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Stochastic optimal power flow based on
convex approximations of chance constraints

Tyler Summers, Joseph Warrington, Manfred Morari, and John Lygeros

Abstract— This paper presents a computationally-efficient

approach for solving stochastic, multiperiod optimal power

flow problems. The objective is to determine power schedules

for controllable devices in a power network, such as genera-

tors, storage, and curtailable loads, which minimize expected

short-term operating costs under various device and network

constraints. These schedules include planned power output

adjustments, or reserve policies, which track errors in the

forecast of power requirements as they are revealed, and which

may be time-coupled. Such an approach has previously been

shown to be an attractive means of accommodating uncertainty

arising from highly variable renewable energy sources. Given a

probabilistic forecast describing the spatio-temporal variations

and dependencies of forecast errors, we formulate a family

of stochastic network and device constraints based on convex

relaxations of chance constraints, and show that these allow

economic efficiency and system security to be traded off with

varying levels of conservativeness. The results are illustrated

using a simple case study, in which conventional generators

plan schedules around an uncertain but time-correlated wind

power injection.

I. INTRODUCTION

The current widespread increase in penetration of inter-
mittent renewable energy in power networks such as wind
and solar comes with an increase in uncertainty of supply. As
penetration levels of such sources reach substantial fractions
of total supplied power, current techniques for handling
supply uncertainty become prohibitively expensive, and the
system is exposed to increasing operational risks. On the
other hand, there is active ongoing research on obtaining
forecasts of intermittent power supplied from renewable
sources over various time scales [6]. The most sophisticated
available forecasts are probabilistic, including not only point
forecasts over a time horizon but also information about
probability distributions of forecast errors that describes spa-
tiotemporal variations and dependencies. It is widely agreed
that appropriate use of such forecasts and strategies for
responding to forecast errors are required to make operational
decisions that intelligently manage risks in the network to
achieve a tradeoff between economic efficiency and system
security.

One of the fundamental decision problems in power
networks is optimal power flow (OPF), in which power
schedules are determined for controllable devices in a power
system, such as generators, storage, and controllable loads,

The authors are with the Automatic Con-
trol Laboratory, ETH Zurich, Switzerland, email:
{tsummers,warrington,morari,lygeros}@control.ee.ethz.ch. T. Summers is
partially supported by the ETH Zurich Postdoctoral Fellowship Program.

which minimize an operating cost function under various
device and network constraints. OPF is central to economic
and secure operation and control of power systems and
markets [9]. Future power networks will require the co-
ordination of thousands of devices and joint optimization
of millions of variables and increasingly the explicit in-
corporation of information about uncertainties. There are
many OPF problem variations, including unit commitment,
reserve scheduling, economic dispatch, security-constrained,
DC approximations, full AC formulations and relaxations,
and others. In this paper, we use a relatively simple but
widely used linearized DC approximation to illustrate our
results, although of course corresponding extensions and
variations are interesting and necessary for the methods to
be useful in practice.

Historically, many OPF formulations have only accom-
modated uncertainty in a rather rudimentary manner by
choosing fixed reserve margins without using other known
or estimated probabilistic information about forecast errors.
More recent work that does explicitly handle uncertainty
includes methods based on (1) chance constraints and the
so-called scenario approach [10], in which decisions are
made based on finite sampling of uncertain parameters from
an assumed statistical model, or (2) robust optimization
[11], in which knowledge of uncertainty bounds is assumed
and device and network constraints are enforced for every
possible uncertainty realization. However, these approaches
have some theoretical and practical drawbacks. Methods
based on chance constraints involve incoherent risk measures
that penalize frequency but not severity of constraint vio-
lations. Furthermore, the scenario approach in practice can
be conservative as a result of drawing a sufficiently large
number of samples to get probabilistic constraint satisfaction
guarantees. Methods based on robust optimization can be
very conservative in enforcing constraints for every possi-
ble uncertainty realization, since some realizations deemed
possible may in fact be extremely unlikely.

