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Abstract—This paper addresses the n-vehicle formation shape
maintenance problem in the plane. The objective is to design
decentralized motion control laws for each vehicle to restore
formation shape in the presence of small perturbations from the
desired shape. Formation shape is restored by actively controlling
a certain set of interagent distances, and we assign the task
of controlling a particular interagent distance to only one of
the involved agents. We restrict our attention to a class of
directed information architectures called minimally persistent
leader-remote-follower. The nonlinear closed-loop system has a
manifold of equilibria, which implies that the linearized system
is nonhyperbolic. We apply center manifold theory to show local
exponential stability of the desired formation shape. Choosing
stabilizing gains is possible if a certain submatrix of the rigidity
matrix has all leading principal minors nonzero, and we show
that this condition holds for all leader-remote-follower formations
with generic agent positions. Simulations are provided.

I. INTRODUCTION

There has been much interest in cooperative control of
autonomous vehicle formations and mobile sensor networks.
Advances in computation, communication, sensing, and con-
trol technologies have made possible systems in which mul-
tiagent cooperation allows not only improved capabilities, but
also entirely new capabilities over what can be achieved with
a single agent. The motivation for studying such systems
comes from both the potential for scientific and engineering
applications and the unique technical challenges that such sys-
tems present. Applications include teams of UAVs performing
military reconnaissance and surveillance missions in hostile
environments [1], satellite formations for high-resolution Earth
and deep space imaging [2], and submarine swarms for
oceanic exploration and mapping [3]. For large formations,
an overarching requirement is that the formation operates in
a decentralized fashion, where each agent operates using only
local information (apart from information such as waypoints
which may be provided to the leader(s) in a formation).
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A basic task for autonomous vehicle formations is formation
shape control. Precisely controlled formations can maintain
mobile sensing agents in optimal sensing configurations. We
study the n-vehicle formation shape maintenance problem
for designing decentralized control laws for each vehicle to
restore a desired formation shape in the presence of small
perturbations from the nominal shape. Formation shape is
restored by actively controlling a certain set of interagent
distances.

The information architecture is modeled as a graph G(V,E)
where V is a set of vertices representing agents and E is a set
of edges representing information flow amongst the agents. For
the formation shape control task, the edge set represents the set
of interagent distances to be actively held constant via control
of individual agent motion. If a suitably large and well-chosen
set of interagent distances is held constant, then all remaining
interagent distances will be constant as a consequence, thus
maintaining formation shape. Just which interagent distances
should be held constant is the topic of rigidity theory [4], [5].

We assign the task of controlling a particular interagent
distance to only one of the involved agents, resulting in a
directed information architecture (as opposed to assigning it
to both agents which results in an undirected information
architecture). In this case, G is a directed graph where a
direction is assigned to every edge in E with an outward
arrow from the agent responsible for controlling the interagent
distance. In order to maintain formation shape, G is required
to be persistent. The persistence concept includes rigidity, but
also requires a further condition called constraint consistence

that precludes certain directed information flow patterns [5].
In [6], Yu et al consider minimally persistent leader-first-

follower (LFF) formations with cycles. Note that LFF is not
an acyclic formation in general like the type considered in
[7]. Yu et al present decentralized nonlinear control laws to
restore formation shape in the presence of small distortions
from the desired shape. They show that choosing stabilizing
control gains is possible if a certain submatrix of the rigidity

matrix has all leading principal minors nonzero and prove
that all minimally persistent LFF formations generically obey
this principal minor condition. In [8], Krick et al present
decentralized gradient-based control laws for a minimally rigid
formation (with undirected information architecture) to restore
formation shape in the presence of small distortions from the
desired shape. Since the linearized system is nonhyperbolic,
they utilize center manifold theory to prove local exponential
stability.

We consider formations in the plane with minimally per-
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sistent leader-remote-follower (LRF) structure. After an initial
perturbation from the desired shape, the leader remains station-
ary and the remaining agents move to restore the distances
they must meet. We present decentralized nonlinear control
laws analogous to [6]. The nonlinear closed-loop system has
a manifold of equilibria, i.e. that the linearized system is
nonhyperbolic. For LFF formations, [6] obtains a hyperbolic
system via the choice of a particular global coordinate system
and prove local stability through eigenvalue analysis. For LRF
formations, this choice is not possible and so we apply a
new result based on center manifold theory to show local
exponential stability of the desired formation shape. Again,
it is possible to choose stabilizing control gains whenever
a certain submatrix of the rigidity matrix has all leading
principal minors nonzero, and we show that this condition
holds for leader-remote-follower formations as well.

