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On Submodularity and Controllability in
Complex Dynamical Networks

Tyler H. Summers, Fabrizio L. Cortesi, and John Lygeros

Abstract—Controllability and observability have long been
recognized as fundamental structural properties of dynamical
systems, but have recently seen renewed interest in the context of
large, complex networks of dynamical systems. A basic problem is
sensor and actuator placement: choose a subset from a finite set of
possible placements to optimize some real-valued controllability
and observability metrics of the network. Surprisingly little is
known about the structure of such combinatorial optimization
problems. In this paper, we show that several important classes of
metrics based on the controllability and observability Gramians
have a strong structural property that allows for either efficient
global optimization or an approximation guarantee by using a
simple greedy heuristic for their maximization. In particular, the
mapping from possible placements to several scalar functions
of the associated Gramian is either a modular or submodular
set function. The results are illustrated on randomly generated
systems and on a problem of power electronic actuator placement
in a model of the European power grid.

I. INTRODUCTION

Controllability and observability have been recognized as
fundamental structural properties of dynamical systems since
the seminal work of Kalman in 1960 [19], but have re-
cently seen renewed interest in the context of large, complex
networks, such as power grids, the Internet, transportation
networks, and social networks. A prominent example of this re-
cent interest is [26], which, based on Kalman’s rank condition
and the idea of structural controllability [25], presents a graph
theoretic maximum matching method to efficiently identify a
minimal set of so-called driver nodes through which time-
varying control inputs can move the system around the entire
state space (i.e., render the system controllable). The method of
[26] is applied across a range of technological and social sys-
tems, leading to several interesting and surprising conclusions.
Using a metric of controllability given by the fraction of driver
nodes in the minimal set required for complete controllability,
it is shown that sparse inhomogeneous networks are difficult to
control while dense homogeneous networks are easier. It is also
shown that the minimum number of driver nodes is determined
mainly by the degree distribution of the network. However,
there is an implicit assumption about the diagonal entries of
the dynamics matrix that restrict the application of their result
[10]. Many other studies of controllability in complex networks
have followed, including [37], [31], [45], [47], [43].
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Preliminary versions of results in this paper appeared in [40], [9]. Here,
we present the work in a unified framework, provide modified and simplified
proofs of the main results, and revise and elaborate on the numerical examples.

One issue with the approach taken by [26] and much of the
follow-up work is that the exclusive focus on structural control-
lability and the associated quantitative notion of controllability
(namely, the number/fraction of required driver nodes) can be
rather crude and even misleading in some settings. This was
noted, for example, by [29] in response to the surprising result
in [26] that genetic regulatory networks seem to require many
driver nodes, which apparently contradicts other findings in
biological literature on cellular reprogramming. This suggests
that rather than finding a set of driver nodes that would render
a network completely controllable, a more appropriate strategy
might be to choose from a finite set of possible actuator and
sensor placements the subset that optimizes some real-valued
controllability and observability metrics of the network. There
is a variety of more sophisticated metrics for controllability
and observability that have been proposed in the systems and
control literature on sensor and actuator placement or selection
problems in dynamical systems; see, e.g., the survey paper
[44]. One important class of metrics involves the controllability
and observability Gramians, which are symmetric positive
semidefinite matrices whose structure relates energy notions
of controllability and observability. The use of Gramians as
quantitative metrics of controllability in networks is studied
in [37], [46], [4], [42], [34]. Other important studies of
controllability in networks include [39], [36], [33].

While a variety of metrics have been proposed in the
literature [44], the corresponding combinatorial optimization
problems for sensor and actuator placement are less well-
understood. These can be solved by brute force for small
problems by testing all possible placement combinations.
However, for problems that arise in large networks, testing all
combinations quickly becomes infeasible. Only very recently
in the context of large networks have researchers started to
investigate combinatorial properties of sensor and actuator
placement problems for optimizing system dynamics and con-
trol metrics.

Clark et al. have recently considered a related but differ-
ent problem of leader selection in networks with consensus
dynamics, in which a set of leader states are selected to act
as control inputs to the system [7], [8], [6]. In [7], [8], it is
shown that the minimum mean square error due to link noise is
a supermodular function of the leader set. In [6] it is shown that
a graph controllability index, which is related to the structural
controllability framework of [25], is a submodular function of
the leader set. As discussed below, these properties allow for
suboptimality guarantees using simple greedy algorithms.

In the present paper, we show that one important class of
metrics of controllability and observability, previously thought
to lead to difficult combinatorial optimization problems [44],
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can be in fact easily optimized, even for very large networks.
In particular, we show that the mapping from subsets of
possible actuator/sensor placements to any linear function of
the associated controllability or observability Gramian has
a strong structural property: it is a modular set function.
Furthermore, we show that the rank of the Gramian, the log
determinant of the Gramian, and the negative trace of the
inverse Gramian are submodular set functions. Although max-
imization of submodular functions is difficult, submodularity
allows for an approximation guarantee if one uses a simple
greedy heuristic for their maximization [30]. We also describe
how these observations define new dynamic network centrality
measures for networks whose dynamics are described by
linear models, assigning a control energy-related “importance”
value to each node in the network. We illustrate the results
on randomly generated systems and on a problem of power
electronic actuator placement in a model of the European
power grid.

