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Abstract: Controllability and observability have long been recognized as fundamental struc-
tural properties of dynamical systems, but have recently seen renewed interest in the context
of large, complex networks of dynamical systems. A basic problem is sensor and actuator
placement: choose a subset from a finite set of possible placements to optimize some real-valued
controllability and observability metrics of the network. Surprisingly little is known about the
structure of such combinatorial optimization problems. In this paper, we show that an important
class of metrics based on the controllability and observability Gramians has a strong structural
property that allows efficient global optimization: the mapping from possible placements to the
trace of the associated Gramian is a modular set function. We illustrate the results via placement
of power electronic actuators in a model of the European power grid.
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1. INTRODUCTION

Controllability and observability have been recognized as
fundamental structural properties of dynamical systems
since the seminal work of Kalman in 1960 Kalman (1960),
but have recently seen renewed interest in the context
of large, complex networks, such as power grids, the In-
ternet, transportation networks, and social networks. A
prominent example of this recent interest is Liu et al.
(2011), which, based on Kalman’s rank condition and the
idea of structural controllability, presents a graph theo-
retic maximum matching method to efficiently identify a
minimal set of so-called driver nodes through which time-
varying control inputs can move the system around the
entire state space (i.e., render the system controllable).
The method of Liu et al. (2011) is applied across a range
of technological and social systems, leading to several
interesting and surprising conclusions. Using a metric of
controllability given by the fraction of driver nodes in
the minimal set required for complete controllability, it
is shown that sparse inhomogeneous networks are difficult
to control while dense homogeneous networks are easier.
It is also shown that the minimum number of driver nodes
is determined mainly by the degree distribution of the
network. However, there is an implicit assumption about
the diagonal entries of the dynamics matrix that restrict
the application of their result Cowan et al. (2012). Many
other studies of controllability in complex networks have
followed, including Rajapakse et al. (2011); Nepusz and
Vicsek (2012); Wang et al. (2012); Yang et al. (2012); Tang
et al. (2012).

One issue with the approach taken by Liu et al. (2011) and
much of the follow up work is that the quantitative notion
of controllability discussed in Liu et al. (2011) (namely, the
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number/fraction of required driver nodes) is rather crude
and even misleading in some settings. This was noted,
for example, by Müller and Schuppert (2011) in response
to the surprising result in Liu et al. (2011) that genetic
regulatory networks seem to require many driver nodes,
which apparently contradicts other findings in biological
literature on cellular reprogramming. Rather than finding
a set of driver nodes that would render a network com-
pletely controllable, a more appropriate strategy might be
to choose from a finite set of possible actuators and sensors
placements to optimize some real-valued controllability
and observability metrics of the network, which is not
considered in Liu et al. (2011). There is a variety of more
sophisticated metrics for controllability and observabil-
ity that have been proposed in the systems and control
literature on sensor and actuator placement or selection
problems in dynamical systems; see, e.g., the survey paper
Van De Wal and De Jager (2001). One important class
of metrics involves the controllability and observability
Gramians, which are symmetric positive semidefinite ma-
trices whose structure defines energy-related notions of
controllability and observability.

While a variety of metrics have been proposed Van De Wal
and De Jager (2001), the corresponding combinatorial
optimization problems for sensor and actuator placement
are less well-understood. These can be solved by brute
force for small problems by testing all possible placement
combinations. However, for problems that arise in large
networks, testing all combinations quickly becomes infea-
sible and so the problems are generally thought to be
very difficult combinatorial optimization problems, requir-
ing inefficient integer programming techniques in general.
Some techniques based on efficient `1 heuristics have been
proposed, e.g. Hassibi et al. (1999), but it is not clear when
they work.
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In the present paper, we show that one important class
of metrics of controllability and observability, previously
thought to lead to difficult combinatorial optimization
problems Van De Wal and De Jager (2001), can be in
fact easily optimized, even for very large networks. In
particular, we show that the mapping from subsets of
possible actuator/sensor placements to any linear function
of the associated controllability or observability Gramian
has a strong structural property: it is a modular set
function. We also describe how this observation defines
a new dynamic network centrality measure for networks
whose dynamics are described by linear models, assigning
a control energy-related “importance” value to each node
in the network. We illustrate the results in power electronic
actuator placement in a model of the European power grid.

