
Approximate Dynamic Programming via
Sum of Squares Programming

Tyler H. Summers, Konstantin Kunz, Nikolaos Kariotoglou,
Maryam Kamgarpour, Sean Summers, and John Lygeros

Abstract— We describe an approximate dynamic program-
ming method for stochastic control problems on infinite state
and input spaces. The optimal value function is approximated
by a linear combination of basis functions with coefficients
as decision variables. By relaxing the Bellman equation to an
inequality, one obtains a linear program in the basis coefficients
with an infinite set of constraints. We show that a recently intro-
duced method, which obtains convex quadratic value function
approximations, can be extended to higher order polynomial
approximations via sum of squares programming techniques.
An approximate value function can then be computed offline
by solving a semidefinite program, without having to sample
the infinite constraint. The policy is evaluated online by solving
a polynomial optimization problem, which also turns out to be
convex in some cases. We experimentally validate the method
on an autonomous helicopter testbed using a 10-dimensional
helicopter model.

I. INTRODUCTION

Many problems in engineering and finance can be modeled
as stochastic control problems on infinite state and input
spaces, in which a control policy is sought to optimize the
behavior of a stochastic dynamical system over a finite or in-
finite time horizon. While such models are quite general and
expressive, the resulting optimization problems are extremely
difficult because the decision variable (the control policy) is a
function, which is generally infinite-dimensional and thus not
amenable to computation or even storage on a computer. One
general solution method is dynamic programming, which was
developed in the seminal work of Bellman in the 1950s [1].
The solution utilizes the Bellman equation, which relates
the problem data to the optimal value function and policy.
However, solutions of the Bellman equation can be tractably
obtained only in a few special cases, when the state and input
spaces have very small dimension (hence, can be gridded)
or when very strong assumptions are made on the problem
data.

Approximate dynamic programming (ADP) is a collection
of heuristic methods for solving stochastic control problems
for cases that are intractable with standard dynamic program-
ming methods [2, Ch. 6], [3]. The methods can be classified
into three broad categories, all of which involve some kind
of function approximation: (1) lookahead/rollout/receding
horizon/model predictive control policies, (2) direct policy
function approximation, (3) policies based on value function
approximation. Here, we will focus on an approach in the

T. H. Summers is supported by an ETH Zurich Postdoctoral Fellowship.
This research is partially supported by the European Commission under

the project MoVeS, FP7-ICT-257005.

last category in which the value function is approximated by
a linear combination of pre-specified basis functions.

A method recently introduced by Wang and Boyd in
[4] involves computing an approximate value function by
relaxing the Bellman equation to an inequality. One can then
obtain a linear program in the basis function coefficients
with an infinite set of constraints, one for each state and
input pair. In [4], the value function is approximated with
quadratic basis functions, and the S-procedure (see e.g. [5,
Appendix B.2]) is used to transform the infinite constraint set
into a linear matrix inequality. The quadratic approximation
is used to compute the control policy online, which for
certain cases requires solving a small quadratic program.
Furthermore, it can be shown that the approximation is a
lower bound on the optimal value function and therefore
can be used to obtain performance bounds for the system.
Finally, the approximation minimizes a norm to the optimal
value function, i.e. is in some sense an optimal projection
onto the given basis set. The method of Wang and Boyd is
based on a similar method from De Farias and Van Roy for
finite state and input spaces in [6], in which various results
on properties of the approximations and constraint sampling
methods for finite spaces can be found. Kveton et al also
obtain similar results for hybrid spaces [7].

In this paper, we approximate the value function with more
general polynomial basis functions. Polynomial approxima-
tions are not new; in fact, Bellman himself studied such
approximations in the early 1960s [8]. However, the study of
polynomial approximations is now particularly interesting in
light of recent developments in sum of squares programming
[9] and efficient numerical solvers for semidefinite program-
ming [10], [11]. In particular, it was shown in [9] that
positivity of a polynomial can be ensured by testing for a sum
of squares decomposition, which can then be expressed as a
semidefinite program. In stochastic control problems, when
the problem data are polynomials, the infinite constraint set
in the linear program described above can be expressed as
the positivity of a polynomial, which can then be expressed
as a semidefinite program. Today, there are widely available
numerical solvers for computing solutions to semidefinite
programs, making polynomial approximations potentially at-
tractive options for obtaining suboptimal but high-performing
solutions to stochastic control problems on high-dimensional
spaces.

