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Abstract

We study identification of linear systems with multiplicative noise from multiple trajectory data. A least-squares algorithm,
based on exploratory inputs, is proposed to simultaneously estimate the parameters of the nominal system and the covariance
matrix of the multiplicative noise. The algorithm does not need prior knowledge of the noise or stability of the system,
but requires mild conditions of inputs and relatively small length for each trajectory. Identifiability of the noise covariance
matrix is studied, showing that there exists an equivalent class of matrices that generate the same second-moment dynamic of
system states. It is demonstrated how to obtain the equivalent class based on estimates of the noise covariance. Asymptotic
consistency of the algorithm is verified under sufficiently exciting inputs and system controllability conditions. Non-asymptotic
estimation performance is also analyzed under the assumption that system states and noise are bounded, providing vanishing
high-probability bounds as the number of trajectories grows to infinity. The results are illustrated by numerical simulations.
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1 Introduction

The study of stochastic systems with multiplicative noise, i.e., noise multiplying with system states and inputs, has a
long history in control theory [1], but is re-emerging in the context of complex networked systems and learning-based
control. In contrast with the additive noise setting, multiplicative noise has the ability to capture the dependence
of noise on system states and control inputs. This situation occurs in modern control systems as diverse as robotics
with distance-dependent sensor errors [2], networked systems with noisy communication channels [3, 4], modern
power networks with high penetration of intermittent renewables [5], turbulent fluid flow [6], and neuronal brain
networks [7]. Linear systems with multiplicative noise are particularly attractive as a stochastic modeling framework
because they remain simple enough to admit closed-form expressions for stabilization [8] and optimal control [1,9,10].
Identification of linear systems with multiplicative noise needs to be investigated, as a preliminary step of solving
these problems in practice.

The first issue to be addressed is that identification of linear systems with multiplicative noise requires to estimate
not only the nominal system matrices, but also the noise covariance matrix. This stands in contrast to the additive
noise case where the noise covariance matrix has no bearing on the control design and may be omitted during system
identification.
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Xingkang He, and Karl Henrik Johansson), {Benjamin.Gravell,Tyler.Summers}@utdallas.edu (Benjamin Gravell and Tyler
Summers)
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The second issue we address is to perform system identification based on multiple input-state trajectory data, rather
than a single trajectory. Multiple trajectory data arises in two broad situations: 1) episodic tasks where a single
system is reset to an initial state after a finite run time, as encountered in iterative learning control and reinforcement
learning [11]; 2) collecting data from multiple identical systems in parallel, for example, physical experiments [12]
and social processes [13]. For multiple trajectory data, the length of each trajectory may be small, but a large number
of trajectories can be obtained, by virtue of repetition in the case of episodic tasks and parallel execution in that of
multiple identical systems.

1.1 Related Work

For identification of a nominal linear system, recursive algorithms have been developed in the control literature, such
as the recursive least-squares algorithm [14–16]. These can be utilized to identify linear systems with multiplicative
noise provided that certain conditions for noise and system stability hold. Non-asymptotic performance analysis of
identification methods can be found in [17–19]. It has once again attracted much attention from different domains
and been investigated more extensively, because of recent development of random matrix theories, self-normalized
martingales, and so on (see [20–22] and references therein).

For estimation of noise covariance, both recursive and batch methods have been proposed over the last few decades [23],
but most of these methods focus on the additive noise case. In order to estimate multiplicative noise covariance, a
maximum-likelihood approach is introduced in [24], and a Bayesian framework is utilized in [25,26]. These methods,
however, require prior assumptions on the noise distributions, whose incorrectness may worsen the performance of
the algorithms. The papers [27, 28] study stochastic linear quadratic regulator (LQR) design for a special case of
linear systems with multiplicative noise. It is assumed that the multiplicative noise is observed directly so that a
concentration inequality can be obtained for the estimation of the noise covariance. The authors in [29] develop,
concurrently and independently of the present work, finite-sample error bounds associated with simultaneously es-
timating the nomial system parameters and noise covariance matrix, by using single trajectory data, which is the
most relevant work to ours. A self-normalizing (ellipsoidal) bound and a Euclidean (box) bound are provided for the
least-squares estimation, but it is not sure whether the bounds converge to zero under the dynamic system setting.

There is a growing interest in system identification based on multiple trajectory data, along with their applications
in data-driven control [20, 21], due to the powerful and convenient estimator schemes facilitated by resetting the
system. This framework can be applied for both stable and unstable systems, because of the finite duration of
each trajectory. The procedure of collecting multiple trajectories is utilized in [30, 31], to identify finite impulse
response systems. In [20], a framework called coarse-ID control is introduced to solve the problem of LQR with
unknown linear dynamics. The first step of this framework is to learn a coarse model of the unknown linear system,
by observing multiple independent trajectories with finite length of the system. However, only the last input-state
pairs of the trajectories are used in developing theoretical guarantees for the learning task. The performance of a
least-squares algorithm, using all samples of every trajectory, is studied in [22], for estimating partially observed,
possibly open-loop unstable, linear systems.

