − 2ColS (30b)

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on September 27,2021 at 12:54:28 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

VINOD et al.: SENSOR SELECTION FOR DYNAMICS-DRIVEN USER-INTERFACE DESIGN 9

TABLE III

BINARY ITERATION TABLE FOR S = {s0, s1, s2, s3, s4}

where �a� is the floor of a ∈ R, the largest integer below a.
The column number is the position of the most significant bit
of the binary representation of NS , and the row number is the
decimal representation of the number defined by the remaining
bits. The number of nonzero bits in the binary representation
of S is equal to |S|.

We demonstrate this approach on S = {s0, s1, s2, s3, s4} in
Table III. For illustration, consider S = {s0, s4}. We associate
with S a binary representation, 10001, based on the selection
of sensors. The decimal number representation of 10001 is
NS = 17. Note that |S| = 2 is the number of nonzero bits in
the binary representation 10001. By (30a), ColS = 4, which
is the position (count starts from zero) of the most significant
nonzero bit. By (30b), RowS = 1 = 17 − 24.

1) Satisfaction of R1: All numbers in N[0,2|S |−1] have a
unique position in the tabular representation of 2S , which
follows from the unique binary representation of NS by (30).
Thus, any enumeration of the proposed table satisfies R1.

2) Satisfaction of R2: Due to (30b), each row contains sen-
sor combinations with a similar pattern in the lower significant
bits. Specifically, the binary representation of the row number
coincides with the binary representation of NS without its
most significant bit. For example, row 3 of Table III contains
numbers 7 (select s0, s1, s2), 11 (select s0, s1, and s3) and 19
(select s0, s1, and s4). All these numbers have the elements s0

and s1 in common since their row number, 3, has the binary
representation 00011.

Using this observation, we skip enumeration of the
supersets of infeasible sets, by maintaining a collection of
rows to skip. For example, suppose that we wish to skip
enumeration of all supersets of P = {s0, s1}. This is the case
when P violates (29c). We must skip rows 3, 7, 11, and 15
of Table III, as they are the row numbers with the pattern
X X11 where X indicates “don’t care” bits. The generator
then produces S, with NS �∈ {7, 11, 19, 15, 23, 27, 31} =
{00111, 01011, 10011, 01111, 10111, 11011, 11111}. Note
that each of the skipped numbers has the bits set at their
zeroth and first positions, i.e., they are supersets of P .

3) Satisfaction of R3: Recall that the binary representation
of RowS provides an accurate characterization of S, except
for one sensor element. Therefore, the number of nonzero bits

in the binary representation of RowS is equal to |S|− 1 since
the most significant bit is excluded. Thus, by restricting the
number of bits in the binary representation of the enumerated
row numbers, we can enforce cardinality constraints like (20b)
and satisfy R3.

The proposed generator provides an efficient way to enu-
merate the search space and incorporate constraint program-
ming. Specifically, the row-wise enumeration permits the
enforcement of cardinality constraints as well as the elimina-
tion of supersets of an infeasible sensor combination. We use
this framework for computations involving Algorithm 1,
including computation of the set Ssubopt in Algorithm 2 and
the set Ssit-aware,reduced in Algorithm 3.

V. APPLICATION: USER-INTERFACE DESIGN FOR IEEE
118-BUS POWER GRID

The IEEE 118-bus model is a power network composed of
118 buses, 54 synchronous machines (generators), 186 trans-
mission lines, nine transformers, and 99 loads [58]. We use
linearized swing dynamics to describe the interconnected
generator dynamics [59], [60]. As is typically done in large
networks [61], [62], we used Kron reduction to reduce the
network to a generator-only network with LTI dynamics

ẋ(t) = Ai x(t) + B j u(t). (31)

Here, the state x(t) ∈ R
108 denotes the phase and phase rate

for each of the 54 generator buses, and the input u(t) ∈ R
m

denotes the power injection provided at each generator bus.
We construct the system and input matrices, Ai ∈ R

108×108 and
B j ∈ R

108×m j , under four different network configurations.

1) Normal operation (A1, B1) with m1 = 54.
2) Load bus 38 is down (A2, B1) with m1 = 54.
3) Lines 65 and 66 is down (A3, B1) with m1 = 54.
4) Alternate generators are down (A1, B2) with m2 = 27.