The main contribution of the present paper is to demon-
strate that higher order polynomial value function approx-
imations can be obtained using sum of squares program-

2013 European Control Conference (ECC)
July 17-19, 2013, Zürich, Switzerland.

978-3-033-03962-9/©2013 EUCA 191

ming techniques. An approximate value function can then
be computed offline by solving a semidefinite program,
without having to sample the infinite constraint. The policy
is evaluated online by solving a polynomial optimization
problem; an additional sum of squares constraint can be
added to ensure convexity of the approximate value function,
making the policy evaluation efficiently computable in cer-
tain cases. We also experimentally validate the method using
a quadratic value function approximation on an autonomous
helicopter testbed. Hover and tracking controllers show good
performance, and the policy can be computed online in a few
tens of microseconds using recent code generation techniques
[12], [13]. To the best of our knowledge, this is the first
experimental implementation of this particular approximate
dynamic programming method.

The paper is organized as follows. Section II formulates an
infinite horizon stochastic control problem, summarizes the
dynamic programming solution, and describes an approxi-
mate dynamic programming method based on approximating
the value function with a linear combination of basis func-
tions. Section III shows how sum of squares techniques can
be used to obtain polynomial value function approximations
when the problem data are polynomials. Section IV describes
an implementation of an approximate dynamic programming
controller on an experimental autonomous helicopter testbed.
Section V gives concluding remarks and an outlook for future
research.

II. DYNAMIC PROGRAMMING AND APPROXIMATE
DYNAMIC PROGRAMMING

In this section, we formulate an infinite horizon stochastic
control problem. We then describe the dynamic program-
ming solution and the approximate dynamic programming
approach based on value function approximation. We use
a somewhat informal mathematical style and deliberately
set aside non-trivial (but manageable) measurability issues
and questions associated with existence of superior non-
Markovian or randomized policies to simplify the exposition;
see [14] for a detailed and formal treatment.

A. An Infinite Horizon Stochastic Control Problem
Consider a discrete-time stochastic dynamical system

x+ = f(x, u, w) (1)

where x 2 X ✓ Rn is the state, u 2 U ✓ Rm is the
input, and w 2 W ✓ Rp is the stochastic process noise with
given distribution. We assume that X , U , and W are closed
sets and that w

t

, t = 0, ... are independent and identically
distributed.

The goal is to find an admissible1 state feedback policy
 : X ! U with u

t

= (x
t

) that minimizes the expected

1By admissible, we mean that the policy is causal and always satisfies
the input constraints. One can formulate problems with state constraints
that must be satisfied almost surely or in a probabilistic sense. However,
the approximations described below are not guaranteed to satisfy these; this
remains a significant open problem for using these methods. In this paper,
state constraints are used to restrict the region of the state space in which
the approximation is relevant.

infinite horizon discounted objective function

J(x0,) = E
w

1
X

t=0

�t`(x
t

, u
t

) (2)

where � 2 (0, 1) is a discount factor and ` : X ⇥ U ! R is
the stage cost function. This is in general an extremely diffi-
cult infinite-dimensional non-convex optimization problem.

The solution can be expressed in principle via dynamic
programming. The optimal value function V ⇤ : X ! R is
defined as

V ⇤(x) = inf
 2

J(x,), (3)

where is the set of admissible state feedback policies. The
function V ⇤ satisfies the Bellman equation

V ⇤(x) = inf
u2U

{`(x, u) + �E
w

V ⇤(f(x, u, w))} . (4)

The right-hand-side can be written as an operator on V ⇤

V ⇤ = TV ⇤, (5)

which has the following properties:
• monotonicity: f g) Tf Tg
• value iteration convergence:

V ⇤(x) = lim
k!1

(T kf)(x) 8f : X ! R.