1.2 Contributions

In this paper we consider the identification of linear systems with multiplicative noise from multiple trajectory data.
Our contributions are three-fold:

1. A least-squares estimation algorithm (Algorithm 1) is proposed to jointly estimate the nominal system matrices
and multiplicative noise covariance from multiple trajectory data. The algorithm does not need prior knowledge
of the noise or stability of the system, but requires mild conditions of inputs, relatively small length for each
trajectory, and the assumption of independent and identically distributed (i.i.d.) noise with finite first and
second moments.

2. Identifiability of the noise covariance matrix is investigated (Propositions 1 and 2). It is shown that there exists
an equivalent class of covariance matrices that generate the same second-moment dynamic of system states. In
addition, it is studied when such equivalent class has a unique element, meaning that the covariance matrix can
be uniquely determined. An explicit expression of the equivalent class is provided so that the noise covariance
can be recovered based on estimates given by the proposed algorithm.

3. Asymptotic consistency of the proposed algorithm is verified (Theorem 1), under sufficiently exciting inputs and
system controllability conditions. Non-asymptotic estimation performance is also analyzed under the assumption
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that the system is bounded, providing vanishing high-probability bounds as the number of trajectories grows
to infinity (Theorems 2 and 3).

The differences between this paper and its conference version [32] are as follows. We study the identifiability of
the noise covariance matrix in detail, demonstrating a framework to recover the equivalent class of the covariance
matrix. Moreover, we give sharper bounds for the required length of each trajectory in Propositions 3 and 4. Finally,
finite sample analysis of the proposed algorithm is provided.

1.3 Outline

The remainder of the paper is organized as follows: In Section 1.4 we provide notations used in the paper. We
formulate the problem in Section 2. In Section 3 the algorithm is introduced and theoretical results are given.
Numerical simulation results are presented in Section 4. In Section 5 we conclude the paper. Some proofs are
postponed to Appendix.

1.4 Notation

We denote the n-dimensional Euclidean space by R
n, and the set of n × m real matrices by R

n×m. Let N stand
for the set of nonnegative integers, and N

+ = N \ {0}. Let [k] := {1, 2, . . . , k}, k ∈ N
+. We use ‖ · ‖ to denote the

Euclidean norm for vectors, and use ‖ · ‖F and ‖ · ‖2 to denote the Frobenius and spectral norm for matrices. The
probability of an event E is denoted by P{E}, and the expectation of a random vector x is represented by E{x}. An
event happens almost surely (a.s.) means that it happens with probability one. Let A×B be the Cartesian product
of sets A and B, i.e., A×B = {(a, b) : a ∈ A, b ∈ B}. For two sequences of real numbers ak and bk 6= 0, k ∈ N

+, we
say ak = O(bk), if there exists a positive constant C such that |ak/bk| ≤ C for all k ∈ N

+.

We use aij or [A]ij to represent the (i, j)-th entry of A ∈ R
n×m. Denote the n-dimensional all-one vector and all-zero

vector by 1n and 0n respectively. The n-dimensional unit vector with i-th component being one is represented by
eni . Denote the n-dimensional identity matrix by In. For two symmetric matrices A,B ∈ R

n×n, A � 0 (A ≻ 0)
means that A is positive semidefinite (positive definite), and A � B (A ≻ B) means A− B � 0 (A−B ≻ 0). For a
matrix A ∈ R

n×n, ρ(A) is used to represent the spectral radius of A. For a symmetric matrix A ∈ R
n, denote its

smallest and largest eigenvalue by λmin(A) and λmax(A) respectively. A block diagonal matrix A with A1, . . . , Ak

on its diagonal is denoted by blockdiag(A1, . . . , Ak).

The Kronecker product of two matrices A ∈ R
m×n and B ∈ R

p×q is represented by A ⊗ B. The full vectorization
of A = [aij ] ∈ R

m×n is found by stacking the columns of A, i.e., vec(A) = (a11 a21 · · · am1 a12 a22 · · · amn)
⊺. The

symmetric vectorization (sometimes called half-vectorization) of a symmetric matrix A ∈ R
n×n is found by stacking

the upper triangular part of the columns of A, i.e., by svec(A) = (a11 a12 a22 · · · a1n a2n · · · ann)
⊺. The inverse

operations of vec(·) and svec(·) are the full matricization matp×q(x) := (vec(Iq)
⊺ ⊗ Ip)(Iq ⊗ x) of a vector x ∈ R

pq

and symmetric matricization smatp(y) of a vector y ∈ R
p(p+1)/2, respectively. Generalizing the vectorization and

matricization operations to a block matrix

B =




B11 B12 · · · B1n

...
...

...