The rest of the paper is organized as follows. Section II
reviews the network model and Gramian-based controllability
metrics. Section III introduces the notions of modular, sub-
modular, and supermodular set functions and shows our main
results that several set functions mapping possible actuator
placements to various functions of the controllability Gramian
are either modular or submodular. Section IV presents illustra-
tive numerical examples. Finally, Section V gives concluding
remarks and and outlook for future research.

II. LINEAR MODELS OF NETWORK DYNAMICS

This section defines a linear model for network dynamics
and reviews and interprets metrics for controllability based
on the controllability Gramian. The material in this section
is mostly standard and can be found in many texts on linear
system theory, e.g. [17], [3]; we discuss the material mostly to
set our notation. Since controllability and observability are dual
properties [18], we focus only on controllability and actuator
placement; all of the results have analogous counterparts and
interpretations for observability and sensor placement.

In the literature on controllability in networks, it is common
to start with linear network models. In this spirit, we focus on
linear, time-invariant dynamical network models, in which the
dynamics are given by

ẋ(t) = Ax(t) +Bu(t), x(0) = x0,

y(t) = Cx(t),
(1)

where x(t) ∈ Rn are the states of the network, u(t) ∈ Rm are
the control inputs that can be used to influence the network
dynamics, y(t) ∈ Rp are the outputs, and A, B, and C are
constant matrices of appropriate dimensions. We assume that
C is full row rank. For example, x(t) might represent voltages,
currents, or frequencies in devices in a power grid, chemical
species concentrations in a genetic regulatory network, or
individual opinions or propensities for product adoption in a
social network. The matrix C ∈ Rp×n is typically interpreted
as a set of linear state measurements, but here we will interpret
it as a weight matrix whose rows define important directions
in the state space.

The dynamics matrix A induces a graph G(V, E) of the
network in which the vertices correspond to states, i.e., V =
{1, ..., n} and the edges correspond to non-zero entries of A,
i.e., (i, j) ∈ E whenever aji 6= 0. The non-zero entries of
the input matrix B describe how each actuator affects the
nodes in the network. When optimizing actuator placement,
one effectively designs a network structure by connecting
sets of inputs to sets of network nodes to optimize a metric
controllability for the resulting network.

A. Controllability

Definition 1 (Controllability). A dynamical system is called
controllable over a time interval [0, t] if given any states x0,
x1 ∈ Rn, there exists an input u(·) : [0, t]→ Rm that drives
the system from x0 at time 0 to x1 at time t.

Kalman’s well-known rank condition states that a lin-
ear dynamical system is controllable if and only if
[B,AB, ..., An−1B] is full rank. Since rank is a generic
property of a matrix, it has the same value for almost all values
of the non-zero entries of A and B (assuming that the non-
zero entries are independent). This suggests that controllability
can be cast as a structural property of the graph defined
by A and B, as captured in the graph-theoretic concept
of structural controllability described by Lin in [25], which
underpins the recent results of [26]. However, it is informative
and practically relevant to consider more quantitative metrics
for controllability in complex networks.

B. Energy-related controllability metrics

Actuators in real systems are usually energy limited, so an
important class of metrics of controllability deals with the
amount of input energy required to reach a given state from
the origin. The symmetric positive semidefinite matrix

Wc(t) =

∫ t

0

eAτBBT eA
T τdτ ∈ Rn×n (2)

is called the controllability Gramian at time t and provides
an energy-related quantification of controllability. Eigenvectors
of Wc associated with small eigenvalues (large eigenvalues of
W−1c ) define directions in the state space that are less control-
lable (require large input energy to reach), and eigenvectors
of Wc associated with large eigenvalues (small eigenvalues
of W−1c ) define directions in the state space that are more
controllable (require small input energy to reach).

For stable systems, the state transition matrix eAt comprises
decaying exponentials, so a finite positive definite limit of the
controllability Gramian always exists and is given by

Wc =

∫ ∞
0

eAτBBT eA
T τdτ ∈ Rn×n. (3)

This infinite-horizon controllability Gramian can be computed
by solving a Lyapunov equation

AWc +WcA
T +BBT = 0, (4)
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which is a system of linear equations and is therefore easily
solvable. Specialized algorithms have been developed to com-
pute the solution [1], [15], [24] and scale to large networks.

We will focus on the infinite-horizon Gramian due to ease
of computation. However, all of our results also apply to the
finite-horizon Gramian, with the only disadvantage being that
one must evaluate (2) rather than solve (4), which may be more
difficult for large networks. An advantage of the finite-horizon
Gramian is that it can be used for unstable systems.

An alternative definition and interpretation of the Gramian
for unstable systems can be used to quantify controllability
[48], but we do not discuss this interpretation further in the
interest of simplicity. It is worth keeping in mind that though
the results are stated for asymptotically stable systems, they
apply more generally.

The controllability Gramian gives a more sophisticated
energy-related quantitative picture of controllability, but we
still need to form a scalar metric for Wc, which is a positive
semidefinite matrix. We want Wc “large” so that W−1c is
“small”, requiring small amount of input energy to move
around the state space. There are a number of possible metrics
for the size of Wc, several of which we now discuss.

1) tr(Wc): The trace of the Gramian is inversely related
to the average energy and can be interpreted as the average
controllability in all directions in the state space. It is also
closely related to the system H2 norm:

‖H‖22 = tr
(
C

∫ ∞
0

eAtBBT eA
T tdtCT

)
= tr(CWcC

T ),

(5)

i.e., the system H2 norm is a weighted trace of the controlla-
bility Gramian.