The optimal policy is then given by

 ⇤(x) = arg min
u2U

{`(x, u) + �E
w

V ⇤(f(x, u, w))} . (6)

The optimal value function and policy can only be effi-
ciently computed and stored in a few special cases. When
the state, control, and noise spaces are finite and small
(approximately |X ||U||W| 108), standard dynamic pro-
gramming methods, e.g. value iteration, policy iteration, or
linear programming, can be used to compute the optimal
value function and policy. If the state, control, or noise spaces
are infinite but have very small dimension (a continuous state
space dimension of no more than 4 or 5), the optimal value
function and policy can be approximated by gridding the
spaces, approximating the dynamics by a finite state Markov
chain, and computing the functions at the grid points. For
these cases, the dynamic programming methods work for
complicated problems but are limited by the so-called curse
of dimensionality: computation and storage requirements
grow exponentially with the problem dimensions.

For continuous spaces, there is one known case which
is computationally tractable in high dimensions. If X =
Rn, U = Rm, W = Rp, the dynamics are linear,
the noise is Gaussian, and the stage costs are quadratic,
then the optimal value function is quadratic, the optimal
policy is affine, and both can be computed efficiently from
the problem data (either by solving Riccati equations or
semidefinite programs). The slightest complication however
(e.g. any one of: input/state constraints, non-Gaussian noise,
non-quadratic costs, nonlinear dynamics) makes computing
the optimal value function extremely difficult. In such cases,
we require systematic methods for approximating the optimal
value function and policy.

192

B. Approximate Dynamic Programming

We now describe an approximate dynamic programming
method that involves approximating the value function with
a linear combination of pre-specified basis functions [4], [6]:

V̂ (x) =
k

X

i=1

↵
i

V̂
i

(x) (7)

where ↵ 2 A ✓ Rk. The coefficients ↵ are computed offline
by solving an optimization problem described below. Then
the policy is evaluated online by substituting the approximate
value function into the right-hand-side of (6) (leading to what
is sometimes called a greedy policy):

 adp(x) = arg min
u2U

n

`(x, u) + �E
w

V̂ (f(x, u, w))
o

. (8)

The idea is to find an optimal projection of the optimal value
function onto the given set of basis functions and hope that
the suboptimal policy (8) yields good performance.

Finding the Approximation via Bellman Inequalities:
One method to obtain a value function approximation is
to relax the Bellman equation into an inequality [4], [6].
The set of functions that satisfy the Bellman inequality
are underestimators of the optimal value function. To see
this, suppose a function V̂ satisfies V̂ T V̂ . Then by
monotonicity of T and value iteration convergence we have

V̂ T V̂ T (T V̂) · · · lim
k!1

T kV̂ = V ⇤. (9)

The Bellman inequality is only a sufficient condition for
underestimation, i.e. the set of functions that satisfy the
Bellman inequality may not include all underestimators. In
[4], it is shown how “iterated” Bellman inequalities reduce
this conservatism.

This suggests an optimization problem for finding the
best value function underestimator in the span of the basis
function set:

maximize
Z

X
c(x)V̂ (x)dx, c(x) > 0

subject to V̂ (x) T V̂ (x), 8x 2 X
(10)

where c(x) is any positive weighting function. The Bellman
inequality constraint is convex in ↵ and can be converted into
an infinite set of linear constraints: note that the expression
inside the inf in T V̂ is affine in ↵ for each u, since
expectation is a linear operator, and that the infimum over a
family of affine functions is concave and on the right side
of the inequality

V̂ (x)
| {z }

affine in ↵

 inf
u2U

affine in ↵
z }| {

n

`(x, u) + �E
w

V̂ (f(x, u, w))
o

| {z }

concave in ↵

.

By simply removing the inf and enforcing the affine con-
straints for every u, we end up with a linear program with

an infinite set of constraints, one for every state and input
pair:

maximize
Z

X
c(x)V̂ (x)

subject to V̂ (x) `(x, u) + �E
w

V̂ (f(x, u, w)),

8x 2 X , 8u 2 U

(11)

The solution to (11) can be shown to be an optimal
projection onto the span of the basis functions that satisfy
the Bellman inequality in that it minimizes a c-weighted 1-
norm to the optimal value function [4], [6]. This gives an
interpretation of c(x) as a “state-relevance weight”, which
can be thought of as a distribution over the state space; higher
weight can be given to regions of the state space in which
we would like better approximation.