The admittance values for the interconnections in the reduced
network were obtained using MATPOWER [63]. We considered
all the generators to be homogenous. We chose the moment
of inertia and damping coefficients as H = 2.656 s and
D = 2 [64, Table I].

We presume that the user (a power grid operator) is tasked
with the maintaining the power flow to a predetermined
substation (generator bus 28) under each of the four network
configurations. The power grid operator therefore requires
information about the power flowing from all neighboring
nodes, which can be described as nonlinear functions of
the difference in phase measurements [59], [60]. Therefore,
the task is defined in terms of the phase measurements of the
generator buses that have a direct connection to bus 28 in the
Kron reduced network, consisting of only generator buses.

We define S to be all phase measurements of the generators
on the Kron reduced network, S = {ei : i ∈ N[1,54]}, where
ei is a column vector of zeros with one at the i th component.
For the first three configurations, we have task matrices CStask,1 ,
CStask,2 , and CStask,3 due to differences in the neighbors to bus
28. Since the network configuration is the same in the first
and the fourth configurations, the task matrix for the fourth
configuration is also CStask,1 .
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TABLE IV

OPTIMAL USER-INTERFACE SOLUTIONS AND COMPUTATION TIME FOR IEEE 118-BUS POWER GRID PROBLEM

We consider three different trust levels ktrust ∈ {�(Stask) −
10, �(Stask) + 10, �(S )}. Informally, this may be interpreted
as designing the user interface under the following conditions.

1) High Trust: Normal operating conditions, in which the
user trusts the automation to a high degree (ktrust =
�(Stask) − 10).

2) Moderate Trust: Off-nominal operating conditions,
in which the user has some distrust of the automation,
but not excessive distrust (ktrust = �(Stask) + 10).

3) No Trust: Extreme, off-nominal operating conditions,
in which the user totally distrusts the automation (ktrust =
�(S )).

Our results for the four configurations, under each of the
three trust levels, is shown in Table IV. In comparison, typical
power grid transmission operators would have the entire grid
topology available to them, with all phase angles, voltages,
and currents, irrespective of the user’s trust level or the task.

In configurations 1–3, the relative degree γ (si ) = 2 for
every si ∈ S . This means that given the phase measurement
of generator bus i ∈ N[1,54], the user can only infer the phase
and the phase rate measurement of bus i , but not of the other
buses.

1) High Trust: Due to this decoupling, Stask,1 is the only
user interface that enables necessary conditions for situ-
ation awareness for configurations 1–3 under high trust.
In other words, we need to monitor all the buses that
are involved in the task specification.

2) Moderate Trust: Additional sensors are required; due to
the decoupling of the generator dynamics in the network,
any combination of five previously unselected generators
can satisfy the trust constraint.

3) No Trust: Phase measurements from all the buses must
be displayed to attain a user information index of
�(S ) = n = 108. Note that even though this is the
optimal solution to (16) for ktrust = 108, the conservative
suboptimality bound for Algorithm 4 is � = 4.99.

For the fourth configuration (shown in Fig. 5), in which only
alternate generators are operational, phase measurements of
bus i let the user infer information about the network beyond
bus i . Algorithm 1 returned a nontrivial Ssit-aware,reduced, with
2306 elements, each of which could enable necessary condi-
tions for situation awareness.

1) High Trust: Algorithm 2 identified Stask,1 \ {37, 53} as
an optimal user interface, which in contrast to configu-
rations 1–3, provides sensors other than those associated
with the task. This interface exploits the underlying
dynamics and the user’s perception, comprehension, and
projection so that phases of the task-relevant generators
can be reconstructed based on less information than
would be provided merely by duplicating the sensors
associated with the task. Specifically, paths between
nodes 28, 37, and 53 in the network topology of the
118-bus grid, which appear in a block of the dynamics
matrix in the generator swing equations, allow the user
to reconstruct relevant states with fewer sensors at this
level of trust.