The rest of the paper is organized as follows. Section II
reviews basics of linear dynamical systems and controlla-
bility. Section III introduces the notions of modular, sub-
modular, and supermodular set functions and shows that
the set function mapping possible actuator placements to
any linear function of the controllability Gramian is mod-
ular. Section IV presents a case study in a power network.
Section V gives concluding remarks and and outlook for
future research.

2. LINEAR MODELS OF NETWORK DYNAMICS

This section defines a linear model for network dynamics
and reviews and interprets metrics for controllability based
on the controllability Gramian. The material in this sec-
tion is mostly standard and can be found in many texts
on linear system theory, e.g. Kailath (1980); Callier and
Desoer (1991); we discuss the material mostly to set our
notation. Since controllability and observability are dual
properties Kalman (1959), we focus only on controllability;
all of the results have analogous counterparts and interpre-
tations for observability.

While virtually all real systems have nonlinear dynamics,
there is a local structural equivalence between nonlinear
models and associated linearized models (via the Hartman-
Grobman theorem), and the resulting linear models are
widely used across many engineering and science disci-
plines. We therefore focus on linear, time-invariant dynam-
ical network models, in which the dynamics are given by

ẋ(t) = Ax(t) +Bu(t), x(0) = x0,

y(t) = Cx(t)
(1)

where x(t) ∈ Rn represents the state of the network
and u(t) ∈ Rm represents the control inputs that can
be used to influence the networks dynamics. For example,
x(t) might represent voltages, currents, or frequencies in
devices in a power grid, species concentrations in a genetic
regulatory network, or individual opinions or propensities
for product adoption in a social network. The dynamics
matrix induces a graph on the nodes of the network: there
is an edge between two nodes i and j if aij is non-zero.
The matrix C ∈ Rp×n is typically interpreted as a set of
linear state measurements, but here we will interpret it as
a weight matrix whose rows define important directions in
the state space.

2.1 Controllability

Definition 1. (Controllability). A dynamical system is
called controllable over a time interval [0, t] if given any
states x0, x1 ∈ Rn, there exists an input u(·) : [0, t]→ Rm

that drives the system from x0 at time 0 to x1 at time t.

Kalman’s well-known rank condition states that a lin-
ear dynamical system is controllable if and only if
[B,AB, ..., An−1B] is full rank. Since rank is a generic
property of a matrix, it has the same value for almost all
values of the non-zero entries of A and B (assuming that
the non-zero entries are independent). The controllability
property is thus at its core a structural property of the
graph defined by A and B, as captured in the graph-
theoretic concept of structural controllability described by
Lin in Lin (1974), which underpins the recent results of Liu
et al. (2011). However, while Kalman’s rank condition is
widely used, it only gives a binary metric for controllabil-
ity. It is interesting to consider more sophisticated quan-
titative metrics for controllability in complex networks.

2.2 An energy-related controllability metric

Every actuator in a real system is energy limited, so an
important class of metrics of controllability deals with
the amount of input energy required to reach a given
state from the origin. In particular, we can pose the
following optimal control problem seeking the minimum
energy input that drives the system from the origin to a
final state xf at time t:

minimize
u(·)∈L2

∫ t

0

‖u(τ)‖2dτ

subject to ẋ(t) = Ax(t) +Bu(t),

x(0) = 0, x(t) = xf

(2)

Standard methods from optimal control theory can be used
to derive the solution. If the system is controllable, the
optimal input has the form

u∗(τ) = BT eA
T (t−τ)

(∫ t

0

eAσBBT eA
Tσdσ

)−1
xf ,

0 ≤ τ ≤ t
(3)

and the resulting minimum energy is∫ t

0

‖u∗(τ)‖2dτ = xTf

(∫ t

0

eAσBBT eA
Tσdσ

)−1
xf . (4)