Bm1 Bm2 · · · Bmn


 ∈ R

mp×nq,

where Bij ∈ R
p×q, we define the following matrix reshaping operator F : Rmp×nq → R

mn×pq,

F (B,m, n, p, q) :=[vec(B11) vec(B21) · · · vec(Bm1) · · · vec(B12) vec(B22) · · · vec(Bmn)]
⊺.

Then we have that F (A ⊗ A,m, n,m, n) = vec(A) vec(A)⊺ for A ∈ R
m×n, which demonstrates the correspondence

between the entries of A⊗A and those of vec(A) vec(A)⊺. Note when p = q = 1, F (·) degenerates to vec(·). We also
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define the inverse reshaping operator G : Rmn×pq → R
mp×nq as

G(B,m, n, p, q) :=




matp×q(B1) · · · matp×q(B(n−1)m+1)

matp×q(B2) · · · matp×q(B(n−1)m+2)
...

...

matp×q(Bm) · · · matp×q(Bmn)



,

where B ∈ R
mn×pq, B⊺

i is the i-th row of B. Thus F and G are inverses of each other in the sense that

F (G(A,m, n, p, q),m, n, p, q) = A,

G(F (B,m, n, p, q),m, n, p, q) = B,

for any A ∈ R
mn×pq and B ∈ R

mp×nq. In this way, we have G(vec(A) vec(A)⊺,m, n,m, n) = A⊗ A for A ∈ R
m×n.

Note that both F and G are linear, i.e., F (A+B,m, n, p, q) = F (A,m, n, p, q)+F (B,m, n, p, q) for A,B ∈ R
mp×nq,

and G(A+ B,m, n, p, q) = G(A,m, n, p, q) +G(B,m, n, p, q) for A,B ∈ R
mn×pq.

2 Problem Formulation

We consider linear systems with multiplicative noise

xt+1 = (A+ Āt)xt + (B + B̄t)ut, t ∈ N, (1)

where xt ∈ R
n is the system state, and ut ∈ R

m is the control input, m ≤ n. The system is described by nominal
dynamic matrix A ∈ R

n×n and nominal input matrix B ∈ R
n×m, and incorporates multiplicative noise terms

modeled by i.i.d. and mutually independent random matrices Āt and B̄t, which have zero mean and covariance

matrices ΣA := E{vec(Āt) vec(Āt)
T } ∈ R

n2×n2

and ΣB := E{vec(B̄t) vec(B̄t)
T } ∈ R

nm×nm. The multiplicative
noise is independent of the inputs. Note that if Āt has non-zero mean Ā, then we can consider a system with
nominal matrix [A+ Ā B], as well as noise terms Āt − Ā and B̄t, which satisfies the above zero-mean assumption.
This also holds for the case of B̄t with non-zero mean. The term multiplicative noise refers to that noise, Āt

and B̄t, enters the system as multipliers of xt and ut, rather than as additions. The independence of Āt and B̄t

is assumed for simplicity, and under this assumption the covariance matrix of the entire multiplicative noise is
a block diagonal matrix E{vec([Āt B̄t]) vec([Āt B̄t])

⊺} = blockdiag(ΣA,ΣB). Throughout the paper, we will use

(ΣA,ΣB) ∈ R
n2×n2 ×R

nm×nm to represent this matrix. If Āt and B̄t are dependent, there is an extra but amenable
term on their correlations, E{vec(Āt) vec(B̄t)

⊺}.

As an example of System (1), consider the following system studied in the optimal control literature [8, 10].

xt+1 =

(
A+

r∑

i=1

Aipi,t

)
xt +

(
B +

s∑

j=1

Bjqj,t

)
ut, (2)

where {pi,t} and {qi,t} are mutually independent scalar random variables, with E{pi,t} = E{qj,t} = 0, E{p2i,t} = σ2
i ,

and E{q2j,t} = δ2j , ∀i ∈ [r], j ∈ [s], t ∈ N. It can be seen that Āt =
∑r

i=1 Aipi,t and B̄t =
∑s

j=1 Bjqj,t, where
σi and δj are the eigenvalues of ΣA and ΣB, and Ai and Bj are the reshaped eigenvectors of ΣA and ΣB. These
parameters are necessary for optimal controller design [10]. However, for new systems with unknown parameters, the
key problem is to identify them in the first place. Another example of System (1) is interconnected systems, where
the nominal part captures relations among different subsystems, and multiplicative noise characterizes randomly
varying topologies [33].

Suppose that multiple state-input trajectories {(x(k)
t , u

(k)
t ), 0 ≤ t ≤ ℓ, k ∈ N

+} are available, where {(x(k)
t , u

(k)
t ), 0 ≤

t ≤ ℓ} is the k-th trajectory, and ℓ is the rollout length (index of the final time-step) for every trajectory. The
problem considered in this paper is as follows.