There are other risk measures, such as expected shortfall
and conditional value at risk (CVaR), which are well known
in finance [8], but have only received limited attention in
the context of power networks. Some of these are discussed
in the context of electricity markets in [4]. Specifically,
this work mainly illustrates the use of these metrics in
the context of individual power producers, retailers, and
consumers managing financial risk in electricity markets. A
recent related paper [12] also considers the use of CVaR
for managing financial risk of wind power producers in a
network. Bienstock et al. have also recently considered power
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flow problems subject to chance constraints assuming that the
uncertainties are Gaussian [1].

In this paper, we present an approach to solving a stochas-
tic optimal power flow problem based on convex approxima-
tions of chance constraints [5]. Three main features taken
together distinguish our work from previous work. First,
we take the perspective of a transmission system operator
managing operational risks across the network rather than
individual power supplier and use stochastic formulations of
network and device constraints. Second, the family of convex
relations of chance constraints we consider, which includes
the coherent risk measure CVaR as a special case, allows
various penalties to be given to the severity of constraint
violations and can interpolate between chance constraints
and robust constraints. Another special case, relating to
Chebyshev bounds, allows probabilistic information to be
incorporated into a single second order cone constraint and
does not require any uncertainty sampling. Third, we use a
multistage stochastic programming formulation with affine
reserve policies, which specify how controllable devices in
the network should respond to forecast errors and can be
computed tractably. This formulation allows strong temporal
forecast error dependencies and time-coupled device costs
and constraints to be incorporated.

We demonstrate that this formulation can achieve a trade-
off between efficient and secure network operation while also
reducing the conservatism of previous approaches. Based on
network knowledge and a probabilistic model for forecast
errors that accounts for spatiotemporal variations and correla-
tions, risk can be intelligently distributed across the network.
The results and various trade-offs are illustrated numerically
on a simple two-bus example.

The rest of the paper is organized as follows. Section II
describes the network model and formulates a stochastic
optimal power flow problem that explicitly accounts for
information about uncertainty. Section III describes the con-
vex approximations of chance constraints and shows how a
family of such approximations can be utilized in the optimal
power flow problem. Section IV presents numerical results,
and Section V gives concluding remarks and an outlook for
future research.

II. NETWORK MODEL AND OPTIMAL POWER FLOW

We consider the operation of N devices connected via
a transmission network over a planning time horizon of T
discrete time steps. The devices may include generators;
fixed, deferrable, and curtailable loads; and storage devices
such as batteries that can act as either generators or loads.
We distinguish between two types of devices: those with
fixed and (possibly) uncertain power flows that cannot be
affected by decision variables (e.g., renewable infeeds or
fixed loads), and those with controllable power flows that can
be affected by decision variables (e.g., thermal generation,
deferrable/curtailable loads, or storage devices). The notation
follows [11].

A. Devices with fixed power flows

The fixed power flow for device i is given by r
i

+G
i

� with
positive values denoting net power injection into the network.
The vector r

i

2 R

T represents the nominal prediction over
the planning horizon, and the linear function G

i

2 R

T⇥N�T

of the random vector � 2 � ✓ R

N�T represents the predic-
tion error of the power injection or extraction for device i.
If uncertainty of device i is not explicitly considered, we set
G

i

= 0.
We assume that information about the joint probability

distribution of � is known, which captures spatial variations
and dependencies among devices and temporal variations and
dependencies across the horizon. In particular, we assume
either knowledge of the full distribution, knowledge of
certain moments such as the mean and variance, or that we
have a model of � from which we can draw samples.

B. Devices with controllable power flows

The power flows of controllable devices are governed
by given dynamics. Device i at time k has internal state
xi

k

2 R

ni , where n
i

is the state dimension. The dynamics
of device i are assumed to be governed by the discrete-time
linear dynamical system

xi

k+1 =

¯A
i

xi

k

+

¯B
i

ui

k

(1)

where ¯A
i

2 R

ni⇥ni is the dynamics matrix, and ¯B 2
R

ni⇥mi is the input matrix, and u
i

2 R

mi is an input
that controls the net power injection. The first element
[xi

k

]1 of the state vector xi

k

represents the power injection
of device i at time k into the network at a certain bus;
other elements model internal dynamics such as charge in
a battery or memory of previous states, which can be used
to encode ramping constraints for thermal generation. For
compact notation, we concatenate the states and inputs over
the planning horizon: xi