The matrix

Wc(t) =

∫ t

0

eAτBBT eA
T τdτ ∈ Rn×n (5)

is called the controllability Gramian at time t. The con-
trollability Gramian is positive semidefinite and has the
same rank as [B,AB, ..., An−1B]. It defines an ellipsoid in
the state space

Emin(t) =
{
x ∈ Rn|xTWc(t)

−1x ≤ 1
}

(6)

that contains the set of states reachable in t seconds with
one unit or less of input energy. The eigenvectors and
corresponding eigenvalues of Wc define the semi-axes and
corresponding semi-axis lengths of the ellipsoid. Eigenvec-
tors of Wc associated small eigenvalues (large eigenvalues
of W−1c ) define directions in the state space that are less
controllable (require large input energy to reach), and
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eigenvectors of Wc associated with large eigenvalues (small
eigenvalues of W−1c ) define directions in the state space
that are more controllable (require small input energy to
reach).

For stable systems, the state transition matrix eAt com-
prises decaying exponentials, so a finite positive definite
limit of the controllability Gramian always exists and is
given by

Wc =

∫ ∞
0

eAτBBT eA
T τdτ ∈ Rn×n (7)

This matrix defines an ellipsoid in the state space that
gives the states reachable with one unit or less of energy,
regardless of time. This infinite-horizon controllability
Gramian can be computed by solving a Lyapunov equation

AWc +WcA
T +BBT = 0, (8)

which is a system of linear equations and is therefore easily
solvable, even for large systems. Specialized algorithms
have been developed to compute the solution; see, e.g.,
Hammarling (1982).

The controllability Gramian gives a more sophisticated
energy-related quantitative picture of controllability, but
we still need to form a scalar metric for Wc, which is a
positive semidefinite matrix. We want Wc “large” so that
W−1c is “small”, requiring small amount of input energy
to move around the state space. There are a number of
possible metrics for the size of Wc, including minimum
eigenvalue, determinant, trace, sums/products of the first
k eigenvalues, etc.. We focus here on the trace metric,
which as we show below, has interesting interpretations
in terms of average energy and linear system norms and
has a strong structural property for actuator placement
problems.

2.3 Interpretations of trace(Wc)

Average Energy: The average value of the minimum
control energy over the unit hypersphere is proportional
to the trace of W−1c :∫

‖x‖=1
xTW−1c xdx∫
‖x‖=1

dx
=

1

n
trW−1c . (9)

The trace of Wc is inversely related to the trace of
W−1c , so maximizing tr(Wc) effectively minimizes the
average energy required to move around the state space in
all directions. Maximizing a weighted trace, representing
any linear function of a matrix, minimizes a weighted
average energy required to move around the state space,
with certain directions weighted differently, which can be
encoded into the C matrix.

System H2 norm: An important norm of a (stable) linear
dynamical system is defined as

‖H‖2 =

(
tr

1

2π

∫ ∞
−∞

H(jω)H(jω)∗dω

)1/2

. (10)

This can be interpreted as the RMS response of the system
when it is driven by a white noise input. By the Parseval
theorem, this is also given by

‖H‖2 =

(
tr

∫ ∞
0

h(t)Th(t)dt

)1/2

= ‖h(t)‖2, (11)

where h(t) = CeAtB is the impulse response matrix. Thus,
the H2 norm can also be interpreted as the L2 norm, or
energy, of the system response to a unit impulse input.

The connection between the system H2 norm and the
controllability Gramian can be seen as follows:

‖H‖22 = tr

(∫ ∞
0

h(t)h(t)T dt

)
= tr

(
C

∫ ∞
0

eAtBBT eA
T tdtCT

)
= tr(CWcC

T )

(12)

i.e., the system H2 norm is a weighted trace of the
controllability Gramian.