2) tr(W−1c ): The trace of the inverse controllability
Gramian is proportional to the energy needed on average to
move the system around on the state space. Note that when the
system is uncontrollable, the inverse Gramian does not exist
and the average energy is infinite because there is at least one
direction in which it is impossible to move the system using
the inputs. In this case, one could consider the trace of the
pseudoinverse, which is the average energy required to move
the system around the controllable subspace.

3) log detWc: The determinant of the Gramian is related to
the volume enclosed by the ellipse it defines

V (Emin) =
πn/2

Γ(n/2 + 1)
n
√

detWc,

where Γ is the Gamma function. This means that the de-
terminant is a volumetric measure of the set of states that
can be reached with one unit or less of input energy. Since
determinant is numerically problematic in high dimensions,
and because the logarithm is monotone, we will consider
optimizing log detWc. Note that for uncontrollable systems,
the ellipsoid volume is zero, so log detWc = −∞. In this case,
one could consider the associated volume in the controllable
subspace.

4) λmin(Wc): The smallest eigenvalue of the Gramian is
a worst-case metric inversely related to the amount of energy
required to move the system in the direction in the state space
that is most difficult to control.

5) rank(Wc): The rank of the Gramian is the dimension of
the controllable subspace.

Remark 1. Our main results and much of the discussion
generalize straightforwardly to linear time-varying systems.
The only differences are that the Gramian depends on both
initial and final time, rather than just their difference, and
that it must be computed by integrating (2), rather than by
solving a Lyapunov equation.

In the following section, we briefly review the combinatorial
notion of submodularity and consider which of the above
controllability metrics have a submodularity property, which
provides global optimality or approximation guarantees for
associated actuator selection problems.

III. OPTIMAL SENSOR AND ACTUATOR PLACEMENT IN
NETWORKS

A. Set Functions, Modularity, and Submodularity
Sensor and actuator placement problems can be formulated

as set function optimization problems. For a given finite set
V = {1, ...,M}, a set function f : 2V → R assigns a real
number to each subset of V . In our setting, the elements of V
represent potential locations for the placement of actuators in
a dynamical system, and the function f is a metric for how
controllable the system is for a given set of placements.

We consider set function optimization problems of the form

maximize
S⊆V, |S|=k

f(S). (6)

The problem is to select a k-element subset of V that maxi-
mizes f . This is a finite combinatorial optimization problem,
so one can solve it by brute force simply by enumerating all
possible subsets of size k, evaluating f for all of these subsets,
and picking the best subset. However, we are interested in
cases arising from complex networks in which the number of
possible subsets is very large. The number of possible subsets
grows factorially as |V | increases, so the brute force approach
quickly becomes infeasible as |V | becomes large.

We focus instead on structural properties of the set function
f that make it more amenable to optimization. In particular,
submodularity plays a similar role in combinatorial optimiza-
tion to convexity in continuous optimization and shares other
features of concave functions [27], [21]. It occurs often in
applications [2], [20], [22] (though is underexplored in systems
and control theory); is preserved under various operations,
allowing design flexibility; is supported by an elegant and
practically useful mathematical theory; and there are efficient
methods for minimizing and approximation guarantees for
maximizing submodular functions.

Definition 2 (Submodularity). A set function f : 2V → R
is called submodular if for all subsets A ⊆ B ⊆ V and all
elements s /∈ B, it holds that

f(A ∪ {s})− f(A) ≥ f(B ∪ {s})− f(B), (7)
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or equivalently, if for all subsets A,B ⊆ V , it holds that

f(A) + f(B) ≥ f(A ∪B) + f(A ∩B). (8)

Intuitively, submodularity is a diminishing returns property
where adding an element to a smaller set gives a larger gain
than adding one to a larger set. This is made precise by the
following result from [27], which will be useful for verifying
submodularity of set functions later.

Definition 3. A set function f : 2V → R is called monotone
increasing if for all subsets A,B ⊆ V it holds that

A ⊆ B ⇒ f(A) ≤ f(B), (9)

and is called monotone decreasing if for all subsets A,B ⊆ V
it holds that

A ⊆ B ⇒ f(A) ≥ f(B). (10)

Theorem 1 ([27]). A set function f : 2V → R is submodular
if and only if the derived set functions fa : 2V−{a} → R

fa(X) = f(X ∪ {a})− f(X)

are monotone decreasing for all a ∈ V .

A set function is called supermodular if the reversed in-
equalities in (7) and (8) hold, and is called modular if it is both
submodular and supermodular, i.e., for all subsets A,B ⊆ V ,
we have f(A ∩ B) + f(A ∪ B) = f(A) + f(B). A modular
function has the following simple, equivalent characterization
[27]:

Theorem 2 (Modularity [27]). A set function f : 2V → R
is modular if and only if for any subset S ⊆ V it can be
expressed as

f(S) = w(∅) +
∑
s∈S

w(s) (11)

for some weight function w : V → R.

Modular set functions are analogous to linear functions and
have the property that each element of a subset gives an
independent contribution to the function value. Consequently,
one can see that if f is modular, the optimization problem (6)
is easily solved by simply evaluating the set function for each
individual element, sorting the result, and then choosing the
top k individual elements from the sorted list to obtain the best
subset of size k.