= [(xi

1)
T , ..., (xi

T

)

T

] 2 R

niT and
u

i

= [(ui

0)
T , ..., (ui

T�1)
T

] 2 R

miT , which will be decision
variables in the optimization problem we formulate in the
following. Note that future states can be expressed as a
linear function of the input sequence and the current state
xi

0 according to the dynamics (1):

x

i

= A
i

xi

0 +B
i

u

i (2)

where

A
i

=

2

6664
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i
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i

...
¯AT�1
i

3
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=
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C. Cost functions and constraints

We associated a cost function with each device J
i

:

R

niT ⇥R

miT ! R that encodes the cost for the device to
produce a given power schedule over the planning time hori-
zon. The cost functions are assumed to be convex quadratic:

J
i

(x

i

,u
i

) = fT

ix

x

i

+

1

2

x

T

i

H
ix

x

i

+ fT

iu

u

i

+

1

2

u

T

i

H
iu

u

i

+ c
i

,

(3)
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where H
ix

and H
iu

are positive semidefinite matrices.
There are three types of constraints: local device con-

straints, power balance constraints, and line flow constraints.
The local constraints are linear inequalities of the form

T
i

x

i

+ U
i

u

i

+ V
i

�  w
i

(4)

where T
i

2 R

li⇥niT , U
i

2 R

li⇥miT , V
i

2 R

li⇥N�T . These
can be used to encode a wide variety of constraints; for
example, one can include constraints on the allowable power
injection range or time coupling constraints on ramp rates of
a generator.

The remaining two types of constraints are imposed by
the network. In general, the steady-state active and reactive
power flows in a network are related to the complex bus
voltages in the network via nonlinear power flow equations.
We consider a widely used approximation in which it is
assumed that voltage phase angle differences between buses
are small, bus voltage magnitudes are constant and close to 1
per unit, and lines are lossless. Under these assumptions, the
reactive flows can be neglected, and the active line flows are
proportional to the phase differences between bus voltages.

The second type of constraint is a power balance con-
straint. The net power injection from all devices in the
network must be zero for all times in the planning horizon,
which can be encoded with the T linear equality constraints

NX

i=1

(r
i

+G� + C
i

x

i

) = 0. (5)

Third, the power flow should also satisfy line rating con-
straints on all transmission lines in the network. If there are L
transmission lines in the network and we consider constraints
on lines flows in both directions, these can be encoded by
the 2LT additional inequality constraints

NX

i=1

�

i

(r
i

+G
i

� + C
i

x

i

)  p̄, (6)

where �

i

2 R

2LT⇥T . The matrices �

i

map the power
injections of each device to its contribution to each line flow
and can be constructed from network line impedances (see
[3]).

D. Reserve Policies

In a standard OPF problem, uncertainty is ignored, e.g., by
setting the prediction error vector � to zero, and the device
inputs u

i

are chosen to minimize the sum of the device
cost functions, which is a quadratic program. To explicitly
account for uncertainty, in addition to computing such a
nominal plan, we would also like to find an optimal strategy
for responding to forecast errors. To do this, we allow the
device inputs to depend on the uncertainty via a policy for
each device u

i

= ⇡
i

(�), where ⇡
i

: R

N�T ! R

miT is a
function that belongs to a set of causal policies denoted by
⇧

c

over which we would like to optimize.
Furthermore, the objective function and constraints both

depend on the random variable �, so these terms in the
OPF problem need to be recast into stochastic forms. For

the objective function, we consider optimizing the expected
value of the sum of device cost functions. There are a
variety of ways to recast the constraints. We will require the
power balance equality constraints to hold for any possible
uncertainty realization (after application of the policy). The
inequality constraints could be enforced for any possible
uncertainty realization based on assumed knowledge of un-
certainty bounds, as in the robust setting of [11]. Alter-
natively, they could be “softened” and enforced in some
weaker probabilistic sense based on assumed knowledge of
the uncertainty probability distribution.