3. OPTIMAL SENSOR AND ACTUATOR
PLACEMENT IN NETWORKS

3.1 Set Functions, Modularity, and Submodularity

Sensor and actuator placement problems can be formu-
lated as set function optimization problems. For a given
finite set V = {1, ...,M}, a set function f : 2V → R
assigns a real number to each subset of V . In our setting,
the elements of V represent potential locations for the
placement of sensors or actuators in a dynamical system,
and the function f is a metric for how controllable or
observable the system is for a given set of placements,
which is to be maximized.

We consider set function optimization problems of the
form

maximize
S⊆V, |S|=k

f(S). (13)

The problem is to select a k-element subset of V that
maximizes f . This is a finite combinatorial optimization
problem, so one way to solve it is by brute force: simply
enumerate all possible subsets of size k, evaluate f , and
pick the best subset. However, we are interested in cases
arising from complex networks in which the number of
possible subsets is very large. The number of possible
subsets grows extremely fast as V increases, so the brute
force approach quickly becomes infeasible as V becomes
large.

Other approaches for solving (13) include general com-
binatorial optimization methods, e.g. branch and bound,
and methods based on `1 optimization heuristics Hassibi
et al. (1999). However, general combinatorial methods do
not scale well with problem size, and while `1 heuristics
scale well in principle, it is unclear when they work, and
they provide no approximation guarantees.

Another broad approach is to exploit structural properties
of the set function f that make them more amenable
to optimization, such as modularity and submodularity
Lovász (1983); Fujishige (2005). Submodularity is defined
as follows.

Definition 2. (Submodularity). A set function f : 2V → R
is called submodular if for all subsets A ⊆ B ⊆ V and all
elements s /∈ B, it holds that

f(A ∪ {s})− f(A) ≥ f(B ∪ {s})− f(B), (14)

or equivalently, if for all subsets A,B ⊆ V , it holds that

f(A) + f(B) ≥ f(A ∪B) + f(A ∩B). (15)
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Intuitively, submodularity is a diminishing returns prop-
erty where adding an element to a smaller set gives a larger
gain than adding one to a larger set. A set function is
called supermodular if the reversed inequalities in (14) and
(15) hold, and is called modular if it is both submodular
and supermodular, i.e. for all subsets A,B ⊆ V , we have
f(A∩B)+f(A∪B) = f(A)+f(B). A modular function has
the following simple, equivalent characterization Lovász
(1983):

Theorem 1. (Modularity). A set function f : 2V → R is
modular if and only if for any subset S ⊆ V it can be
expressed as

f(S) = w(∅) +
∑
s∈S

w(s) (16)

for some weight function w : V → R.

Modular set functions are analogous to linear functions
and have the property that each element of a subset
gives an independent contribution to the function value.
In particular, modular functions are easily optimized:
since the contribution of each element is independent, one
can simply evaluate the set function for each individual
element and then choose the best k individual elements to
obtain the best subset of size k.

Submodularity plays a similar role in combinatorial opti-
mization as convexity in continuous optimization Lovász
(1983). It occurs often in applications (though is un-
derexplored in systems and control theory); is preserved
under various operations, allowing design flexibility; has
a beautiful and practically useful mathematical theory;
and there are efficient methods for minimizing and near-
optimal methods for maximizing.

We now demonstrate the modularity of a class of control-
lability metrics involving linear functions of the controlla-
bility Gramian.

3.2 Main Result: Any linear function of the controllability
Gramian is a modular set function

Suppose we are given a stable system A matrix and a
set of possible B matrix columns V = {b1, ..., bM}. The
problem is to choose a subset of the possible B matrix
columns to maximize a metric of controllability. Here, we
consider the weighted trace of the controllability Gramian,
i.e., any linear function of the controllability Gramian. For
a given S ⊆ V , we form BS = [bs], s ∈ S and the associ-

ated controllability Gramian WS =
∫∞
0
eAτBSB

T
S e

AT τdτ ,
which is the unique positive definite solution the Lyapunov
equation

AWS +WSA
T +BSB

T
S = 0. (17)

To simplify notation, we write Ws for W{s}. We have the
following result.