Problem. Given multiple trajectory data {(x(k)
t , u

(k)
t ), 0 ≤ t ≤ ℓ, k ∈ N

+}, estimate the nominal system matrix
[A B] and the noise covariance matrix (ΣA,ΣB).
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3 Least-Squares Algorithm Based on Multiple Trajectory Data

In this section, identifiability of the noise covariance matrix is studied in Section 3.1, paving the way to algorithm
design. Consistency of the algorithm is given by Theorem 1 in Section 3.2. Finally, sample complexity of the algorithm
is studied in Section 3.3, and qualitative results are provided in Theorems 2 and 3.

3.1 Moment Dynamics and Algorithm Design

In this section, we propose a least-squares algorithm to estimate system parameters from multiple trajectory data.
We assume that the sampled trajectory data are collected independently, and refer to each trajectory sample as
a rollout. First of all, we study the effect of multiplicative noise by investigating the moment dynamics of system
states. This relates to an identifiability issue of the noise covariance matrix, which needs to be clarified before stating
the algorithm.

Taking the expectation of both sides of System (1) and letting µt := E{xt} and νt := E{ut}, we obtain the first-
moment dynamic of system states, i.e., the dynamic of E{xt}, as follows,

µt+1 = Aµt +Bνt, t ∈ N. (3)

Likewise, denote the vectorization of the second-moment matrices of state, state-input, and input at time t by
Xt := vec(E{xtx

⊺

t }), Wt := vec(E{xtu
⊺

t }), W ′
t := vec(E{utx

⊺

t }), and Ut := vec(E{utu
⊺

t }). Note that the second
moment matrix E{xy⊺} for two random vectors x and y is different from the second central moment (covariance)
matrix E{(x− E{x})(y − E{y})⊺} = E{xy⊺} − E{x}E{y}⊺, whenever both x and y have nonzero mean.

From the independence of Āt and B̄t, as well as vectorization, the second-moment dynamic of system states is

Xt+1 = (A⊗A)Xt + (B ⊗A)Wt + (A⊗B)W ′
t + (B ⊗B)Ut + E

{
(Āt ⊗ Āt) vec(xtx

⊺

t )
}
+ E

{
(B̄t ⊗ B̄t) vec(utu

⊺

t )
}

= (A⊗A+Σ′
A)Xt + (B ⊗B +Σ′

B)Ut + (B ⊗A)Wt + (A⊗B)W ′
t , t ∈ N, (4)

where Σ′
A = E{Āt ⊗ Āt} ∈ R

n2×n2

and Σ′
B = E{B̄t ⊗ B̄t} ∈ R

n2×m2

. The relation between (ΣA,ΣB) and (Σ′
A,Σ

′
B)

can be illustrated by F (Σ′
A, n, n, n, n) = ΣA and F (Σ′

B, n,m, n,m) = ΣB, where the reshaping operator F (·) is
defined in Section 1.4. As said earlier, if Āt and B̄t are dependent, then there are two extra terms, E{B̄t ⊗ Āt}Wt

and E{Āt ⊗ B̄t}W ′
t , in (4).

Before giving an estimation algorithm, it is necessary to discuss an intrinsic identifiability issue arising in second-
moment dynamic (4). Since E{xtx

⊺

t } is symmetric, Xt has n(n− 1)/2 pairs of identical entries corresponding to the
off-diagonal entries of E{xtx

⊺

t }, i.e., E{xt,ixt,j} = E{xt,jxt,i} for all i, j ∈ [n]. In order to remove the redundant terms
in (4), we refer to binary row- and column-selection matrices, also called elimination and duplication matrices [34].

To begin, notice that the redundant entries of Xt are associated with the index set {(j − 1)n+ i : i, j ∈ [n], i < j}.
Define matrix T1 ∈ R

n2×n2

by replacing the [(j − 1)n+ i]-th row of In2 by (en
2

(i−1)n+j)
⊺ for all i, j ∈ [n] with i < j.

Then, by noticing that E{xt,ixt,j} is the [(j − 1)n+ i]-th entry of Xt, it follows that Xt is invariant under T1, i.e.,
Xt = T1Xt. Furthermore, we define a binary elimination matrix P1 that picks out only the unique entries of Xt as
well as a complementary binary duplication matrix Q1 which in turn reconstructs Xt from the unique representation,

by repeating the redundant entries in the proper order. These matrices are defined explicitly as P1 ∈ R
[n(n+1)/2]×n2

by removing the [(j − 1)n + i]-th row of In2 , i, j ∈ [n] with i < j, and Q1 ∈ R
n2×[n(n+1)/2] by removing the

[(j − 1)n+ i]-th column of T1, i, j ∈ [n] with i < j. Then we may freely convert between the full vectorization (with

redundant entries) Xt and the symmetric vectorization (without redundant entries) X̃t := svec(Xt) by employing
the linear transformations defined by the matrices P1 and Q1:

X̃t = P1Xt, Xt = Q1X̃t.