Section II describes minimally persistent formations and
center manifold theory. Section III describes the nonlinear
equations of motion and shows how center manifold theory can
be applied to prove that the desired formation shape is locally
exponentially stable. Section IV shows that the principal minor
condition holds for LRF formations. Section V presents a
numerical simulation to demonstrate the performance of our
algorithm. Section VI gives concluding remarks and future
research directions.

II. BACKGROUND

In this section, we review (a) the structure of information
architectures for minimally persistent formations, and (b) cen-
ter manifold theory, which offers tools for analyzing stability
of dynamical systems near nonhyperbolic equilibrium points.

A. Minimally Persistent Formations

Let F (G, p) denote a formation of n agents in the plane.
Suppose G(V,E) is a directed graph that represents the
information architecture where the vertex set V represents
the agents and the edge set E represents the set of intera-
gent distances to be controlled to maintain formation shape.
p : V → ℜ2n is a position function mapping each vertex to a
position in the plane. A formation is called minimally persis-

tent if the information architecture G is minimally persistent,
and G is minimally persistent if it is minimally rigid and con-

straint consistent. A minimally rigid graph on n vertices has
2n−3 edges which are well-distributed according to Laman’s
Theorem [9]. A constraint consistent graph precludes certain
directed information flow patterns that make it impossible to
control formation shape [5].

We consider a particular type of minimally persistent leader-
follower formation called leader-remote-follower (LRF). In
minimally persistent leader-follower formations, one agent (the
leader) has zero distances to maintain and thus two degrees
of freedom (DOF), one agent (the first follower or remote
follower) has only one distance to maintain and thus one DOF,
and all other agents (the ordinary followers) have two distances
to maintain and thus zero DOF. If the agent with one DOF

Leader Leader

Remote Follower

First Follower

(b)(a)

Fig. 1. Examples of LFF and LRF formations with four agents: (a) in LFF
formations the one-DOF agent is connected to the leader, and (b) in LRF
formations the one-DOF agent is not connected to the leader.

is connected to the leader by an edge in G, then we call the
formation leader-first-follower (LFF). Otherwise, we call the
formation leader-remote-follower (LRF). Figure 1 illustrates
examples LFF and LRF formations.

The distinction between LFF and LRF formations is impor-
tant in the stability analysis for the formation shape mainte-
nance control laws. For LFF formations one can define a global
coordinate basis to obtain a hyperbolic reduced-order system
in which local stability requires only eigenvalue analysis of
the linearized system [6]. This is so because in the framework
of both [6] and this paper, after its ”small” initial move, the
leader stops moving. Thereafter, [6] forces the first follower
to move in the direction of the leader. Thus the direction
of movement of the first follower in the LFF framework is
fixed. This direction defines the stated coordinate basis in
[6]. In contrast, for LRF formations the direction associated
with the remote follower’s DOF is not fixed in space since
it is following an agent other than the leader to satisfy its
distance constraint. Thus, the device used in [6] to obtain a
global coordinate system that provides a hyperbolic reduced-
order system no longer applies. Consequently, one cannot
draw conclusions about the local stability of the nonlinear
system near the desired formation shape by analyzing the
linearized system alone; more sophisticated techniques are
needed. Center manifold theory provides tools for determining
stability near nonhyperbolic equilibrium points.

B. Center Manifold Theory

Standard treatments of center manifold theory can be found
in e.g [10], [11], or [12]. These treatments concentrate on
isolated equilibria. In the formation shape maintenance prob-
lem, the dynamic system has a manifold of non-isolated
equilibrium points corresponding to the desired formation
shape. In [13], Malkin proves a local stability result where
trajectories converge to a point on an equilibrium manifold.
More general results for equilibrium manifolds are presented
in [14]. In [8], the importance of compactness for proving
stability is emphasized. Here, we state a new result for
stability of equilibrium manifolds that does not explicitly need
compactness.