Maximization of monotone increasing submodular functions
is NP-hard, but the so-called greedy heuristic can be used to
obtain a solution that is provably close to the optimal solution
[30]. The greedy algorithm for (6) starts with an empty set,
S0 ← ∅, computes the gain ∆( a |Si ) = f(Si ∪ {a})− f(Si)
for all elements a ∈ V \Si and adds the element with the
highest gain:

Si+1 ← Si ∪ {arg max
a

∆( a |Si ) | a ∈ V \Si}.

The algorithm terminates after k iterations.
Performance of the greedy algorithm is guaranteed by a well

known bound [30]:

Theorem 3 ([30]). Let f∗ be the optimal value of the set
function optimization problem (6), and let f(Sgreedy) be
the value associated with the subset Sgreedy obtained from
applying the greedy algorithm on (6). If f is submodular and
monotone increasing, then

f∗ − f(Sgreedy)

f∗ − f(∅)
≤
(
k − 1

k

)k
≤ 1

e
≈ 0.37. (12)

This is the best any polynomial time algorithm can achieve
[11], assuming P 6= NP . Note that this is a worst-case bound;
the greedy algorithm often performs much better than the
bound in practice.

We now demonstrate the modularity or submodularity of
several classes of controllability metrics involving functions
of the controllability Gramian.

Recall that the space of symmetric n × n matrices Sn is
partially ordered by the semidefinite partial order: W1 � W2

if W1 − W2 � 0. The space of symmetric positive definite
matrices is denoted Sn++ and the space of symmetric positive
semidefinite matrices is denoted Sn+.

B. Trace of the Gramian
Suppose A ∈ Rn×n is a stable system dynamics matrix

and V = {b1, ..., bM} is a set of possible columns that
can be used to form or modify the system input matrix B.
The problem is to choose a subset of V to maximize a
metric of controllability. We now consider a linear function
of the controllability Gramian, which can be expressed as a
weighted trace of the controllability Gramian. For a given
S ⊆ V , we form BS = [B0 bs] given a (possibly empty)
existing matrix B0 and using the associated columns defined
by s ∈ S, and we denote the associated controllability Gramian
WS =

∫∞
0
eAτBSB

T
S e

AT τdτ , which is the unique positive
semidefinite solution the Lyapunov equation

AWS +WSA
T +BSB

T
S = 0. (13)

To simplify notation, we write Ws for W{s}. We have the
following result.

Theorem 4. The set function mapping subsets S ⊆ V to
a linear function of the associated controllability Gramian,
f(S) = tr(CWSC

T ) for any weighting matrix C ∈ Rp×n, is
modular.

Proof: We will prove the result directly using Theorem 2.
For any S ⊆ V it is easy to see that the controllability Gramian
associated with BS is simply a sum of the controllability
Gramians associated with the individual columns of BS :

WS =

∫ ∞
0

eAτBSB
T
S e

AT τdτ

=

∫ ∞
0

eAτ
∑
s∈S

bsb
T
s e

AT τdτ

=
∑
s∈S

∫ ∞
0

eAτ bsb
T
s e

AT τdτ

=
∑
s∈S

Ws.

(14)
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Now since trace is a linear matrix function, we have for any
weight matrix C ∈ Rp×n

f(S) = tr(CWSC
T )

= tr

(∑
s∈S

CWsC
T

)
=
∑
s∈S

tr(CWsC
T ).

(15)

Thus, for any s ∈ V , we can define the weight function
w(s) = tr(CWsC

T ). Defining w(∅) = 0, Theorem 2 implies
that f(S) = tr(CWSC

T ) is a modular set function.
Theorem 4 shows that each possible actuator placement

gives an independent contribution to the trace of the con-
trollability Gramian. Because of this, the actuator placement
problem using this metric is easily solved: one needs only
to compute the metric individually for each possible actuator
placement, sort the results, and choose the best k. Based on the
interpretations in the previous section, this means that placing
actuators in a complex network to maximize the average
controllability available to move the system around the state
space, or to maximize the energy in the system response to a
unit impulse, is easily done. Since the result holds for the
weighted trace, this gives considerable design freedom for
actuator placement; important directions in the state space
can be weighted and actuator placement done based on the
weighted metric.

C. Trace of the inverse Gramian
We now consider the trace of the inverse of the controllabil-

ity Gramian. We assume in this subsection that for any S ⊆ V
the associated Gramian WS is invertible. This is the case, for
example, if the network already has a set of actuators that
provide controllability and we would like to add additional
actuators to improve controllability. We discuss how to deal
with non-invertibility of the Gramian in Section III.E.

Theorem 5. Let V = {b1, ..., bM} be a set of possible input
matrix columns and WS the controllability Gramian associated
with S ⊆ V . The set function f : 2V → R defined as

f(S) = − tr(W−1S )

is submodular and monotone increasing.

Proof: We will use Theorem 1 to prove the result. Fix
an arbitrary a ∈ V and consider the derived set function fa :
2V−{a} → R defined by

fa(S) = − tr((WS∪{a})
−1) + tr((WS)−1)

= − tr((WS +Wa)−1) + tr((WS)−1).

Take any S1 ⊆ S2 ⊆ V − {a}. By the additivity property of
the Gramian noted in Theorem 4 in (14), it is clear that S1 ⊆
S2 ⇒ WS1

� WS2
. Define W (γ) = WS1

+ γ(WS2
−WS1

)
for γ ∈ [0, 1]. Clearly, W (0) = WS1

and W (1) = WS2
. Now

define

f̂a(W (γ)) = − tr((W (γ) +Wa)−1) + tr((W (γ))−1).