In addition to suboptimal policies, value function un-
derestimators also provide performance bounds. For each
x 2 X we obtain a number that bounds the performance
achievable with any admissible state feedback policy. Actual
performance of suboptimal policies can be evaluated by
Monte Carlo simulation. If the actual performance is close
to the bound, the suboptimal policy is close to optimal.
Otherwise, either the bound is bad or the policy is bad.

To apply this method in practice, one needs to resolve
three main difficulties: (1) evaluating the high-dimensional
expectations/integrals, (2) handling the infinite constraint set,
and (3) evaluating the policy. Closely related to these issues
is the choice of basis functions. We focus on polynomial
basis functions. The difficulty in evaluating the expecta-
tions/integrals depends on whether or not there are state
constraints. When there are no state constraints (or when
state constraints are not explicitly taken into account in the
integration, as in [4]), all that is needed are the moments
of the noise distribution, which we assume to be given or
computable from the given distribution. If state constraints
are to be explicitly accounted for, certain assumptions must
be made on the noise distribution and constraints. If the con-
straints are boxes and the noise distribution is (approximated
by) a polynomial over the constraint set, the integrals can
be calculated analytically. The infinite constraint set can be
handled in some cases through an appropriate transformation
(discussed below); otherwise, one must resort to constraint
sampling, incurring more error and losing any theoretical
guarantees. To evaluate the policy, an optimization problem
(8) must be solved online, which itself is difficult in general
even after a good approximate value function is computed. In
certain cases (discussed below), this can be made a convex
optimization problem and thus amenable to be solved online.

Wang and Boyd [4] address these issues by using quadratic
basis functions. They do not explicitly take into account
state constraints in evaluating the integrals, using only the
moments of the noise distribution. To handle the infinite
constraint, the S-procedure is used to convert it to a linear
matrix inequality. By restricting the quadratic approximation
to be convex, the policy can be evaluated online by solving
a small quadratic program. In the next section, we show how

193

to extend this approach and approximate value functions by
polynomials by utilizing sum or squares programming.

III. POLYNOMIAL VALUE FUNCTION APPROXIMATIONS
VIA SUM OF SQUARES PROGRAMMING

In this section, we show how sum of squares programming
techniques can be used to find higher-order polynomial value
function approximations. Polynomial value functions were
studied by Bellman himself in the early 1960s [8]. However,
recent developments in sum of squares programming and
semidefinite programming motivate further study.

A. Sum of Squares and Semidefinite Programming
In general, determining whether a given multivariate poly-

nomial is everywhere positive is decidable but NP-hard [9].
An obvious sufficient condition for a polynomial to be
positive is for it to be a sum of squares, i.e. be expressible
as a finite sum of squared polynomials. We denote the set
of all polynomials in x 2 Rn with real coefficients by R[x].
The set of sum of squares polynomials is denoted by

SOS =

(

F (x) 2 R[x]|F (x) =
X

i

f2
i

(x), f
i

(x) 2 R[x]

)

.

and forms a cone in R[x].
Let F (x) 2 R[x] be a polynomial of degree 2d. Let z

be a vector of monomials of degree less that or equal to d;
in particular, z(x) = [1, x1, x2, ..., xn

, x1x2, ..., x
d

n

]T . The
following result from [9] leads to an efficient method to test
for a sum of squares decomposition.

Theorem 1: The polynomial F (x) is a sum of squares if
and only if there exists a symmetric positive semidefinite
matrix Q such that F (x) = zT (x)Qz(x).
By choosing a positive semidefinite matrix subject to affine
constraints defined by matching coefficients of F (x) with
an expansion of a quadratic form in the monomial vector
z, one can ensure that F (x) is a sum of squares. This is
a semidefinite programming feasibility problem in primal
form, which is a convex optimization problem and can
be solved efficiently using various well-developed software
packages. This method can be used if the coefficients of F (x)
must be chosen to satisfy some additional affine constraints.

Sum of Squares S-procedure [9]: Now suppose that we
want to choose the coefficients of a polynomial so that it is
positive over a given semialgebraic set defined by polynomial
inequalities, i.e. choose coefficients of p(x) such that p(x) �
0, 8x : g(x) � 0, where g(x) 2 R[x]. A sufficient condition
for this is the existence of a positive polynomial multiplier
�(x) � 0 such that p(x) � �(x)g(x) � 0. This can then be
restricted to a sum of squares program in which we choose
the coefficients of � and p subject to �(x) 2 SOS and p(x)�
�(x)g(x) 2 SOS, which is again a semidefinite program.