Consider the nonlinear autonomous dynamic system

ẋ = f(x), x ∈ ℜn (1)
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where the function f is Cr, r ≥ 2 almost everywhere
including a neighbourhood of the origin. Suppose the origin is
an equilibrium point and that the Jacobian of f (we will use
the notation Jf (x)) at the origin has m eigenvalues with zero
real part and n−m eigenvalues with negative real part. Then
(1) can be transformed into the following form

θ̇ = Acθ + g1(θ, ρ)

ρ̇ = Asρ + g2(θ, ρ), (θ, ρ) ∈ ℜm ×ℜn−m (2)

where Ac is a matrix having eigenvalues with zero real parts,
As is a matrix having eigenvalues with negative real parts, and
the functions g1 and g2 satisfy

g1(0, 0) = 0, Jg1
(0, 0) = 0

g2(0, 0) = 0, Jg2
(0, 0) = 0. (3)

Definition 1. An invariant manifold is called a center manifold
for (2) if it can be locally represented as follows

W c(0) = {(θ, ρ) ∈ U ⊂ ℜm ×ℜn−m|ρ = h(θ)} (4)

for some sufficiently small neighbourhood of the origin U

where the function h satisfies h(0) = 0 and Jh(0) = 0.

We have the following standard result.

Theorem 1 ([12]). Suppose there exists a Cr center manifold

for (2) with dynamics restricted to the center manifold given by

the following m-dimensional nonlinear system for sufficiently

small ξ

ξ̇ = Acξ + g1(ξ, h(ξ)), ξ ∈ ℜm. (5)

If the origin of (5) is stable (asymptotically stable) (unstable),

then the origin of (2) is stable (asymptotically stable) (unsta-

ble). Suppose the origin of (5) is stable. Then if (θ(t), ρ(t)) is

a solution of (2) for sufficiently small (θ(0), ρ(0)), there is a

solution ξ(t) of (5) such that as t → ∞

θ(t) = ξ(t) + O(e−γt)

ρ(t) = h(ξ(t)) + O(e−γt) (6)

where γ is a positive constant.

Thus, if a center manifold exists then to determine stability
near the nonhyperbolic equilibrium point of (1), one can
analyze a reduced-order system, viz. (5). If the origin of (5)
is stable, then the solutions of the original system converge
exponentially to a trajectory on the center manifold.

We have the following result when there is a manifold
of equilibria. Observe that although the theorem postulates
the existence of a center manifold, it makes no explicit
compactness assumptions, in contrast to [8].

Theorem 2. Suppose there is an m-dimensional (m > 0)

manifold of equilibrium points M1 = {x ∈ ℜn|f(x) = 0}
for (1) that contains the origin. Suppose at the origin the

Jacobian of f has m eigenvalues with zero real part and

n−m eigenvalues with negative real part. Then M1 is a center

manifold for (1), i.e. there exists a function h1 : ℜm → ℜn−m

such that h1(0) = 0, Jh1
(0) = 0 and in a suitably small

neighborhood U of the origin, the equilibrium set can be

represented as ρ = h1(θ). Further, there are neighborhoods

Ω1 and Ω2 of the origin such that M2 = Ω2 ∩ M1 is locally

exponentially stable1 and for each x(0) ∈ Ω1 there is a point

q ∈ M2 such that limt→∞x(t) = q.

In our problem, the manifold of equilibria will correspond
to formation positions with the desired shape. In the plane,
the manifold is three-dimensional due to the three possible
Euclidean motions of the formation in the plane (two transla-
tional and one rotational). In the following section, we develop
equations of motion and apply the results in this section to
show local exponential stability of the desired shape.

III. EQUATIONS OF MOTION

In this section, we present equations of motion for the
formation shape maintenance problem and study the local
stability properties of the desired formation shape. Suppose the
formation is initially in the desired shape. Then the position
of each agent is perturbed by a small amount. The leader
then remains stationary, and the remaining agents move under
distance control laws to meet their distance specifications in
order to restore the desired formation shape. This shape is
realized by every point on a three-dimensional equilibrium
manifold. We consider a reduced-order system and show that
Theorem 2 can be directly applied to prove local exponential
convergence to the invariant manifold.