The same arguments apply to the second moment of input, Ut. That is, Ut has m(m − 1)/2 pairs of identical

entries corresponding to the off-diagonal entries of E{utu
⊺

t }, so we define T2 ∈ R
m2×m2

, P2 ∈ R
[m(m+1)/2]×m2

, and

Q2 ∈ R
m2×[m(m+1)/2] by replacing n by m in the definitions of T1, P1, and Q1, respectively.
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By applying the symmetric vectorization transformations X̃t = P1Xt and Ũt = P2Ut, the unique entries of the
second-moment dynamic (4) can be characterized as

X̃t+1 = P1Xt+1

= P1(A⊗A+Σ′
A)Xt + P1(B ⊗B +Σ′

B)Ut + P1(B ⊗A)Wt + P1(A⊗B)W ′
t

= P1(A⊗A+Σ′
A)Q1P1Xt + P1(B ⊗B +Σ′

B)Q2P2Ut + P1(B ⊗A)Wt + P1(A⊗B)W ′
t

:= (Ã+ Σ̃′
A)X̃t + (B̃ + Σ̃′

B)Ũt +KBAWt +KABW
′
t , (5)

where the penultimate equation follows from T1 = Q1P1 and T2 = Q2P2. In the last equation we introduce these
notations:

Ã := P1(A⊗A)Q1 ∈ R
[n(n+1)/2]×[n(n+1)/2],

Σ̃′
A := P1Σ

′
AQ1 ∈ R

[n(n+1)/2]×[n(n+1)/2],

B̃ := P1(B ⊗B)Q2 ∈ R
[n(n+1)/2]×[m(m+1)/2],

Σ̃′
B := P1Σ

′
BQ2 ∈ R

[n(n+1)/2]×[m(m+1)/2],

KBA := P1(B ⊗A), KAB := P1(A⊗B).

Note that X̃t and Ũt have no redundant entries but are able to capture the second-moment dynamic of system states.

By the definition of Kronecker product, Σ′
A and Σ′

B have the structures shown in (6) respectively.

(k − 1)n+ l (l − 1)n+ k

(i − 1)n+ j

(j − 1)n+ i




...
...

· · · E{[Āt]ik[Āt]jl} · · · E{[Āt]il[Āt]jk} · · ·
...

...

· · · E{[Āt]jk[Āt]il} · · · E{[Āt]jl[Āt]ik} · · ·
...

...




(p− 1)m+ q (q − 1)m+ p


...
...

· · · E{[B̄t]ip[B̄t]jq} · · · E{[B̄t]iq[B̄t]jp} · · ·
...

...

· · · E{[B̄t]jp[B̄t]iq} · · · E{[B̄t]jq[B̄t]ip} · · ·
...

...




, (6)

where i, j, k, l ∈ [n], p, q ∈ [m], and [Āt]ij ([B̄t]ip) is the (i, j)-th entry of Āt ((i, p)-th entry of B̄t). If i = j (k = l),

the corresponding two rows (two columns) coincide. The proposition below demonstrates the entries of Σ̃′
A and Σ̃′

B,
and their correspondence with those of Σ′

A and Σ′
B.

Proposition 1 Denote the (i, j)-th entry of Σ̃′
A by [Σ̃′

A]ij , then it holds that

[Σ̃′
A](i−1)(n−i/2)+i,(k−1)(n−k/2)+k = E{[Āt]ik[Āt]ik}, i, k ∈ [n],

[Σ̃′
A](i−1)(n−i/2)+i,(k−1)(n−k/2)+l = 2E{[Āt]ik[Āt]il}, k < l, i, k, l ∈ [n],

[Σ̃′
A](i−1)(n−i/2)+j,(k−1)(n−k/2)+k = E{[Āt]ik[Āt]jk}, i < j, i, j, k ∈ [n],

[Σ̃′
A](i−1)(n−i/2)+j,(k−1)(n−k/2)+l = E{[Āt]ik[Āt]jl}+ E{[Āt]il[Āt]jk}, i < j, k < l, i, j, k, l ∈ [n].

Denote the (i, j)-th entry of Σ̃′
B by [Σ̃′

B]ij, then it holds that

[Σ̃′
B](i−1)(n−i/2)+i,(p−1)(m−p/2)+p = E{[B̄t]ip[B̄t]ip}, i ∈ [n], p ∈ [m],

[Σ̃′
B](i−1)(n−i/2)+i,(p−1)(m−p/2)+q = 2E{[B̄t]ip[B̄t]iq}, i ∈ [n], p < q, p, q ∈ [m],

[Σ̃′
B](i−1)(n−i/2)+j,(p−1)(m−p/2)+p = E{[B̄t]ip[B̄t]jp}, i < j, i, j ∈ [n], p ∈ [m],

[Σ̃′
B](i−1)(n−i/2)+j,(p−1)(m−p/2)+q = E{[B̄t]ip[B̄t]jq}+ E{[B̄t]iq [B̄t]jp}, i < j, p < q, i, j ∈ [n], p, q ∈ [m].