B. Polynomial Approximate Dynamic Programming
Now suppose that all the problem data are polynomial:

the dynamics f is polynomial in x, u, and w, the stage
cost ` is polynomial in x and u, and the constraint sets
X and U can be described by polynomial inequalities, i.e.

x 2 X , u 2 U , g(x, u) � 0. Suppose also that the value
function approximation is a d degree polynomial in x with
coefficients as decision variables. Note that none of these
polynomials need to be convex.

The optimization problem (11) can be written

maximize bT↵

subject to p(x, u,↵) � 0, 8g(x, u) � 0
(12)

where p(x, u,↵) is a polynomial in x and u and affine in
↵. Here, we have assumed that the expectations/integrals
are either computed analytically or computed based on the
moments of the weight and distribution over the state and
disturbance space; these computations enter in the entries of
b and in the coefficients of p.

We have now a linear optimization problem subject to a
constraint that a polynomial is positive on a semialgebraic
set, in which all decision variables appear affinely. We can
restrict the positivity constraint to a sum of squares constraint
using the sum of squares S-procedure to obtain

maximize bT↵

subject to p(x, u,↵) � �(x, u)g(x, u) 2 SOS

�(x, u) 2 SOS.

(13)

Via Theorem 1, this can be directly transformed into a
semidefinite program with variables ↵ and coefficients of
�, which can be solved offline.

C. Numerical Example
To illustrate that higher-order polynomials give improved

approximations, we compute quadratic and quartic value
function approximations for a 1D problem with linear dy-
namics, quadratic stage cost, unit-variance Gaussian noise
distribution, and state and input constraints:

x+ = x � 0.5u + w, `(x, u) = x2 + u2, � = 0.99

X = [�20, 20], U = [�1, 1] , x2 400, u2 1.

Figure 1 shows families of quadratic (blue) and quartic
(green) approximations for various weighting functions c(x).
The families give similar approximations close to the origin,
but the quartic approximations are clearly better near the state
constraint boundaries, since all approximations are guaran-
teed to be underestimators of the optimal value function.

D. Evaluating Policies
Once we have computed the coefficients of the approxi-

mate value function via (13), the policy is evaluated online
by solving (8) For a given state x, this is a polynomial
optimization problem in variable u (assuming again the
integrals are analytically computable). In general, this is
difficult, but we now discuss tractable cases and general
techniques.

The policy evaluation (8) is a convex optimization problem
whenever U is convex and the right-hand-side of (8) is
a convex function of u, which is true if V̂ is convex,
` is convex in u, and the dynamics are input affine, i.e.
f(x, u, w) = f1(x, w) + f2(x, w)u, since the composition

194

−20 −15 −10 −5 0 5 10 15 20
−1000

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

X

va
lu

e
fu

nc
tio

n

Student Version of MATLAB

Fig. 1. Families of quadratic (blue) and quartic (green) value function
approximations.

of a convex function with an affine function is convex, and
the sum of convex functions is convex. It turns out that we
can enforce convexity of the value function approximation
by adding an additional sum of squares constraint on the
Hessian of V̂ [15], [16]. A polynomial V̂ (x) is convex if and
only if yTr2V̂ (x)y � 0, 8x, y 2 X . Since this is another
polynomial inequality, we can ensure convexity of V̂ simply
by adding the sum of squares constraint yTr2V̂ (x)y 2 SOS
to the semidefinite program (13). We have a tradeoff: adding
another constraint can only make the approximation worse,
even if the optimal value function is convex. However, even
if the optimal value function is not known to be convex,
it may be advantageous to make the policy evaluation (8)
tractable. In these cases, the policy can be evaluated with
gradient or interior point methods. Furthermore, since (8)
is relatively small (the number of decision variables is the
dimension of the input), recent code generation techniques
[12], [13] can be used to make the online policy evaluation
extremely fast (on the order of microseconds with cheap,
embedded processors).