Substituting the policy, eliminating x

i

using (2), and
recasting the constraints leads to the following multistage
stochastic programming formulation of the optimal power
flow problem:

minimize
⇡i2⇧c

E

NX

i=1

J
i

(A
i

xi

0 +B
i

⇡
i

(�),⇡
i

(�))

subject to
NX

i=1

(r
i

+G
i

� + C
i

(A
i

xi

0 +B
i

⇡
i

(�))) = 0, 8�

R
 

NX

i=1

�

i

(r
i

+G
i

� + C
i

(A
i

xi

0 +B
i

⇡
i

(�)))� p̄  0

!

R
�
T
i

(A
i

xi

0 +B
i

⇡
i

(�)) + U
i

⇡
i

(�)� w
i

 0

�
, i = 1, ..., N

(7)
where R denotes a generic transformation of the inequal-
ity constraints into stochastic versions, using probabilistic
uncertainty information and possibly introducing auxiliary
variables, which will be described in the next section.

The infinite-dimensional optimization over the set of ad-
missible causal functions ⇧

c

is intractable. Therefore, we
restrict each function ⇡

i

to the class of causal affine policies,

⇡
i

(�) = D
i

� + e
i

, (8)

where each D
i

2 R

T⇥N�T is block lower-triangular (to
enforce causality) and represents a system of planned de-
viations with respect to a nominal plan e

i

2 R

T . Since the
device cost functions are quadratic, the cost then becomes a
linear function of the first and second moments of the dis-
tribution of �. The robust equality constraints are equivalent
to
NX

i=1

(r
i

+ C
i

(A
i

xi

0 +B
i

e
i

)) = 0,
NX

i=1

(G
i

+ C
i

B
i

D
i

) = 0

(9)
In the robust approach considered in [11], the robust con-
straints are recast to become linear in the decision variables
D

i

and e
i

and some extra auxiliary matrix variables.
The following section will now discuss other reformu-

lations that allow for the possibility of some degree of
constraint violation in exchange for reduced solution cost.

III. CONVEX APPROXIMATIONS OF CHANCE
CONSTRAINTS

In this section, we discuss chance constraints and a family
of convex relaxations based on the the results in [5]. For more
details, see [5], [8]. At the end of the section we formulate
a stochastic OPF problem based on these constraints.
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A. Chance constraints

Consider the chance-constrained optimization problem

minimize Ef0(x, �)

subject to Prob(f(x, �)  0) � 1� ↵
(10)

where x 2 R

n is the decision variable, � 2 R

d is a
random variable, and f(x, �) : R

n ⇥ R

d ! R is a single
scalar constraint function (we discuss how to deal with
multiple constraint functions later). This problem is convex
in some cases. For example, when f

i

(x, �) = aTx + b
with � = [aT b]T and � is normally distributed, then the
chance constraint can be expressed as a second-order cone
constraint:

¯�T x̃+ �

�1
(1� ↵)k⌅1/2x̃k2  0, (11)

where �

�1 is the Gaussian quantile function, x̃ = [xT

1]

T ,
and ⌅ is the covariance matrix of �. In other cases, the
random parameter is typically sampled from a distribution
and a corresponding deterministic optimization problem is
solved based on the sampled values. Recent research has
focused on quantifying the probability and determining the
required number of samples such that the solution of the
sampled problem is feasible for the original problem [2].
Chance constraints are closely related to Value at Risk (VaR),
a risk measure often used in finance [8].

Chance constraints have several drawbacks. They penalize
frequency but not severity of constraint violation. Moreover,
the associated VaR is not a “coherent” risk measure in the
sense that it has some undesirable properties for certain
types of uncertainty distributions [8]. Also, when using
a sampling approach, the number of samples required to
guarantee a certain probabilistic feasibility level can be large,
making the sampled optimization problem difficult to solve
and potentially rendering the solution very conservative in
practice.