A. Nonlinear Equations of Motion

Consider a minimally persistent formation F (G, p) of n
agents in the plane where the leader and remote follower are
agents n and n−1, respectively. We define the rigidity function

r(p) = [..., ||pj − pk||
2, ...]T (7)

where the ith entry of r, viz. ||pj − pk||2, corresponds to
an edge ei ∈ E connecting two vertices j and k. Let
d = [..., d∗2jk, ...] represent a vector of the squares of the
desired distances corresponding to each edge. We assume that
there exist agent positions p such that p = r−1(d), i.e. the
set of desired interagent distances corresponds to a realizable
formation. Formation shape is controlled by controlling the
interagent distance corresponding to each edge.

Following [6] and [8], we adopt a single integrator model
for each agent:

ṗi = ui. (8)

Consider an ordinary follower agent denoted by i that is
required to maintain constant distances d∗ij and d∗ik from
agents j and k, respectively, and can measure the instantaneous
relative positions of these agents. We use the same law as in
[6] for ordinary followers:

ui = Ki(p
∗

i − pi) = Kifi(pj − pi, pk − pi, d
∗

ij , d
∗

ik) (9)

1Saying that M2 is locally exponentially stable means that there is a single
exponent γ such that all trajectories converge to M2 from the neighbourhood
Ω1 at least as fast as e−γt. One could envisage a non-compact M2 where
any single trajectory approaches M1 exponentially fast but no single γ could
be found applicable to all trajectories.
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where Ki is a gain matrix and p∗i is the instantaneous target
position for agent i in which the distances from agents j and
k are correct. Since the perturbations from the desired shape
are small, the instantaneous target positions are well-defined
and unique. For the remote follower, we have

un−1 = Kn−1(p
∗

n−1 − pn−1)

= Kn−1

||pl − pn−1||− d∗n−1,l

||pl − pn−1||
(pl − pn−1) (10)

where Kn−1 is a gain matrix and agent l is the agent from
which the remote follower is maintaining the constant distance
d∗n−1,l. For the leader, we have

ṗn = 0. (11)

Equations (9)-(11) represent the dynamics of the autonomous
closed-loop system, which may be written in the form

ṗ =
[

fT (p) 0
]T

(12)

where f : ℜ2n → ℜ2n−2 is smooth almost everywhere
including a neighbourhood of the desired formation.

There is a manifold of equilibria for (12) given by

Ψ = {p ∈ ℜ2n|p = r−1(d)} (13)

corresponding to formations where all distance constraints are
satisfied. The manifold Ψ is a three-dimensional manifold
because a formation with correct distances has three degrees
of freedom associated with the planar Euclidean motions (two
for translation and one for rotation). Given these degrees of
freedom, it is evident that Ψ is not compact. In the following,
we define a reduced-order system by fixing the position of the
leader and obtain a compact equilibrium manifold.

B. Linearized Equations

We represent the position of the formation as p(t) = δp(t)+
p̄, where p̄ is any equilibrium position with desired shape close
to the perturbed formation, and the displacements δp(t) are
assumed to be small. In particular, for agent i we have pi(t) =
δpi(t) + p̄i where p̄i corresponds to positions of agent i that
meet its distance constraints. Let pi(t) = [xi(t), yi(t)]T , p̄i =
[x̄i, ȳi]T , and δpi(t) = [δxi(t), δyi(t)]T in a global coordinate
system to be defined later.

From [6], the linear part for the ordinary followers (i =
1, ..., n − 2) is given by

[

δ̇xi

δ̇yi

]

= KiR
−1
ei Rij,ik

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

δxi

δyi

δxj

δyj

δxk

δyk

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(14)

where

Rei =

[

(p̄j − p̄i)T

(p̄k − p̄i)T

]

Rij,ik =

[

(p̄i − p̄j)T (p̄j − p̄i)T 0
(p̄i − p̄k)T 0 (p̄k − p̄i)T

]

.

Similarly, the linear part for the remote follower is given by

[

δ̇xn−1

δ̇yn−1

]

= Kn−1R
−1
e,n−1R(n−1)l,00

⎡

⎢

⎢

⎣

δxi

δyi

δxl

δyl

⎤

⎥

⎥

⎦

(15)

where

Re,n−1 =

[

x̄l − x̄n−1 ȳl − ȳn−1

ȳn−1 − ȳl x̄l − x̄n−1

]

R(n−1)l,00 =

[

(p̄n−1 − p̄l)T (p̄l − p̄n−1)T

0 0

]

.