PROOF. By observing the definitions of Pi and Qi, i = 1, 2, and the structures of Σ′
A and Σ′

B shown in (6), we

can get the expressions of the entries of Σ̃′
A and Σ̃′

B as in the proposition. To determine their positions, note from
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the definition of P1 that all of the [(j − 1)n+ i]-th rows of Σ′
A are removed during the transformation P1Σ

′
A, where

j > i, i, j ∈ [n]. This means that the following rows above the [(i − 1)n + j]-th row of Σ′
A, i ≤ j, i, j ∈ [n], are

removed: (i − 1)n + 1, . . . , (i − 1)n + i − 1, (i − 2)n + 1, . . . , (i − 2)n + i − 2, . . . , n + 1, whose total number is

i(i − 1)/2. Thus, the [(i − 1)n + j]-th rows of Σ′
A becomes the [(i − 1)n + j − i(i − 1)/2]-th row of Σ̃′

A, i.e., the
[(i− 1)(n− i/2) + j]-th row, where i ≤ j, i, j ∈ [n]. Applying the same argument to the columns of Σ′

A and to Σ′
B,

we obtain the correspondence given in the proposition.

Remark 1 The above discussion indicates that Xt is in fact determined by [A B] and [Σ̃′
A Σ̃′

B ]. It also shows that
there exist a set of equivalent covariance matrices in the sense that they generate the same second-moment dynamic
of system states, given nominal part [A B]. This is because the dynamic of Xt = Q1X̃t only depends on [A B] and

[Σ̃′
A Σ̃′

B], and is invariant with respect to (Σ′
1,Σ

′
2) satisfying P1Σ

′
1Q1 = Σ̃′

A and P2Σ
′
2Q2 = Σ̃′

B.

From an entry-wise point of view, E{[Āt]ik[Āt]jl} and E{[Āt]il[Āt]jk}, i 6= j and k 6= l, have a coupled effect
on the second-moment dynamic of system states. One may only estimate the sum of these two entries out of Xt,
rather than their exact values. This is because we do not observe realizations of Āt and B̄t directly, but indirectly
through their effect on system states. Fortunately, some entries of Σ′

A and Σ′
B are identifiable, e.g., E{[Āt]ik[Āt]ik},

the variance of [Āt]ik, and E{[Āt]ik[Āt]jk}, the covariance between entries in the same column. Similar issues also
appear, when estimating covariance matrices, in topics such as Kalman filtering [35, 36]. Critically, since these

identifiable quantities uniquely generate the second-moment dynamic of system states, it suffices to estimate Σ̃′
A and

Σ̃′
B for the purposes of linear quadratic optimal control. This can be verified by expanding the Bellman equation; we

omit the details here to keep the paper concise.

Given (ΣA,ΣB) with ΣA � 0 and ΣB � 0 (then Σ̃′
A = P1Σ

′
AQ1 and Σ̃′

B = P2Σ
′
BQ2), the set of equivalent matrices

mentioned in Remark 1 can be written explicitly as follows, where positive semidefinite conditions are imposed
because ΣA and ΣB are covariance matrices,

S∗(Σ̃′
A) :=

{
ΣA(α) ∈ R

n2×n2

: ΣA(α) � 0, α ∈ R
n2(n−1)2/4

}
,

S∗(Σ̃′
B) :=

{
ΣB(β) ∈ R

nm×nm : ΣB(β) � 0, β ∈ R
nm(n−1)(m−1)/4

}
,

S∗
Σ := S∗(Σ̃′

A)× S∗(Σ̃′
B), (7)

with ΣA(α) := F (Q1Σ̃
′
AQ

⊺

1Dn + Eα, n, n, n, n) and ΣB(β) := F (Q1Σ̃
′
BQ

⊺

2Dm + Eβ , n,m, n,m). Here

Eα =
∑

i,j,k,l∈[n]

i<j,k<l

[
αij,kl

(
en

2

(i−1)n+j − en
2

(j−1)n+i

)(
en

2

(k−1)n+l − en
2

(l−1)n+k

)⊺]
,

Eβ =
∑

i,j∈[n],i<j

p,q∈[m],p<q

[
βij,pq

(
en

2

(i−1)n+j − en
2

(j−1)n+i

)(
em

2

(p−1)m+q − em
2

(q−1)m+p

)⊺]
,

with α = [αij,kl] ∈ R
n2(n−1)2/4, β = [βij,pq] ∈ R

nm(n−1)(m−1)/4, i, j, k, l ∈ [n], p, q ∈ [m], i < j, k < l, p < q, Q1 and
Q2 are given before (5), Dn is an n2-dimensional diagonal matrix with [(i−1)n+ i]-th diagonal entry being 1 and the
rest being 1/2, i ∈ [n], and Dm is an m2-dimensional diagonal matrix with [(p− 1)m+ p]-th diagonal entry being 1
and the rest being 1/2, p ∈ [m]. Note that S∗

Σ is given by two inequalities which depend on α and β respectively. In
fact, these two are linear matrix inequalities [8], since the reshaping operator F is linear. Obviously S∗

Σ is not empty,
because (ΣA,ΣB) is one of its elements. The following examples provide an intuitive idea of the above discussion.