Theorem 2. Let A ∈ Rn×n be a stable dynamics matrix
and V = {b1, ..., bM} be a set of possible actuator loca-
tions. The set function mapping subsets S ⊆ V to any
linear function of the associated controllability Gramian,
i.e. f(S) = tr(C̄WS) for any weighting matrix C̄ ∈ Rn×n,
is modular.

Proof: We will prove the result directly using Theorem
1. Take any S ⊆ V and let BS denote the input matrix
formed by taking the associated columns defined by S. It

is easy to see that the controllability Gramian associated
with BS is simply a sum of the controllability Gramians
associated with the individual columns of BS :

WS =

∫ ∞
0

eAτBSB
T
S e

AT τdτ =

∫ ∞
0

eAτ
∑
s∈S

bsb
T
s e

AT τdτ

=
∑
s∈S

∫ ∞
0

eAτ bsb
T
s e

AT τdτ =
∑
s∈S

Ws

(18)
Now since trace is a linear matrix function, we have for
any weight matrix C̄ ∈ Rn×n

f(S) = tr(C̄WS) = tr

(∑
s∈S

C̄Ws

)
=
∑
s∈S

tr(C̄Ws)

(19)
Thus, for any s ∈ V , we can define the weight function
w(s) = tr(C̄Ws). Defining w(∅) = 0, Theorem 1 implies
that f(S) = tr(C̄WS) is a modular set function.

Theorem 2 shows that each possible actuator placement
gives an independent contribution to the trace of the
controllability Gramian. Because of this, the actuator
placement problem using this metric is easily solved: one
needs only to compute the metric individually for each
possible actuator placement, sort the results, and choose
the best k. Based on the interpretations in the previous
section, this means that placing actuators in a complex
network to maximize the average amount of controllability
available to move the system around the state space,
or to maximize the energy in the system response to a
unit impulse, is easily done. Since the result holds for
the weighted trace, this gives considerable design freedom
for actuator placement; important directions in the state
space can be weighted and actuator placement done based
on the weighted metric.

3.3 A Dynamic Network Centrality Measure

Network centrality measures are real-valued functions that
assign a relative “importance” to each node within a
graph. Examples include degree, betweenness, closeness,
and eigenvector centrality. The meaning of importance
and the relevance of various metrics depends highly on
the modeling context. For example, PageRank, a variant
of eigenvector centrality, turns out to be a much better
indicator of importance than vertex degree in the context
of networks of web pages, one of the core factors leading
to Google’s domination of web search.

In the context of complex dynamical networks, the con-
trollability metric described above can be used to define
a control energy-based centrality measure, describing the
importance of a node in terms of its ability to move the
system around the state space with a low-energy time-
varying control input. In particular, imagine that it is
possible to place an actuator at each individual node in
the network; thus, define V = {e1, ..., en}, where ei is the
standard unit basis vector in Rn, i.e. ei has a 1 in the ith
entry and zeros elsewhere. We define the Control Energy
Centrality for a complex dynamical network as follows.

Definition 3. (Average Energy Controllability Centrality).
Given a complex network with n nodes and an associated
stable linear dynamics matrix A ∈ Rn×n, the Average
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Energy Controllability Centrality measure for node i is
given by

CCE(i) = tr(Wi), i ∈ V (20)

where Wi is the infinite-horizon controllability Gramian
that satisfies AWi +WiA

T + eie
T
i = 0.

An interesting topic for future work would be to explore
the distribution of the Average Energy Controllability
Centrality measure in random networks and networks from
various application domains.

4. POWER ELECTRONIC ACTUATOR PLACEMENT
IN THE EUROPEAN POWER GRID

New power electronic actuators, such as high voltage
direct current (HVDC) links or flexible alternating current
transmission devices (FACTS), can be used to improve
transient stability properties in power grids by modulating
active and reactive power injections to damp frequency
oscillations and prevent rotor angle instability Fuchs and
Morari (2011). In this section, we illustrate the results
via placement of such power electronic actuators in a
model of the European power grid. We emphasize that
this section is intended only to illustrate the theory in the
preceding sections and show what kind of questions could
be answered; many practical political and economic issues
are neglected, and placements are evaluated entirely from
a controllability perspective.