B. Convex approximation of chance constraints and condi-
tional value at risk

One can obtain a family of related probabilistic constraints
by making a conservative convex approximation. In partic-
ular, one can replace the constraint in problem (10) with
another constraint whose feasible set contains the feasible
set of problem (10).

First, note that for a random variable z and for any t > 0,
Prob(tz � 0) = Prob(z � 0) = E[1[0,1)(tz)] where
1

K

(·) is the indicator function over the set K. Now let  :

R ! R be a non-negative, convex function with  (z) >
 (0) = 1 for all z > 0, which is called the generating
function that will generate a family of convex approximations
for the chance constraint. Since  (tz) � 1(tz) 8tz 2 R, it
follows that E (tz) � E1[0,1)(tz) = Prob(z � 0), i.e.,
the function E (tz) is an upper bound on the probability
that z � 0.

Replacing z with f(x, �) and changing t to t�1 yields

E[ (t�1f(x, �))] � Prob(f(x, �) > 0). (12)

Thus, the constraint

inf

t>0

�
tE[ (t�1f(x, �))]� t↵

�
 0 (13)

is a sufficient condition for the chance constraint in (10) to be
satisfied. This constraint can be shown to be jointly convex
in (t, x) [5].

There are several candidates for the generating function:
• Markov:  (z) = [1 + z]+
• Chebyshev:  (z) = [1 + z]2+
• Traditional Chebyshev:  (z) = (1 + z)2

• Chernoff/Bernstein:  (z) = ez

where [·]+ = max(·, 0). Each function places a different
penalty on the severity of constraint violation. The best
approximation is given by the generating function that is
closest to the indicator function; accordingly, it can be
shown that the Markov generating function gives the best
approximation for a single scalar chance constraint. The
constraint obtained from the Markov generating function is
closely related to the Conditional Value at Risk (CVaR),
which is also a well known risk measure in finance that
penalizes both frequency and severity of constraint violation
and is coherent [8]. It can be written as

E[f(x, �) + t]+  t↵. (14)

The other candidates give more conservative approxima-
tions. However, one advantage of using a smooth gener-
ating function, such as the traditional Chebyshev or the
Chernoff/Bernstein, is that in some cases we can explicitly
evaluate the expression in (13); otherwise, one must resort
to an uncertainty sampling method.

1) Example: Traditional Chebyshev approximation for an
affine inequality: To illustrate a case in which the constraint
can be expressed analytically, we consider here a specific
example of a single affine inequality and a traditional Cheby-
shev approximation of a corresponding chance constraint.
Let f(x, �) = aTx + b, where � = [aT b]T is random
with mean E� =

¯� and variance E��T � ¯�¯�T := ⌅. Let
x̃ = [xT

1]

T . The constraint obtained from the traditional
Chebyshev generating function can be written as

¯�T x̃+

r
1� ↵

↵
k⌅1/2x̃k2  0, (15)

which is a second-order cone constraint that depends only on
the mean and variance of �. Note that (15) has the same form
as (11) but with a larger, more conservative parameter mul-
tiplying the second term. The constraint associated with the
traditional Chebyshev generating function is “distributionally
robust“ in the sense that the constraint will hold for any
distribution of � with the given mean and variance. This can
be very conservative, but the conservatism can be reduced
by assuming more about the distribution, e.g., unimodality
and/or knowledge of higher moments [7].

2) Multiple constraints: The preceding discussion was
for a single scalar inequality. There are several ways that
the approximation could be extended to handle multiple
inequalities f

i

(x, �)  0, i = 1, ...,m. One could construct a
single constraint from the set, for example: max

i

f
i

(x, �) 



5

0. It is also possible to define multivariable generating
functions that can be directly used with multiple constraints.
Finally, one can treat each constraint separately and use the
development above, obtaining the transformed constraints
inf

t>0

�
tE[ (t�1f

i

(x, �))]� t↵
i

�
 0 for a set of risk levels

↵
i

associated with each constraint [5].