For cases in which a convex approximation is undesirable,
there are other techniques that can be considered from a
growing literature on general polynomial optimization [17]–
[19]. For example, sum of squares relaxations have been
recently explored and observed to recover globally optimal
solutions, even in non-convex cases [18], [20], [21].

IV. EXPERIMENTAL VALIDATION

We experimentally validated the approximate dynamic
programming method on an autonomous helicopter testbed,
which we now briefly describe. Further details can be found
in the related paper [22].

A. System Architecture
The helicopter navigates in an indoor space equipped

with four Vicon Bonita infrared cameras (Vicon product

Fig. 2. The helicopter testbed setup.

Fig. 3. Blade mCX2 micro-coaxial helicopters

specifications can be found at http://www.vicon.com), which
emit infrared light via diodes and record the reflections
of markers placed on the helicopter. The camera data is
processed by the Vicon Tracker software, which calculates
the position and orientation of the helicopter in space.
The Coaga [23] custom helicopter control software frame-
work developed by the rCopterX project at ETH Zurich
(http://www.rcopterx.ethz.ch) is used to compute the con-
trol input from a user-defined desired trajectory and the
position and orientation measurements. Coaga is an object-
oriented control framework written in C++ to enable fast
computations and real-time applications and runs on a stand-
alone desktop computer. It also includes a Kalman filter for
the estimation of translational and rotational velocities of
the helicopter and a feasible trajectory generator based on
differential flatness of the model. The computed control input
is sent to a remote control via USB. The remote control then
transmits the control input directly to the helicopter on a
2.4 GHz frequency. Figure 2 shows a block diagram of the
experimental setup.

The helicopter used in the experiments is a 28-gram Blade
mCX2 miniature coaxial helicopter shown in Figure 3. The
helicopter is augmented by infrared reflectors so that it can
be tracked with the Vicon camera system. It has four control
inputs: pitch (for forward flight), roll (for sideways flight),
thrust (for vertical flight) and yaw (for heading change). Pitch
and roll are actuated with a swashplate mechanism connected
to two servos. The thrust is set by the rotation speed of the
main rotor motors and yaw is actuated by a rotational speed
difference between the two main rotors.

The software used in the experimantal setup consists of
Coaga and the Vicon Tracker Software. A convex quadratic
value function approximation was computed offline using
the semidefinite programming solver SeDuMi [11] in the
convex optimization modeling framework CVX [24]. We
chose a quadratic approximation for validation because this
is the simplest type of polynomial that yields a good approx-
imation, and because the resulting quadratic program to be
solved online could be done easily with available software

195

and hardware. The ADP online control policy evaluation
described above was implemented in C++ and integrated into
the Coaga software. The quadratic program was solved with
code generated by the CVXGEN code generator [12] and
called in Coaga.

B. Simplified Helicopter Model
We used a simplified grey-box model whose parameters

were identified based on a least-squares criterion between
experimental step-response data and the model prediction.
The states used to describe the system are the position and
heading in an inertial reference frame XI, YI, ZI, , the
velocity in body-frame ẊB, ẎB, ŻB, ̇ and two integral states
X

int

, Y
int

in x and y to reduce steady-state error. The pitch
and roll angles of the helicopter are neglected due to the
small size of the helicopter. The yaw angle is defined
from an inertial-frame x-axis to the body-frame x-axis.

The continuous-time state-space representation of the sim-
plified model are

ẋ = Ax+Bu+ c

x =
⇥
XI YI ZI ẊB ẎB ŻB ̇ X

int

Y

int

⇤
T

u =
⇥
u

x

u

y

u

z

u

⇤
T

c =
⇥
0 0 0 0 0 0 �g 0 �k

i

x

ref

�k

i

y

ref

⇤
T

A =

2

6666666666664

0 0 0 0 cos(

⇤
) � sin(

⇤
) 0 0 0 0

0 0 0 0 sin(

⇤
) cos(

⇤
) 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 k
x

0 0 0 0 0

0 0 0 0 0 k
y

0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 k 0 0

k
i

0 0 0 0 0 0 0 0 0

0 k
i

0 0 0 0 0 0 0 0

3

7777777777775

B =

2

6666666666664

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

b
x

0 0 0

0 b
y

0 0

0 0 b
z

0

0 0 0 b
0 0 0 0

0 0 0 0

3

7777777777775

,

2

66666664

b
x

k
x

b
y

k
y

b
k
b
z

3

77777775

=

2

66666664

2.0
�0.5
2.1
�0.5
111.0
�5.0
18

3

77777775

where ⇤ is the current yaw state around which the system
is linearized, the parameters k

x

, k
y

, k represent fuselage
drag, b

x

, b
y

, b
z

, b represent the influence of the inputs u on
the states x, and g = 9.81m/s2 is gravitational acceleration.
These dynamics are time-discretized for implementation. We
assumed that unit-variance Gaussian noise acts on accelera-
tions, and we used a quadratic stage cost function.