Note that f̂a(W (0)) = fa(S1) and f̂a(W (1)) = fa(S2). We
have

d

dγ
f̂a (W (γ)) =

d

dγ

[
− tr((W (γ) +Wa)−1) + tr(W (t)−1)

]
= tr

[
(W (γ) +Wa)−1(WS2 −WS1)(W (γ) +Wa)−1

]
− tr

[
W (γ)−1(WS2

−WS1
)W (γ)−1

]
= tr

[ (
(W (γ) +Wa)−2 −W (γ)−2

)
(WS2 −WS1)

]
≤ 0.

To obtain the second equality we used the matrix derivative
formula d

dγX(γ)−1 = X(γ)−1 d
dγ (X(γ))X(γ)−1 [35]. To

obtain the third equality we used the cyclic property of trace.
Since (W (γ) +Wa)−2 −W (γ)−2 � 0 and WS2

−WS1
� 0,

the last inequality holds because the trace of the product of a
positive and negative semidefinite matrix is non-positive. Since

f̂a(W (1)) = f̂a(W (0)) +

∫ 1

0

d

dγ
f̂a(W (γ))dγ,

it follows that f̂a(W (1)) = fa(S2) ≤ f̂a(W (0)) = fa(S1).
Thus, fa is monotone decreasing, and f is submodular by
Theorem 1.

Finally, it can be seen from additivity of the Gramian (14)
that f is monotone increasing, which just means that adding
an actuator to the system cannot decrease its controllability.

D. Log determinant of the Gramian
We now consider the log determinant of the controllability

Gramian. We assume again that for any S ⊆ V the associated
Gramian is invertible. We have the following result.

Theorem 6. Let V = {b1, ..., bM} be a set of possible input
matrix columns and WS the controllability Gramian associated
with S ⊆ V . The set function f : 2V → R, defined as

f(S) = log detWS

is submodular and monotone increasing.

Proof: The proof uses the same idea as before, namely,
showing that the derived set functions fa : 2V−{a} → R

fa(S) = log detWS∪{a} − log detWS

= log det(WS +Wa)− log detWS

are monotone decreasing for any a ∈ V . For arbitrary a ∈ V ,
S1 ⊆ S2 ⊆ V − {a}, define again W (γ) = WS1 + γ(WS2 −
WS1) for γ ∈ [0, 1] and

f̂a(W (γ)) = log det(W (γ) +Wa)− log detW (γ).

We have
d

dγ
f̂a(W (γ))

=
d

dγ
[log det(W (γ) +Wa)− log detW (γ)]

= tr[(W (γ) +Wa)−1(WS2
−WS1

)]

− tr[W (γ)−1(WS2
−WS1

)]

= tr[((W (γ) +Wa)−1 −W (γ)−1)(WS2
−WS1

)]

≤ 0.
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We used the matrix derivative formula d
dγ log detX(γ) =

tr[X(γ)−1 d
dγX(γ)] [35] to obtain the second equality. The

remainder of the proof follows the previous proof.

Corollary 1. The related set function g : 2V → R defined by
g(S) = log n

√
detWS is submodular and monotone increasing.

Proof: We have

g(S) =
1

n
log detWS .

Thus, from Theorem 6 g is a non-negatively scaled version of
a submodular and monotone increasing function and therefore
also submodular and monotone increasing.

Not all directions in the state space may be of equal
importance, one might want to use a weight matrix as an
additional design parameter for an actuator selection problem.
In a simple case, the weight matrix could be a diagonal
matrix, assigning a relative weight to every state. We have
the following corollary; the proof follows exactly the same
arguments as in the previous theorems.

Corollary 2. Let V = {b1, ..., bM} be a set of possible input
matrix columns and WS the controllability Gramian associated
with S ⊆ V . The set functions g1, g2 : 2V → R defined as

g1(S) = log det(CWSC
T ),

g2(S) = − tr[(CWSC
T )−1],

where C ∈ Rp×n with p ≤ n and rank(C) = p, are
submodular and monotone increasing.

Remark 2. Interestingly, other combinatorial network design
problems unrelated to controllability have a strikingly similar
mathematical structure. Specifically, in [38] it is shown that
problems in which one chooses sets of nodes or edges to
optimize certain rigidity properties of a network, which relate
to formation control and network localization objectives, are
also submodular set function optimization problems for which
greedy algorithms yield solutions with suboptimality guaran-
tees. In that setting, one can define a “rigidity Gramian”
to quantify desirable rigidity properties, and the results and
proofs techniques are nearly identical to what we present in
Theorems 4-6. Furthermore, problems in which one adds sets
of edges to a network to optimize the coherence of the resulting
network, which relates to robustness of consensus process to
additive noise, also have a similar structure [41].

E. Rank of the Gramian
The controllability metrics − tr(W−1S ) and log detWS fail

to distinguish amongst subsets of actuators that do not yield a
fully controllable system. In particular, these functions are un-
defined, or are interpreted to return −∞, when the Gramian is
not full rank. One way to handle cases where the controllability
Gramian in not invertible is to consider its rank. The following
result shows that this is also a submodular set function.

Theorem 7. Let V = {b1, ..., bM} be a set of possible input
matrix columns and WS the controllability Gramian associated

with S ⊆ V . The set function f : 2V → R, defined as

f(S) = rank(WS)

is submodular and monotone increasing.