We consider a simplified model of the European grid
derived from Hasse (2006) with 74 buses, each of which
is connected to a generator and a constant impedance
load. We consider the placement of HVDC links, which are
modeled as ideal current sources that can instantaneously
inject AC currents into each bus; for modeling details see
Fuchs and Morari (2011, 2013a,b) The system dynamics we
consider here are based on the swing equations, a widely-
used nonlinear model for the time evolution of rotor angles
and frequencies of each generator in the network Kundur
(1993). Each HVDC link has three degrees of freedom
that allow influence of the frequency dynamics at the
corresponding buses. The nonlinear model is linearized 1

about a desired operating condition for each possible
HVDC link placement, and the placements are evaluated
based on the linearized model.

Each generator has two associated states: rotor angle
and frequency, which gives a 148-dimensional state space
model, i.e., A ∈ R148×148. Since an HVDC link could be
placed in principle between any two distinct nodes in the
network, there are 2701 possible locations. To get an idea
about the size of the search space, consider the problem of
finding the best subset of size 10. This gives approximately
5.6× 1027 possible combinations, far too many for a brute
force search. As we have seen, the modularity property
allows us to consider each placement individually.

1 Ideally, one would of course want to evaluate actuator placement
on the nonlinear model, but even evaluating controllability metrics
can be extremely difficult computationally, even for small-scale
nonlinear systems. This section is intended to illustrate the theory
from the previous section, so we focus on a linearized model,
though actuator placement problems for nonlinear networks are an
important topic for future work.

Fig. 1. Best 10 HVDC line placements (in blue) according
to the controllability Gramian trace metric.
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Fig. 2. Distribution of the controllability Gramian trace
metric.

Figure 1 shows the network and the 10 best placements
according to the controllability Gramian trace metric with
all state space directions weighted equally, i.e., C = I148.
The best two are relatively long lines connecting the
northeast-southwest and northwest-southeast quadrants of
the network, respectively. Interestingly, the next group of
placements is concentrated in the southeast, indicating
that there is room to improve control authority by increas-
ing connectivity in this sparsely connected region. This
also indicates a potential weakness in the trace metric,
which may cluster actuators to get high controllability in
a few directions at the expense of controllability in other
directions. Figure 2 shows the sorted distribution of the
metric, with the top few placements giving a substantial
benefit over other placements. Figure 3 shows the 10 best
placements according to the controllability Gramian trace
metric, but with the frequency dynamics in the network
weighted equally and the rotor angle dynamics ignored, i.e
C = I74 ⊗ [0, 1]. In this case, the optimal placements are
more evenly distributed in the network.

5. CONCLUSIONS AND OUTLOOK

We have considered optimal actuator and sensor place-
ment problems in complex dynamical networks. These
problems are in general difficult combinatorial optimiza-
tion problems; however, we have shown that an impor-
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Fig. 3. Best 10 HVDC line placements according to the
controllability Gramian trace metric, weighted for
frequency dynamics.

tant class of metrics related to the controllability and ob-
servability Gramians yield modular set functions and are
therefore efficiently globally optimized. We also defined the
Average Energy Controllability Centrality measure, which
assigns an importance value to each node in a dynamical
network based on its ability to move the system around
the state space with a low-energy time-varying control
input. The results were illustrated via placement of power
electronic actuators in a model of the European grid.

There are many open problems involving the structure
of combinatorial optimization problems in the optimal
placement of sensors and actuators in complex networks.
What other linear system controllability or observabil-
ity metrics have exploitable combinatorial structure, e.g.,
modularity or submodularity? Further results have been
obtained in Cortesi et al. (2014). Our ongoing work is
exploring other case studies in power networks, biologi-
cal networks, social networks, and discretized models of
infinite-dimensional systems. Finally, more complicated
systems (e.g. constrained, nonlinear, hybrid, etc.) require
a full reachability analysis in general, which does not scale
well, but one could explore how efficient methods could be
used to obtain approximate metrics in these systems.
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