C. Results
Both hover and trajectory tracking controllers were de-

veloped and tested. The hover performance in x and y can
be seen in Figure 4. The maximum deviations in XI and YI
are 3.2cm and 6.8cm, respectively. Trajectory tracking was
assessed by having the helicopter fly a box-shaped trajectory
with a side length of 1m. A feasible trajectory is precomputed
based on the identified helicopter model. The controller
tracks both the states and inputs. The results are shown in

0 10 20 30 40 50 60 70 80 90
�1

�0.5

0

0.5

1

u
x

0 10 20 30 40 50 60 70 80 90

�50

0

50

X
I

in
m

m

0 10 20 30 40 50 60 70 80 90

�50

0

50

Y
I

in
m

m

0 10 20 30 40 50 60 70 80 90
�1

�0.5

0

0.5

1

time in s

u
y

Figure 5: ADP controlled helicopter hovering

5

Fig. 4. ADP controlled helicopter hovering

�600
�400

�200
0

200
400

600

�600
�400

�200
0

200
400

600

500

1,000

1,500

XI in mmYI in mm

Z
I

in
m

m

Helicopter CoG
Trajectory

Figure 4: ADP controlled helicopter flying a box trajectory

3 Results

The ADP controller was implemented in the Coaga software framework and applied to the helicopter. Both
hover and trajectory tracking can be tested.
The hover performance can be seen in Figure 5. The maximum deviations in XI and YI are 3.2 cm and 6.8
cm respectively. Trajectory tracking was assessed by letting the helicopter fly a box-shape figure with a side
length of 1 m. The trajectory is precomputed to be feasible with respect to the identified helicopter model.
The controller tracks both the states and inputs. The results are shown in figure 4.

References

[1] Jonas Amstuz, Raphael Bernhard, Tobias Wellerdieck, and Felix Wermelinger. Realisation of multi-
agent support, 2012.

[2] Jacob Mattingley and Stephen Boyd. Cvxgen: a code generator for embedded convex optimization.
Optimization and Engineering, 13(1):1–27, March 2012.

[3] Vicon Motion Systems. Bonita camera specs. Website, 2012. Available online at
http://www.vicon.com/products/bonita-features.html; visited on September 2th 2012.

4

Fig. 5. ADP controlled helicopter flying a box trajectory

Figure 5. The results in both hover and trajectory tracking
compare favorably with more standard PID and MPC-based
controllers reported in [22]. Furthermore, the policy can be
evaluated online in a few tens of microseconds, allowing for
kilohertz sampling rates (though here we were limited by
communication hardware to 50 hertz).

V. CONCLUDING REMARKS

We have described an approximate dynamic programming
method on infinite state and control spaces. We showed how
sum of squares techniques can be used to compute polyno-
mial value function approximations offline via semidefinite
programming. The policy is computed online by solving a
polynomial optimization problem, which can be made convex
in certain cases. Future work will include exploring various
application domains, focusing in particular on what can be
gained by using higher-order polynomial approximations.

196

Also, the methods can be applied in stochastic reachability
problems, which is explored in a companion paper [25] via
radial basis functions and constraint sampling techniques.

REFERENCES

[1] R. Bellman, “Bottleneck problems and dynamic programming,” Pro-
ceedings of the National Academy of Sciences of the United States of
America, vol. 39, no. 9, p. 947, 1953.

[2] D. Bertsekas, Dynamic programming and optimal control, 4th ed.
Athena Scientific Belmont, MA, 2012, vol. 2.

[3] W. Powell, Approximate dynamic programming: Solving the curses of
dimensionality. Wiley-Interscience, 2007, vol. 703.