The leader equations are of course

[

δ̇xn δ̇yn

]T
= 0. (16)

Putting the equations together, we have

δ̇p = KR−1
e

[

RT 0
]T

δp (17)

where K = diag[K1, ...,Kn−1, 0] with 2 × 2 Ki to be
specified, Re = diag[Re1, ..., Re,n−1, I2] with each block
being a 2×2 submatrix of the rigidity matrix R ∈ ℜ2n−3×2n.

C. A Reduced-Order System

We define a reduced-order system by neglecting the sta-
tionary leader dynamics since ṗn(t) = 0. Let the global
coordinate basis have the leader at the origin and let the x-axis
be an arbitrary direction. Let z = [p1, ..., pn−1]T ∈ ℜ2n−2,
z̄ = [p̄1, ..., p̄n−1], and z = δz + z̄ where δz is assumed to
be small. The reduced-order nonlinear system may then be
written in the form

ż = f̄(z). (18)

The rigidity function associated with (18) is rz(z) = [..., ||zj−
zk||2, ...]T where the ith entry of rz corresponds to an edge
ei ∈ E connecting two vertices j and k. If a vertex l is
connected to the leader, then the corresponding entry in rz

is ||zl||2. The equilibrium manifold associated with (18) is

Ψz = {z ∈ ℜ2n−2|z = r−1
z (d)}. (19)

Ψz is a one-dimensional manifold that can be characterized
by a rotation around the leader since the the position of the
leader is fixed. Therefore, since Ψz is a closed and bounded
subset of Euclidean space, it is compact.

Expanding in a Taylor series about the equilibrium position,
(18) becomes

δ̇z = Jf̄ (z̄)δz + g(δz) (20)

where the first term represents the reduced-order linear system
and the second term represents the nonlinear part of order two
or higher. The reduced-order linear system may be written in
the form

δ̇z = K̃R̃−1
e

[

R̃T 0
]T

δz (21)

where K̃ = diag[K1, ...,Kn−1], R̃e = diag[Re1, ..., Re,n−1],
and R̃ is the submatrix of the rigidity matrix with the last two
columns associated with the leader removed.
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Observe that the Jacobian Jf̄ (z̄) is rank deficient by one
because of the row of zeros below the rigidity matrix. Thus
one of its eigenvalues is zero. Thus, the equilibrium position
is nonhyperbolic, and we can apply center manifold theory
as developed in Section II to determine local stability of the
equilibrium position. Since Jf̄ (z̄) has one zero eigenvalue,
there exists an invertible matrix Q such that

QJf̄ (z̄)Q−1 =

[

0 0
0 As

]

. (22)

where As ∈ ℜ2n−3×2n−3 is a nonsingular matrix. Let
[θ, ρ]T = Qδz where θ ∈ ℜ and ρ ∈ ℜ2n−3. Then (20) can
be written in the form

θ̇ = g1(θ, ρ)

ρ̇ = Asρ + g2(θ, ρ) (23)

where g1 is the first entry of Qg(Q−1[θ, ρ]T ) and satisfies
g1(0, 0) = 0 and Jg1(0, 0) = 0, and g2 is the last 2n−3 entries
of Qg(Q−1[θ, ρ]T ) and satisfies g2(0, 0) = 0 and Jg2(0, 0) =
0. This is in the normal form for center manifold theory.

To apply Theorem 2 we simply need the matrix As to be
Hurwitz. Here, As must be made Hurwitz by a suitable choice
of the gain matrices K1, ...,Kn−1. Showing that such a choice
of gains is indeed possible is the topic of the next section.

IV. CHOOSING GAINS AND THE PRINCIPAL
MINOR CONDITION

In this section we show that it is possible to choose the gain
matrices for each vehicle such that all nonzero eigenvalues of
the linearized system have negative real parts. This is the case
if a certain submatrix of the rigidity matrix has all leading
principal minors nonzero. That this condition is satisfied by
all LRF formations is shown in the following.

Let the gain matrices K1, ...,Kn−1 be chosen as follows:

Ki = ΛiRe,i, i = 1, ..., n − 2

Kn−1 =

(

(x̄l − x̄n−1)2 + (ȳl − ȳn−1)2

x̄l − x̄n−1

)

Λn−1 (24)

where Λi is a diagonal matrix. Then we have

Jf̄ (z̄) = Λ
[

R̃T 0
]T

(25)

where Λ ∈ ℜ2n−2×2n−2 is a diagonal matrix and r is a scalar
multiple of the last row of R̃. The following result gives the
conditions on the singular matrix [R̃T , r]T so Λ can be chosen
such that all nonzero eigenvalues of Λ[R̃T , r]T have negative
real parts.