2) Moderate Trust: Algorithm 3 determined that two addi-
tional sensors were required. Since the user has some
distrust in the automation in this case, the additional
sensors reveal additional paths in the network topology
that can be observed through the dynamics, which allows
the user to reconstruct supplemental states and their
derivatives relevant to monitoring bus 28 to meet the
trust constraint.

3) No Trust: Algorithm 4 yields a set of 28 sensors that are
needed to monitor power flow to bus 28. When the user
fully distrusts the automation, a relatively large number
of sensors are required to allow the user to reconstruct
and understand states relevant to monitoring bus 28,
where previously were entrusted to the automation.
These sensors correspond to generators spread across
the network, in order to improve observability over the
entire system.
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Fig. 5. Three interfaces are shown for the IEEE 118-bus under configura-
tion 4, in which alternate generators are operational. The power grid operator’s
task is to maintain power flow at bus 28 (�). The user interface consists of
selected generator phase angles (�); neighboring generators (�), load buses
( ∗), and generator buses (•) are shown for clarity. As expected, more
generators must be monitored with lower levels of trust. (a) High trust
(ktrust = 42). (b) Moderate trust (ktrust = 62). (c) No trust (ktrust = 118).

Using efficient enumeration techniques described in
Section IV, enumerating 2Sreduced with |222| ≈ 4×106 elements
took only approximately 105 s (about 27 h) to compute.
In contrast, a naive approach using linear search over 2S

for the minimum cardinality set that satisfies the constraints
would require checking |2S | = 2108 ≈ 3 × 1032 elements,
resulting in approximately 1013 billion hours computation time
(presuming each evaluation takes 10−4 s). All computations
were performed using MATLAB on an Intel i7-4600U CPU
with four cores, 2.1-GHz clock rate, and 7.5-GB RAM.

VI. CONCLUSION

This article presents a method for user-interface design
via sensor selection. Unlike many UI-based approaches,

Algorithm 4 Greedy Algorithm to Solve (32)

our method is driven by the underlying dynamics of the
human–automation system and constrained by necessary con-
ditions for situation awareness, as well as the user’s trust
in the automation. We use submodular maximization and
constraint programming to solve the sensor selection prob-
lem as a constrained combinatorial optimization, and exploit
submodularity and monotonicity properties to identify optimal
or suboptimal solutions. We applied our approach to a large
human–automation system, consisting of a power grid operator
for the IEEE 118-bus model and constructed correct-by-design
interfaces for a variety of trust levels and operating scenarios.

APPENDIX

A. Submodularity in Combinatorial Optimization Problems

Let S denote a finite set. Consider the following combi-
natorial optimization problem with a submodular, monotone
increasing set function f : 2S → N[0, f (S )]:

minimize
S∈2S

|S|
subject to f (S) ≥ k

(32)

for some problem parameter k ∈ N[1, f (S )].
Lemma 3 (Suboptimality Bound for the Greedy Solution

to (32) [21], [22]): Submodular maximization problem (32)
admits a O(|S |2) greedy algorithm (Algorithm 4) such that
its solution S∗

greedy satisfies the property

1 ≤ |S∗
greedy|
|S∗| ≤ 1 + log

(
f (S )− f (∅)

f (S∗
greedy)− f (S−

greedy)

)
(33)

with S−
greedy is the solution at the iteration prior to termination

of Algorithm 4.
Algorithm 4 is a greedy approach to solve the submodular

optimization problem (32) with provable worst case subopti-
mality bounds (Lemma 3). The suboptimality bound given by
Lemma 3 is the best bound available by any polynomial-time
algorithm [65], assuming that P �= N P . The bound in (33) is
a worst case bound; Algorithm 4 often performs significantly
better in practice [21].

B. Proof of Lemma 1

We have 1) from (5), (6), and (7).
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We have 2) by (34) and [39, Sec. 1.6, Ex. 29],

R(TP∪Q) = R(TP) + R(TQ). (34)

We have 3) from (35) [39, Sec. 1.4, Ex. 15] and 1),

R(TP∩Q) ⊆ R(TP) ∩ R(TQ). (35)

We have 4) from 1) and 2).