C. Stochastic OPF with convex approximations of chance
constraints

Based on the above approximations, we can formulate
corresponding stochastic optimal power flow problems with
associated stochastic versions of the local device and line
flow constraints. Each line constraint k at each time step,
associated with a row in (6), can be written in the form

f
k

(x, �) = [�]

k·� + [b]
k

(16)

where [·]
k· denotes the kth row of a matrix and [·]

k

the kth

element of a vector. The optimization variables D
i

and e
i

for i = 1, . . . , N enter linearly into x and b as follows:

� :=

NX

i=1

�

i

C
i

B
i

D
i

(17)

b := �p+
NX

i=1

�

i

(r
i

+G
i

� + C
i

A
i

xi

0 + C
i

B
i

e
i

). (18)

A similar form can be obtained for each local device con-
straint j = 1, . . . , l

i

for each device i, which we denote
individually as g

ij

(x, �).
Using, for example, the Markov generating function, this

leads to the following stochastic optimal power flow problem

minimize
D,e,t

E

NX

i=1

J
i

(A
i

xi

0 +B
i

(D
i

� + e
i

), D
i

� + e
i

)

subject to
NX

i=1

(r
i

+ C
i

(A
i

xi

0 +B
i

e
i

)) = 0,

NX

i=1

(G
i

+ C
i

B
i

D
i

) = 0

E[f
k

(D, e, �) + t
k

]+  t
k

↵
k

, k = 1, . . . , 2LT

E[g
ij

(D
i

, e
i

, �) + t
ij

]+  t
ij

↵
ij

,

i = 1, . . . , N, j = 1, . . . , l
i

.
(19)

where D := (D1, . . . , DN

), e := (e1, . . . , eN ), and t :=

(t1, . . . , t2LT

, t1,1, . . . , tN,lN ), which is a convex optimiza-
tion problem in (D, e, t). In this case, the expected value in
the last two sets of constraints would be approximated by
a sample average. Other generating functions can be used
to obtain similar formulations. If the traditional Chebyshev
generating function is used, the last two sets of constraints
would each be a second order cone constraint and no
sampling of the uncertainty would be required.

D. Interpretation of probabilistic constraints

The constraint reformulations above are best applied to
situations where the occasional violation of a constraint can

(a) be accepted, and (b) makes physical sense. This is the
case for the transmission line limits modeled by f

k

(D, e, �)
above, since the true operating capabilities of many such
lines depend on their temperature, which can cause the line
to sag, rather than a hard current rating.

The same consideration must be employed more selec-
tively when considering the operation of devices such as
generators and storage units connected to the network, since
these constraints may combine hard limits (for example
a zero power output bound) and soft limits (for example
a generator ramp rate limit). These considerations can be
accommodated by choosing various values for ↵

ij

when
adapting constraints g

ij

(D
i

, e
i

, �); a lower ↵-value corre-
sponds to a lower tolerance for constraint violation.

IV. NUMERICAL EXAMPLE

This section illustrates the method via a numerical exam-
ple. We consider the two-bus network shown in Fig. 1. A
wind farm and a relatively inexpensive thermal generation
unit are connected to bus 1, and a relatively expensive
thermal generation unit and a fixed load are connected to bus
2. Table I shows the network and device parameters in terms
of the notation in Section II. Subsection IV-A illustrates the
relative performance of different approximations described
above, and Subsection IV-B illustrates that the benefit of
using time-coupled reserve policies depends on whether the
line constraint is treated robustly or probabilistically.

Fig. 1. Two bus power network.

TABLE I
NETWORK PARAMETERS (GENERATOR MODELS AS IN [11]).

Device Description
Generator 1 Linear fuel cost $30/MWh

Quadratic fuel cost $0.05/(MWh)2
Quadratic ramping cost $1/(MWh)2

Generator 2 Linear fuel cost $60/MWh
Quadratic fuel cost $0.10/(MWh)2

Wind infeed See description in Table II
Load Fixed at 1,000 MW, no uncertainty
Transmission line Maximum rating 950 MW

A. Static case study

We first consider a single-stage stochastic optimal power
flow problem to illustrate the basic tradeoff between cost
and network security in terms of frequency and severity of
constraint violation. The wind farm has maximum capacity
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700 MW and the forecasted output for the next time step is
500 MW. For illustrative purposes, the forecast errors are
drawn from a Gaussian probability distribution with zero
mean and a standard deviation of 37.5 MW. The fixed load
at bus 2 is 1000 MW. The transmission line from bus 1 to
bus 2 has a maximum rating of 950 MW. In this example,
we consider only this line constraint; there are no other local
device constraints.