Theorem 3. Partition the singular matrix [R̃T , r]T as follows
[

R̃
rT

]

=

[

R̂ r12

rT
21 r22

]

(26)

where R̂ is R̃ with the last column removed (r12 is the

last column). Suppose R̂ is a nonsingular matrix with every

leading principal minor nonzero. Then, there exists a diagonal

matrix Λ such that the real parts of all nonzero eigenvalues

of Λ[R̃T , r]T are negative.

The matrix R̂ in Theorem 3 is the rigidity matrix obtained
by removing the two columns corresponding to the leader and
one column corresponding to the remote follower (the same
matrix in question in [6]). We now have the following result.

Theorem 4. Consider any minimally persistent LRF formation

F (G, p) with agents at generic positions. There exists an

ordering of the vertices of F and an ordering of the pair of

outgoing edges for each vertex such that all leading principal

minors of the associated R̂ are generically nonzero.

This result shows that for any LRF formation with generic
agent positions, one can choose the diagonal matrix Λ such
that the real parts of all nonzero eigenvalues of the reduced-
order linearized system (21) are negative (and accordingly
the matrix As in (23) is Hurwitz). The stabilizing gains
are designed for a particular equilibrium point in Ψz . It is
important to note here that the control gains proposed in (24)
may not be stabilizing for all other points in Ψz . Theorem 2
can be directly applied to show that for each z̄ ∈ Ψz , there is
a neighbourhood Ω(z̄) of z̄ such that for any initial formation
position z(0) ∈ Ω(z̄) there is a point z∗ ∈ Ψ such that
limt→∞z(t) = z∗ at an exponential rate, i.e. the formation
converges locally exponentially to the desired shape.

Remark. There is an important distinction to be made be-
tween decentralized design and decentralized implementation.
The control laws in this paper are based on minimally persis-
tent information architectures, and selecting stabilizing gains
requires a suitable ordering of the vertices and edges. There-
fore, the design of our control laws is inherently centralized.
However, persistent information architectures provide a basis
from which we can design control laws with decentralized
implementation. Once the design is established, our control
laws require only local information.

V. SIMULATION

In this section, we demonstrate the performance of our
algorithm via simulation. Figure 2 shows a LRF formation in
the plane where agents 1 and 2 are ordinary followers, agent
3 is the remote follower, and agent 4 is the leader. Suppose
the agents are in the desired formation shape in the position
p̄ = [0.3123,−0.1574, 0.7359, 0.5710,−0.0609, 0.6901, 0, 0].
We note that if the gain matrices are all chosen to be
identity, the nonzero eigenvalues of the linearized system are
{−1.5363±0.9289i, 0.0726,−1,−1}, which implies instabil-
ity. Suppose the gain matrices are chosen with the structure
given by (24) where the diagonal multipliers are

Λ1 =

[

−2 0
0 2

]

, Λ2 =

[

−2 0
0 −1

]

, Λ3 =

[

2 0
0 0.5

]

.

(27)
Then the nonzero eigenvalues of the linearized system are
given by {−1.9521± 0.3196i,−0.2521± 0.3886i,−0.7532},
and the desired formation shape is stable via the analysis in
the previous sections. Figure 3 shows the agent trajectories
in the plane under the formation shape maintenance control
laws. The desired formation shape is restored, though not

Control of Minimally Persistent Leader-Remote-Follower Formations in the Plane TuB4.2 

2442



−0.2 0 0.2 0.4 0.6 0.8

−0.2

0

0.2

0.4

0.6

0.8

x position

y 
p

o
si

tio
n

4

1

3

2

Leader

Remote Follower

Fig. 2. LRF formation in unstable agent positions for identity gain.
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Fig. 3. Agent trajectories in the plane: the circles represent the initial desired
formation shape, the triangles represent the perturbed agent positions, and the
X’s represent the final agents positions under the formation shape maintenance
control laws. The desired shape has been restored. The leader does not move.

to the initial unperturbed formation. Figure 4 shows that the
interagent distance errors all converge to zero.