Proof: For two linear transformations V1, V2 ∈ Rn×n, we
have

rank(V1 + V2)

= rank(V1) + rank(V2)− dim(range(V1) ∩ range(V2)).

We can form gain functions fa : 2V−{a} → R

fa(S) = rank(WS∪{a})− rank(WS)

= rank(Wa)− dim(range(WS) ∩ range(Wa)).
(16)

It is now easy to see that fa is monotone decreasing: the
first term in the second line is constant and the second term
decreases because dim(range(WS)) only increases with S.
That f is monotone increasing is clear from additivity of the
Gramian (14).

Note that Olshevsky has analyzed a greedy algorithm for
maximizing the rank of the controllability matrix, though not
in a submodularity framework [33].

Another way to handle uncontrollable systems is to work
with related continuous metrics defined for uncontrollable
systems, such as the trace of the pseudoinverse tr(W †S), which
corresponds to the average energy required to move the system
around the controllable subspace, or the log product of non-
zero eigenvalues log ΠrankWS

i=1 λi(WS), which relates to the
“volume” of the subspace reachable with one unit of input
energy.

F. Smallest eigenvalue of the Gramian

We have seen so far that the trace of the Gramian is a
modular (and thus both sub- and supermodular) set function
of actuator subsets and that the trace of the inverse Gramian,
the log determinant of the Gramian, and the rank of the
Gramian are submodular set functions. The first two functions
are also concave matrix functions. Given the connections
between submodular functions and concave functions, one
might be tempted to conjecture that any concave function of
the Gramian corresponds to a submodular function of actuator
subsets. However, we now show by counterexample that this
is false. Consider the set function f(S) = λmin(WS), which
corresponds to the concave matrix function that returns the
smallest eigenvalue of the Gramian.

We show an example where this function violates the
diminishing gains property (7) of a set function f(S)

∆( s |A ) ≥ ∆( s |B ), A ⊆ B ⊆ V, s /∈ B,

where ∆( s |A ) = f(A ∪ {s}) − f(A). Consider the system
defined by

A =

[−8 0 −2
0 −2 −8
7 0 −3

]
, BV = [bV ] = I3.
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We see that the diminishing returns property holds in some
cases, e.g.,

∆( b3 | {b1} ) = 0.037 ≥ 0.033 = ∆( b3 | {b1, b2} ),

but is violated in others

∆( b3 | {b2} ) = 0.001 ≤ 0.033 = ∆( b3 | {b1, b2} ).

G. Dynamic network centrality measures
Network centrality measures are real-valued functions that

assign a relative “importance” to each node within a graph.
Examples include degree, betweenness, closeness, and eigen-
vector centrality [32]. The meaning of importance and the
relevance of various metrics depends highly on the modeling
context. For example, PageRank, a variant of eigenvector
centrality, turns out to be a much better indicator of importance
than vertex degree in the context of networks of web pages,
one of the core factors leading to Google’s domination of web
search.

In the context of complex dynamical networks, the control-
lability metrics described above can be used to define a control
energy-based centrality measures, describing the importance of
a node in terms of its ability to move the system around the
state space with a low-energy time-varying control input. In
particular, given a system dynamics matrix A ∈ Rn×n, imag-
ine that it is possible to place an actuator at each individual
node in the network; thus, define V = {e1, ..., en}, where ei
is the standard unit basis vector in Rn, i.e., ei has a 1 in
the ith entry and zeros elsewhere. We define several Control
Energy Centrality measures for a complex dynamical network
as follows.

Definition 4 (Control Energy Centralities). Given a complex
network with n nodes and an associated stable linear dynamics
matrix A ∈ Rn×n, we define the following Control Energy
Centrality measures for each node i
• Average Controllability Centrality

CAC(i) = tr(Wi), i ∈ V (17)

• Average Control Energy Centrality

CACE(i) = −tr(W †i ), i ∈ V (18)

• Volumetric Control Energy Centrality

CV CE(i) = log

rankWi∏
j=1

λj(Wi), i ∈ V, (19)

where Wi is the infinite-horizon controllability Gramian that
satisfies AWi +WiA

T + eie
T
i = 0.

These measures provide more relevant quantities of cen-
trality than purely graph based measures in the context of
dynamical systems and control, and can give quite a different
view of what nodes are important. The greedy algorithm for
choosing nodes in which to inject control signals can be
interpreted as choosing the most central node at each iteration,
given the current set of controlled nodes. An interesting topic
for future work would be to explore the distribution of the

Control Energy Centrality measure in random networks and
networks from various application domains.

Pasqualetti et al. have also defined a different network
centrality measure based on the controllability Gramian [34].
In the context of networks with consensus dynamics, Chapman
and Mesbahi have also defined a related network centrality
measure that quantifies effectiveness of each agent in tracking
the mean of a noisy signal [5]. It is possible to define many
other network centrality measures related to network dynamics
and control, e.g., based on the leader selection metrics of Clark
et al. [7], [6].

H. Computational scaling for large networks
In this subsection we discuss computational techniques

that can be used to scale the greedy algorithm described in
Section III-A to large structured networks. First, specialized
algorithms can be used to exploit sparsity and compute low
rank solutions to Lyapunov equations. In particular, when
computing the Gramian associated with an individual actuator,
the Cholesky factor-alternating direction implicit algorithm
of Li and White [24] allows one to exploit both the rank-
one structure of the constant term in the Lyapunov equation
(viz., bbT ) and any sparsity structure in the network dynamics
matrix A. Moreover, it is often the case in large networks
that the Gramian associated with an individual actuator is low
rank or approximately low rank itself. One can obtain further
computational benefits by computing low rank approximations
of these Gramians also using methods from [24].