In this example, there is a trade-off between cost and
system security. To minimize cost, one would like to use
a larger share of the less expensive thermal generation unit
at bus 1, but committing too much from this generator may
overload the line if the wind output is much higher than
expected. In particular, if the line constraint is ignored, then
the optimal affine policies are

e1 = 433, D1 = �0.67, e2 = 67, D2 = �0.33, (20)

which means that the nominal injections from generators
1 and 2 are 433 MW and 67 MW, respectively, and that
generators 1 and 2 agree to adjust their injections in the
event of wind power excess or shortage by 67% and 33%
of forecast error, respectively. Under this policy, the line
constraint is violated with a frequency of about 9% by about
6.5 MW on average.

If the constraints are enforced robustly as in [11] based
on an assumption that the forecast error is upper bounded
by 200 MW, then the optimal affine policies are

e1 = 431.6, D1 = �0.91, e2 = 68.4, D2 = �0.09.
(21)

The nominal injections are almost the same, but more of
the excess wind power is absorbed by reducing the output
of the cheaper generator 1 in order to robustly satisfy
the constraint, leading to increased cost. Under this policy,
the line constraint is never violated, but the optimal cost
associated with the reserve policies is increased by 26% over
the case in which the line constraint is ignored.

As explained previously, the line constraint can be soft-
ened to reduce costs by allowing limited violation in a
specific probabilistic sense, with a limit on the frequency of
violation and a penalty on the severity of violation. The trade-
off can be explicitly adjusted by changing the parameter ↵
which governs the allowable frequency of violation and by
choosing the type of constraint reformulation, and one can
effectively interpolate between ignoring the line constraint
and enforcing it robustly.

Fig. 2 shows how the optimal cost varies with the con-
straint violation parameter ↵ in relation to the no constraint
and robust cases for four different stochastic reformulations
of the line constraint: a chance constraint assuming that the
forecast error is Gaussian using (11), the Markov approxi-
mation using (14) and evaluating the expectation with 1000
samples, the traditional Chebyshev approximation using (15),
and a chance constraint using the scenario approach1. The
specified constraint violation level for the Gaussian chance

1We used a standard scenario approach with confidence parameter 10�6

described in [2]. There are more sophisticated variations that can be used to
reduce conservatism by over-sampling and strategically removing samples.

constraint matches the actual violation level since the un-
certainty used in this example is Gaussian (for ↵ = 0.09,
the cost is the same as ignoring the constraint); however,
if the uncertainty is not Gaussian, then this constraint can
underestimate the risk. As expected, the Markov approxima-
tion is more conservative than the Gaussian chance constraint
because it includes a penalty on severity of violation, but it is
only marginally more conservative. It is less smooth than the
Gaussian and Chebyshev cases due to the sample estimation
of the expectation. The Chebyshev approximation is more
conservative still and can even be more conservative than the
robust case for small values of ↵ since uncertainty bounds
are not explicitly accounted for. The chance constraint with
scenario approach is also less smooth than the Chebyshev
and Gaussian cases due to sampling and in this case is
more conservative than the Markov case even though it gives
weaker probabilistic guarantees.
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Fig. 2. Optimal cost of operating reserves vs. the constraint violation
parameter for different stochastic reformulations of the line constraint.

Each type of constraint reformulation gives a different
cost and different probabilistic guarantees and penalties on
constraint violations. The most appropriate reformulation
depends on many factors, and it is possible to mix and match
different constraint types for different constraints.

B. Dynamic case study

A synergy between the use of time-coupled reserve de-
cisions and the use of approximated chance constraints is
revealed when the two are combined. We demonstrate this
by considering a dynamic case study in which expected
short-run operating costs are minimized over a limited time
horizon.