Example 1 Consider System (1) with n = 2 and m = 1, where Xt = [E{xt,1xt,1} E{xt,2xt,1} E{xt,1xt,2}
E{xt,2xt,2}]T . So E{Xt,2Xt,1} and E{Xt,1Xt,2} are identical and have the same dynamic due to (4). Under this
situation,

X̃t = [E{xt,1xt,1} E{xt,2xt,1} E{xt,2xt,2}]T ,

7



P1 =




1 0 0 0

0 1 0 0

0 0 0 1


 , Q1 =




1 0 0

0 1 0

0 1 0

0 0 1



, T1 =




1 0 0 0

0 1 0 0

0 1 0 0

0 0 0 1



, P2 = Q2 = T2 = 1.

According to the above simplification, from

Σ′
A =




σa,11,11 σa,11,12 σa,12,11 σa,12,12

σa,11,21 σa,11,22 σa,12,21 σa,12,22

σa,21,11 σa,21,12 σa,22,11 σa,22,12

σa,21,21 σa,21,22 σa,22,21 σa,22,22



, Σ′

B =
[
σb,11 σb,12 σb,21 σb,22

]T
,

we have

Σ̃′
A =




σa,11,11 2σa,11,12 σa,12,12

σa,11,21 σa,11,22 + σa,12,21 σa,12,22

σa,21,21 2σa,21,22 σa,22,22


 , Σ̃′

B =
[
σb,11 σb,12 σb,22

]T
,

where σa,ij,kl = E{[Āt]ij [Āt]kl}, σb,ij = E{[B̄t]i, [B̄t]j}, and

Ã =




a11a11 a11a12 + a12a11 a12a12

a11a21 a11a22 + a12a21 a12a22

a21a21 a21a22 + a22a21 a22a22


 , B̃ =

[
b1b1 b1b2 b2b2

]T
,

KAB =




a11b1 a12b1

a21b1 a22b2

a21b2 a22b2


 , KBA =




a11b1 a12b1

a11b2 a12b2

a21b2 a22b2


 .

In this example, ΣB is unique, but based on (7) the covariance matrix equivalent to ΣA is given by

ΣA(α) =




σa,11,11 σa,11,21 σa,11,12 σa,11,22 + α

σa,21,11 σa,21,21 σa,21,12 − α σa,21,22

σa,12,11 σa,12,21 − α σa,12,12 σa,12,22

σa,22,11 + α σa,22,21 σa,22,12 σa,22,22



,

where α ∈ R such that ΣA(α) � 0.

Example 2 Consider System (2) with Āt =
∑r

i=1 Aipi,t, B̄t =
∑s

j=1 Bjqj,t. Hence,

ΣA =

r∑

i=1

E{p2i,t} vec(Ai) vec(Ai)
⊺, Σ′

A =

r∑

i=1

E{p2i,t}Ai ⊗Ai, Σ̃′
A =

r∑

i=1

E{p2i,t}P1(Ai ⊗Ai)Q1,

ΣB =

s∑

j=1

E{q2j,t} vec(Bj) vec(Bj)
⊺, Σ′

B =

s∑

j=1

E{q2j,t}Bj ⊗Bj , Σ̃′
B =

s∑

j=1

E{q2j,t}P1(Bj ⊗Bj)Q2.

Suppose that for Ai, i ∈ [r], there exist ki, li ∈ [n] such that [Ai]ki,li 6= 0 and [Aj ]ki,li for all j ∈ [r] \ {i}. That is,
the (ki, li)-th entry of Ai is nonzero but the (ki, li)-th entry of Aj is zero for all j 6= i. Then E{[Āt]ki,li [Āt]ki,li} =
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[Ai]
2
ki,li

E{p2i,t} = [Ai]
2
ki,li

σ2
i . From Proposition 1 we know that σ2

i = E{p2i,t} can be uniquely determined if second-

moment dynamic (4), or Σ̃′
A, is given. A similar conclusion holds for {qj,t}. However there are also situations where

σ2
i cannot be uniquely determined. For instance, assume that r ≥ 2 and for all i ∈ [r], [Ai]11 6= 0 but all other entries

of Ai are zero. Then we only have a single equation
∑r

i=1[Ai]
2
11σ

2
i = [Σ̃′

A]11 for {σ2
i }.

As shown in Example 1, given (ΣA,ΣB) with ΣA � 0 and ΣB � 0, the set S∗
Σ is not empty but may have infinitely

many elements, leading to an unidentifiable issue for entries E{[Āt]ik[Āt]jl} and E{[B̄t]ip[B̄t]jq}, i 6= j, k 6= l, p 6= q,
i, j, k, l ∈ [n], p, q ∈ [m]. The proposition below gives several conditions under which the covariance matrix of the

multiplicative noise can be uniquely determined from [Σ̃′
A Σ̃′

B] or not.