Second, several techniques can be used to improve the
greedy algorithm. Each iteration in the standard version is
trivially parallelizable. The Gramians associated with each
possible actuator can be pre-computed using the specialized
methods mentioned above independently and in parallel. Be-
cause the Gramian is additive in the actuators, effectively one
can solve the Lyapunov equation for any set of actuators
by solving it in parallel for each individual actuator and
summing the results. Then at each iteration, the marginal
gain of each actuator can also be computed in parallel by
adding its Gramian to the Gramian of the current set of added
actuators and evaluating the metric (trace, logdet, etc.). When
the individual Gramians are low rank, the marginal gains
can be computed more efficiently by using low rank update
formulae, e.g., the Sherman-Morrison formula for trace of
the inverse Gramian or the matrix determinant lemma for log
determinant of the Gramian.

Alternatively, there is also an accelerated version of the
greedy algorithm, originally due to Minoux [28], in which
one can exploit the submodularity of the set functions to
significantly reduce the number of times that marginal gains
for the actuators need to be computed. This can lead to orders
of magnitude speedups in practice; see, e.g., [21].

IV. NUMERICAL EXAMPLES

In this section, we illustrate the results on randomly gener-
ated systems and on a problem of power electronic actuator
placement in a model of the European power grid. The problem
data is a system dynamics matrix A ∈ Rn×n, a set of possible
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input matrix columns V = {b1, ..., bM}, and an integer number
k of actuators to choose from this set to form an input matrix
that maximizes a controllability metric.

A. Greedy performance on random systems
To evaluate performance of the greedy algorithm and to

compare the various controllability metrics, we first consider
randomly generated data. We use Matlab’s rss routine to gen-
erate a stable dynamics matrix with random stable eigenvalues.
We use V = {e1, ..., en}, where ei is the ith unit vector in Rn,
i.e., we assume one can choose states in which a control input
can be injected.

Figure 1 shows the result of applying the greedy algorithm to
maximize the log determinant metric with n = 25 and k = 7.
This problem is small enough to evaluate every possible 7-
element actuator subset, and this result is also shown in a
histogram, shifted so that minS f(S) = 0. The support of
f(S) for |S| = k, is relatively narrow and close to the optimal
value. Hence, the greedy bound is not informative in this case,
as 63% of the optimum is lower than the values achieved by
all of the size k subsets. Nevertheless, our algorithm finds a
good set Sgreedy scoring

f(Sgreedy)

f(Sopt)
≈ 99%

of the optimum value f(Sopt), where Sopt is an optimal subset,
and is better than 99.93% of all other n choose k possible
choices. We repeated the greedy algorithm for 500 randomly
generated stable dynamic matrices and found that in all cases
the greedy algorithm returned a selection better than 99.5%
of all possible choices. In other words, for this example the
greedy algorithm provides a near-optimal selection and also
one that performs much better than the worst case bound.

We also compare for this example the four continuous
metrics tr(WS), tr(W−1S ), log detWS , and λmin(WS). Figure
2 shows the eigenvalues of the Gramians resulting from
applying the greedy algorithm with each metric. The results
are averages over 10,000 random samples of stable dynamics
matrices. For the trace metric, Theorem 4 guarantees that the
greedy algorithm finds the globally optimal subset. We can
see that this metric tends to focus on making the largest few
eigenvalues large at the expense of the smaller eigenvalues.
In contrast, the trace of the inverse Gramian and the log
determinant strike a compromise, with both resulting in similar
eigenvalue distributions. The largest eigenvalues are not as
large as the ones achieved by optimizing the trace metric,
but they do better on average on the smaller eigenvalues.
Although the globally optimal subset is not guaranteed to be
found, the submodularity of these metrics guarantees that a
near optimal subset is produced by the greedy algorithm, as
proved in Theorems 5 and 6. On the other hand, the final
metric focuses exclusively on the smallest eigenvalue, but for
this example actually does slightly worse on average than the
trace of the inverse Gramian on the smallest eigenvalue. This
may result from the fact that the smallest eigenvalue metric
is not submodular, and so thus is not always guaranteed to
produce a near optimal selection. However, even using the
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Fig. 1. Histogram displaying the shifted log determinant metric for all
possible selections of 7 actuators from a set of 25. The result achieved by
greedy optimization is displayed by the red line, which is better than 99.93%
of all other selections.
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Fig. 2. Eigenvalues of the Gramian averaged over 10,000 random samples
of stable dynamics matrices for several continuous metrics resulting from
applying the greedy algorithm to select 7 actuators from a set of possible
25.

greedy algorithm on this non-submodular metric does not do
too much worse than trace of the inverse Gramian and the log
determinant on other eigenvalues, and does better than trace
of the Gramian on most of the smaller eigenvalues.

B. Power electronic actuator placement in the European
power grid

Recently developed power electronic devices, such as high
voltage direct current (HVDC) links or flexible alternating
current transmission devices (FACTS), can be used to improve
transient stability properties in power grids by modulating
active and reactive power injections to damp frequency oscil-
lations and prevent rotor angle instability [12]. In this section,
we illustrate our results by using them to place such power
electronic actuators in a model of the European power grid.
We emphasize that this section is intended to show that there
are practical and relevant problems that could be studied using
the theory in the preceding sections; however, many important
political and economic issues are neglected, and placements
are evaluated purely from a controllability perspective.