C. Proof of Theorem 1

We have to show that

Ssit-aware =
{
S ∈ S

∣∣∣∣ P = S ∩ Sreduced,
�(P ∪ Stask) = �(P)

}
. (36)

We show that �(S ∪ Stask) − �(S) = �(P ∪ Stask) − �(P),
which implies that �(S ∪ Stask) − �(S) = 0 if and only if
�(P ∪ Stask) − �(P) = 0. This implies (36) by Proposition 2.

For any S ∈ 2S , we use (9) and (36) to define

P = S ∩ Sreduced ∈ 2Sreduced and Q = S \ P . (37)

Proof for �(S ∪ Stask) − �(S) = �(P ∪ Stask) − �(P): We
will use the claims.

1) dim
(R(TQ) ∩ R(

TStask

)) = 0.

2) dim
(R(TP) ∩ R(TQ) ∩ R(

TStask

)) = 0.

On applying Lemma 12 twice

�(S ∪ Stask) = �(P ∪ Q ∪ Stask)

= �(P) + �(Q) + �(Stask)

−dim(R(TP) ∩ R(TQ))

−dim
(R(TP) ∩ R(

TStask

))
−dim

(R(TQ) ∩ R(
TStask

))
+dim

(R(TP) ∩ R(TQ) ∩ R(
TStask

))
. (38)

By our claims above, the last two terms in (38) are zero.
By adding and subtracting an additional �(P) to (38), we have
�(S ∪ Stask) = �(P ∪ Q) + �(P ∪ Stask) − �(P). Since S =
P ∪Q, we have �(S ∪ Stask) − �(S) = �(P ∪ Stask) − �(P).

Proof of claim 1): By (10), for any s ∈
S \ Sreduced, dim

(R(Ts) ∩ R(
TStask

)) = 0.
Therefore, for any s1, s2 ∈ S \ Sreduced,
dim

(R(
Ts1

) ∩ R(
TStask

)) = dim
(R(

Ts2

) ∩ R(
TStask

)) =
dim

(R(
Ts1

) ∩ R(
Ts2

) ∩ R(
TStask

)) = 0. By applying
Lemma 12 twice, we have �({s1} ∪ {s2} ∪ Stask) =
�({s1} ∪ {s2}) + �(Stask). This also implies that
dim

(R(
T{s1}∪{s2}

) ∩ R(
TStask

)) = 0. Using similar arguments
inductively, we conclude that dim

(R(TQ) ∩ R(
TStask

)) = 0
since Q ⊆ 2S \Sreduced .

Proof of claim 2): Clearly, R(TP) ∩ R(TQ) ∩ R(
TStask

)
is a subset of R(TQ) ∩ R(

TStask

)
, which implies that

dim
(R(TP) ∩ R(TQ) ∩ R(

TStask

))
is smaller than

dim
(R(TQ) ∩ R(

TStask

))
, by definition. Since

dim
(R(TQ) ∩ R(

TStask

)) = 0 (shown in claim 1), we have
dim

(R(TP) ∩ R(TQ) ∩ R(
TStask

)) = 0.

D. Proof of Lemma 2

By (9), �(s ∪ Stask) = �(Stask) < �(s) + �(Stask) for each
s ∈ Stask. Thus, Stask ∈ Sreduced.

By construction, �(Stask ∪ Stask) = �(Stask). Thus, Stask ∈
Ssit-aware,reduced.

E. Proof of Corollary 1

Since Stask ⊆ (S ∪ Stask), we have �(S) = �(S ∪ Stask) ≥
�(Stask) for every S ∈ Ssit-aware (8), due to the monotone
increasing property of �(·).

F. Proof of Corollary 2

To prove 1), we note that for any S ∈ Ssit-aware with ktrust ≤
�(Stask), we have ktrust ≤ �(Stask) ≤ �(S) by Corollary 1.
Thus, S ∈ Strust .

To prove 2), we note that for any S ∈ Strust , ktrust ≤ �(S) ≤
�(S ). Since ktrust = �(S ), �(S) = �(S ) for any S ∈ Strust.
By the monotone increasing property of �(·) (Proposition 3),
we have �(S ) = �(S) ≤ �(S ∪ Stask) ≤ �(S ), which
implies �(S) = �(S ∪ Stask). Thus, S ∈ Strust with ktrust =
�(S ) implies S ∈ Ssit-aware by (8).
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