[4] Y. Wang and S. Boyd, “Approximate dynamic programming via
iterated Bellman inequalities,” Manuscript preprint, 2010.

[5] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge
university press, 2004.

[6] D. de Farias and B. Van Roy, “The linear programming approach to
approximate dynamic programming,” Operations Research, vol. 51,
no. 6, pp. 850–865, 2003.

[7] B. Kveton, M. Hauskrecht, and C. Guestrin, “Solving factored MDPs
with hybrid state and action variables,” Journal of Artificial Intelli-
gence Research, vol. 27, no. 1, pp. 153–201, 2006.

[8] R. Bellman, R. Kalaba, and B. Kotkin, “Polynomial approximation–
a new computational technique in dynamic programming: Allocation
processes,” Mathematics of Computation, vol. 17, no. 82, pp. 155–161,
1963.

[9] P. Parrilo, “Semidefinite programming relaxations for semialgebraic
problems,” Mathematical Programming, vol. 96, no. 2, pp. 293–320,
2003.

[10] L. Vandenberghe and S. Boyd, “Semidefinite programming,” SIAM
review, vol. 38, no. 1, pp. 49–95, 1996.

[11] J. Sturm, “Using sedumi 1.02, a matlab toolbox for optimization over
symmetric cones,” Optimization methods and software, vol. 11, no.
1-4, pp. 625–653, 1999.

[12] J. Mattingley and S. Boyd, “CVXGEN: A code generator for embed-
ded convex optimization,” Optimization and Engineering, pp. 1–27,
2012.

[13] A. Domahidi, M. Zeilinger, C. Jones, and M. Morari, “Efficient interior
point methods for multistage problems arising in receding horizon
control,” in to appear in Proceedings of the 51st IEEE Conference on
Decision and Control. IEEE, 2012.

[14] D. Bertsekas and S. Shreve, Stochastic optimal control: The discrete
time case. Academic Press NY, 1978, vol. 139.

[15] A. Magnani, S. Lall, and S. Boyd, “Tractable fitting with convex poly-
nomials via sum-of-squares,” in 44th IEEE Conference on Decision
and Control. IEEE, 2005, pp. 1672–1677.

[16] A. Ahmadi and P. Parrilo, “A complete characterization of the gap be-
tween convexity and SOS-convexity,” arXiv preprint arXiv:1111.4587,
2011.

[17] J. Lasserre, “Global optimization with polynomials and the problem of
moments,” SIAM Journal on Optimization, vol. 11, no. 3, pp. 796–817,
2001.

[18] P. Parrilo and B. Sturmfels, “Minimizing polynomial functions,”
Algorithmic and quantitative real algebraic geometry, DIMACS Series
in Discrete Mathematics and Theoretical Computer Science, vol. 60,
pp. 83–99, 2003.

[19] J. Nie, “Global optimization of polynomial functions and applications,”
Ph.D. dissertation, University of California, Berkeley, 2006.

[20] J. Lasserre, “Convergent SDP-relaxations in polynomial optimization
with sparsity,” SIAM Journal on Optimization, vol. 17, no. 3, pp. 822–
843, 2006.

[21] J. Nie, J. Demmel, and B. Sturmfels, “Minimizing polynomials via
sum of squares over the gradient ideal,” Mathematical programming,
vol. 106, no. 3, pp. 587–606, 2006.

[22] K. Kunz, S. Huck, T. Summers, and J. Lygeros, “Fast model predictive
control of miniature helicopters,” in Submitted to the European Control
Conference. IEEE, 2013.

[23] J. Amstuz, R. Bernhard, T. Wellerdieck, and F. Wer-
melinger, “Coaga wiki,” Website, 2012, available online at
https://bitbucket.org/raffber/coaga/wiki/Home; visited on September
2th 2012.

[24] M. Grant, S. Boyd, and Y. Ye, “CVX: Matlab software for dis-
ciplined convex programming,” Online accessiable: http://stanford.
edu/˜ boyd/cvx, 2008.

[25] N. Kariotoglou, S. Summers, T. Summers, M. Kamgarpour, and
J. Lygeros, “Approximate dynamic programming for stochastic reach-
ability,” in Submitted to the European Control Conference. IEEE,
2013.

197