As demonstrated in [11], it is instructive to compare the
cost outcomes under two different structural restrictions on
the matrices D

i

(note that these matrices were scalars in the
static case study above):

1) Diagonal-only: [D
i

]

j,k

= 0 for j 6= k. This represents
the best possible linear, time-decoupled response to
uncertainty that could be planned.
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TABLE II
SPECIFICATION OF UNCERTAIN WIND INFEED

Static case study, Section IV-A:
Nominal infeed 500 MW.
Stochastic case: E[�] = 0, ⌅ = 37.52 MW2.
Robust case: �  200 MW

Dynamic case study, Section IV-B:
Nom. infeed [500.0 584.1 590.9 514.1 424.3 404.1 472.1 565.7] MW.
Stochastic case: E[�] = 0, ⌅ (in units 103 MW2):2

666666664

1.05 1.02 1.04 1.06 1.07 1.02 1.06 1.07
1.02 2.01 2.00 2.02 2.04 1.97 2.02 1.99
1.04 2.00 3.07 3.17 3.18 3.10 3.14 3.09
1.06 2.02 3.17 4.34 4.36 4.25 4.25 4.20
1.07 2.04 3.18 4.36 5.49 5.36 5.36 5.28
1.02 1.97 3.10 4.25 5.36 6.26 6.24 6.19
1.06 2.02 3.14 4.25 5.36 6.24 7.31 7.25
1.07 1.99 3.09 4.20 5.28 6.19 7.25 8.25

3

777777775

Robust case: �3 · [⌅1/2]k,k  �k  3 · [⌅1/2]k,k MW, 8k.

TABLE III
COSTS FOR DYNAMIC CASE STUDY

Test Robust Gaussian chance constraint, ↵ = 0.09
Full LT policy $64,489 $49,437

Diagonal policy $65,183 $49,991
Cost increase +0.45% +1.01%

2) Full lower-triangular: [D
i

]

j,k

= 0 for k > j. This rep-
resents the best causal, linear, time-coupled response
to uncertainty that could be planned.

The expected operating costs were minimized given a
current operating point of 250 MW for both generators, and
the nominal wind infeed forecast and uncertainty statistics
given in Table II (⌅ was generated with the Monte Carlo
model used in [11]). The following cases were compared:
(1) the line flow constraint is enforced robustly assuming
the uncertainty � is restricted to the set � described in Table
II; (2) the line flow constraint is enforced in a probabilistic
set, using the Gaussian-assumption chance constraint.

The results are shown in Table III. The benefit of allowing
full lower-triangular decision rules was 0.45% in the robust
case, and 1.01% in the Gaussian chance constraint case. In
other words, the benefit of using a time-coupled response
to uncertainty was greater when the constraint was treated
probabilistically as opposed to robustly.

Results for the different approximations of the chance
constraint are shown in Fig. 3. While the Markov and
Gaussian-assumption approaches report a consistent benefit
for time-coupled responses to uncertainty, the Chebyshev
approximation brings about a lower relative benefit from
time-coupled policies at lower risk levels.

V. CONCLUSIONS AND OUTLOOK

A chance-constrained stochastic optimal power flow prob-
lem was formulated, for which a family of convex approxi-
mations can be used in order to trade off cost against security.
It was shown that the Chebyshev CVaR approximation often
leads to conservative results but has computational advan-
tages because it can be expressed as a single second order
cone constraint. In contrast, the restriction to a Gaussian
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Fig. 3. Relative benefit of time-coupled response to uncertainty observed
under different approximate treatments of the chance constraint, for different
risk parameters ↵.

assumption on the uncertainty leads to lower-cost solutions
at the expense of realism (the uncertainty may be more
heavy-tailed than a Gaussian and therefore constraints may
be violated more frequently). The sampling-based Markov
approach offers a good approximation of the constraint but
at a potentially high computational cost. The dynamic case
study demonstrated that the apparent benefit of planning a
time-coupled response to uncertainty depends rather strongly
on how the problem’s constraints are approximated.
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