We consider a simplified model of the European grid derived
from [16] with 74 buses, each of which is connected to a
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generator and a constant impedance load. We consider the
placement of HVDC links, which are modeled as ideal current
sources that can instantaneously inject AC currents into each
of their terminal buses; for modeling details see [12], [13],
[14]. The system dynamics we consider here are based on the
swing equations, a widely-used nonlinear model for the time
evolution of rotor angles and frequencies of each generator
in the network [23]. Each HVDC link has three degrees of
freedom that allow influence of the frequency dynamics at
the corresponding buses. The nonlinear model is linearized1

about a desired operating condition for each possible HVDC
link placement, and the placements are evaluated based on
the linearized model using the infinite-horizon controllability
Gramian. In principle one can easily work with the finite-
horizon Gramian; again we chose to use the infinite-horizon
due to the simplicity of its computation, and the results are
qualitatively similar when the finite-horizon Gramian is used.

Each generator has two associated states: rotor angle and
frequency, which gives a 148-dimensional state space model,
i.e., A ∈ R148×148, which always turns out to be stable. Since
an HVDC link could be placed in principle between any two
distinct nodes in the network, there are 2701 possible locations.
Consider the problem of finding the best subset of size 10. This
gives approximately 5.6× 1027 possible combinations, far too
many for a brute force search.

Figure 3 shows the network and the 10 best placements
according to the controllability Gramian trace metric with all
state space directions weighted equally, i.e., C = I148. The
best three are relatively long lines connecting the northeast-
southwest and northwest-southeast quadrants of the network,
respectively. A modal analysis of the dynamics matrix reveals
that these choices correlate well with directions associated
with lightly damped modes in the rotor angle dynamics. The
next group of placements is concentrated in the southeast,
indicating that there is room to improve control authority by
increasing connectivity in this sparsely connected region. This
also indicates a potential weakness in the trace metric, which
may cluster actuators to get high controllability in a few of the
more controllable directions at the expense of controllability in
other directions. Figure 4 shows the sorted values of the metric,
with the top few placements giving a substantial benefit over
other placements.

Figure 5 shows the placement obtained by using the greedy
algorithm with the log determinant metric, using the rank
metric until the system becomes controllable. Compared to
the trace metric, we see that the lines are in general longer,
connecting buses that are further apart, and more evenly
distributed in the network, and no node is part of more than one
HVDC line. These placements can also be seen to align with
directions corresponding to lightly damped modes in the rotor
angle dynamics, though with a different distribution across
the modes than with the trace. Although both metrics tend

1Ideally, one would of course want to evaluate actuator placement on the
nonlinear model, but even evaluating controllability metrics can be extremely
difficult computationally, even for small-scale nonlinear systems. This section
is intended to illustrate the theory from the previous section, so we focus on a
linearized model, though actuator placement problems for nonlinear networks
are an important topic for future work.

Fig. 3. Network of the 74-bus European grid model. The red dots show the
buses, and the black lines between buses show normal AC transmission lines.
The best 10 HVDC line placements according to the controllability Gramian
trace metric are shown by the bold blue lines.
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Fig. 4. Sorted values of the controllability Gramian trace metric. The vertical
axis shows the amount each particular actuator placement adds to the trace of
the Gramian. The optimal value is the sum of the first 10 amounts; the top
few placement give substantial benefit over other placements.

to produce placements with a similar qualitative function, the
two sets of obtained placements are quite different.

V. CONCLUSIONS AND OUTLOOK

We have considered optimal actuator placement problems in
complex dynamical networks. These problems are in general
difficult combinatorial optimization problems; however, we
have shown that an important class of metrics related to the
controllability Gramians yield modular and submodular set
functions. This allows globally optimal or near optimal place-
ments to be obtained with a simple greedy algorithm. By dual-
ity, all of the results hold for corresponding sensor placement
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Fig. 5. Network of the 74-bus European grid model.. The best 10 HVDC line
placements achieved by the greedy algorithm maximizing the log determinant
of the controllability Gramian are shown by the bold blue lines.

problems using metrics of the observability Gramian. To our
knowledge, this is the first such investigation of submodularity
in the context of controllability and observability in dynamical
systems. We also defined several dynamic Control Energy
Centrality measures, which assigns an importance value to
each node in a dynamical network based on its ability to
move the system around the state space with a low-energy
time-varying control input. The results were illustrated via
placement of power electronic actuators in a model of the
European power grid.

There are many open problems involving the structure of
combinatorial optimization problems in the optimal placement
of sensors and actuators in complex networks. For example,
there are many other quantitative metrics of controllability and
observability, such as those associated with optimal control
and filtering design problems, that may be more appropriate
in certain settings. Nothing is known about modularity or sub-
modularity for any other metrics. Further future work involves
exploring other case studies in power networks, biological
networks, social networks, and discretized models of infinite-
dimensional systems. For more complicated system models,
such as constrained, nonlinear, hybrid, etc., corresponding
controllability questions are much more complicated, and the
available tools do not scale well computationally, but one
could explore how efficient methods could be used to obtain
approximate metrics in these types of systems. Finally, an
important and interesting topic for future work is to investigate
how various graphical properties of the network structure affect
the actuator placement results, which may lead to insights
about energy-related controllability for complex dynamical
networks.
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