VI. CONCLUDING REMARKS

In this paper, we have addressed the n-vehicle formation
shape maintenance problem for leader-remote-follower for-
mations. We presented decentralized nonlinear control laws
that restore desired formation shape in the presence of small
perturbations from the nominal shape. The nonlinear system
has a manifold of equilibria, which implies that the linearized
system is nonhyperbolic. We applied center manifold theory to
show local exponential stability of the equilibrium formation
with desired shape. We have also shown that a principal minor
condition holds for LRF formations, which allows a choice of
stabilizing gain matrices. Finally, we demonstrated our results
through numerical simulation.

There are many directions for future research. First, the
stability results here are local, and an immediate task would
be to determine the size of the region of attraction. Second,
also of interest is the formation shape maintenance problem
for a separate class of minimally persistent formations called
Coleader in which three agents have one DOF and all remain-
ing agents have zero DOF (see [15]). Finally, non-minimally
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Fig. 4. The interagent distance errors, defined as eij = ||pi − pj || − dij ,
all converge to zero, thus recovering the desired formation shape.

persistent formations will eventually be of interest because it
may be desirable to control more than the minimum number of
distances for formation shape maintenance in order to obtain
a level of robustness.

REFERENCES

[1] G. Gu, P. Chandler, C. Schumacher, A. Sparks, and M. Pachter, “Optimal
Cooperative Sensing using a Team of UAVs,” IEEE Transactions on
Aerospace and Electronic Systems, vol. 42, no. 4, pp. 1446–1458, 2006.

[2] R. Smith and F. Hadaegh, “Control of Deep-Space Formation-Flying
Spacecraft: Relative Sensing and Switched Information,” AIAA Journal
of Guidance, Control, and Dynamics, vol. 28, no. 1, pp. 106–114, 2005.

[3] E. Fiorelli, N. Leonard, P. Batta, D. Paley, R. Bachmayer, and D. Fratan-
toni, “Multi-AUV control and adaptive sampling in Monterey Bay,”
IEEE Journal of Oceanic Engineering, vol. 31, no. 4, pp. 935–948,
2006.

[4] W. Whiteley and T. Tay, “Generating isostatic frameworks,” Structural
Topology, vol. 11, pp. 21–69, 1985.

[5] C. Yu, J. Hendrickx, B. Fidan, B. Anderson, and V. Blondel, “Three
and higher dimensional autonomous formations: Rigidity, persistence
and structural persistence,” Automatica, vol. 43, no. 3, pp. 387–402,
2007.

[6] C. Yu, B. Anderson, S. Dasgupta, and B. Fidan, “Control of minimally
persistent formations in the plane,” SIAM Journal on Control and
Optimization, vol. 48, pp. 206–233, 2009.

[7] M. Cao, B. Anderson, A. Morse, and C. Yu, “Control of acyclic
formations of mobile autonomous agents,” in Proceedings of the 47th
IEEE Conference on Decision and Control, Cancun, Mexico, 2008, pp.
1187–1192.

[8] L. Krick, M. Broucke, and B. Francis, “Stabilization of Infinitesimally
Rigid Formations of Multi-Robot Networks,” International Journal of
Control, vol. 82, no. 3, pp. 423–439, 2009.

[9] G. Laman, “On Graphs and Rigidity of Plane Skeletal Structures,”
Journal of Engineering Mathematics, vol. 4, no. 4, pp. 331–340, 1970.

[10] J. Carr, Applications of Centre Manifold Theory. Springer, 1981.
[11] S. Sastry, Nonlinear Systems: Analysis, Stability, and Control. Springer,

1999.
[12] S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and

Chaos. Springer, 2003.
[13] I. Malkin, Theory of stability of motion. United States Atomic Energy

Commission, 1952.
[14] B. Aulbach, Continuous and discrete dynamics near manifolds of

equilibria. Springer-Verlag New York, 1984.
[15] T. Summers, C. Yu, B. Anderson, and S. Dasgupta, “Control of coleader

formations in the plane,” in Submitted to the 48th IEEE Conference on
Decision and Control, Budapest, Hungary, 2009.

Proceedings of the European Control Conference 2009 • Budapest, Hungary, August 23–26, 2009 TuB4.2 

2443