Proposition 2 Given (ΣA,ΣB) with ΣA � 0 and ΣB � 0, Σ̃′
A = P1Σ

′
AQ1 and Σ̃′

B = P2Σ
′
BQ2, the following results

hold.
(i) If n = m = 1, then S∗

Σ has a unique element. If m = 1, then S∗(Σ̃′
B) has a unique element. If n ≥ 2 and ΣA ≻ 0

(resp. m ≥ 2 and ΣB ≻ 0), then S∗(Σ̃′
A) (resp. S

∗(Σ̃′
B)) has infinitely many elements, and as a result, under either

condition, S∗
Σ has infinitely many elements.

(ii) If S∗(Σ̃′
A) has infinitely many elements, then S∗(Σ̃′

A) ∩ TA has a unique element, where

TA :=
{
Σ ∈ R

n2×n2

: γij,klΣ(k−1)n+i,(l−1)n+j + δij,klΣ(l−1)n+i,(k−1)n+j = τij,kl, i < j, k < l, i, j, k, l ∈ [n]
}
,

with fixed constants γij,kl, δij,kl, τij,kl ∈ R and γij,kl 6= δij,kl for all i < j, k < l, i, j, k, l ∈ [n]. The same result holds

for S∗(Σ̃′
B) by modifying the definition of TA according to the dimension of ΣB.

PROOF. The first two conclusions of (i) are trivial. If n ≥ 2, then Σ̃′
A has entries of the form E{[Āt]ik[Āt]jl} +

E{[Āt]il[Āt]jk}. Since ΣA ≻ 0, its minimum eigenvalue is larger than zero. Note that from the definition of S∗(Σ̃′
A)

there exists α∗ such that ΣA = ΣA(α
∗). Because the eigenvalues of a matrix depend continuously on its entries

(Theorem 2.4.9.2 of [37]), ΣA(α
∗ + ε) is still a positive definite matrix for small enough ε > 0. This proves the last

result in (i). From (i), we know that if S∗(Σ̃′
A) has infinitely many elements, then n ≥ 2. To show (ii), just note

that if Σ = vec(Ā) vec(Ā)⊺ for some A ∈ R
n×n, then the [(k − 1)n+ i, (l − 1)n+ j]-th entry of Σ is [Ā]ik[Ā]jl and

the [(l − 1)n + i, (k − 1)n + j]-th entry is [Ā]il[Ā]jk, i 6= j, k 6= l. Hence if γij,kl 6= δij,kl then we have two linearly
independent equations for [Ā]ik[Ā]jl and [Ā]il[Ā]jk (the other one from Proposition 1 is [Ā]ik[Ā]jl + [Ā]il[Ā]jk =

[Σ̃′
A](i−1)(n−i/2)+j,(k−1)(n−k/2)+l). So these entries can be uniquely determined, and the conclusion follows.

Remark 2 The first part of the above proposition shows that if ΣA ≻ 0 or ΣB ≻ 0 and n ≥ m ≥ 2, then it is
impossible to uniquely determine (ΣA,ΣB) only based on second-moment dynamic (5). However the second part
indicates that if we introduce more conditions for the covariance matrix, then all entries of ΣA and ΣB can be
identified. The set TA in fact introduces additional constraints for E{[Āt]ik[Āt]jl}, i 6= j, k 6= l. For example, if
entries in Āt are mutually independent, then ΣA is diagonal and all of its entries except E{[Āt]ik[Āt]ik}, i, k ∈ [n],
are zero. In this case, we have E{[Āt]ik[Āt]jl} − E{[Āt]il[Āt]jk} = 0, i 6= j, k 6= l.

Now we are ready to propose our estimation algorithm. To follow the above discussion and simplify analysis, we
consider a least-squares method based on the first- and second-moment dynamics (3) and (5). Since we do not have
access to the exact moment dynamics, we need to average over multiple independent rollouts to estimate them. To
guarantee persistently exciting inputs, one needs to design their first and second moments in advance, in either a
deterministic or a stochastic way. For example, generate the two moments from standard Gaussian and Wishart
distributions [38], respectively, or set them periodically. The initial states of different rollouts are assumed to be i.i.d.
subject to a same distribution X0 with finite second moment (see Section 3.2.2). The overall algorithm is shown in
Algorithm 1, where the superscript (k) represents the k-th rollout. It should be noted that Algorithm 1 is different
from classic recursive identification algorithms. The recursive least-squares algorithm [14,16], for example, uses only
one trajectory of a system. On the contrary, Algorithm 1 is based on multiple trajectories with finite length.

Based on the estimates ˆ̃Σ′
A and ˆ̃Σ′

B, we can obtain an estimate Ŝ∗
Σ of the equivalent class (7), via replacing Σ̃′

A and

Σ̃′
B in the definition (7) by their estimates. If the linear matrix inequalities are infeasible, i.e., Ŝ∗

Σ = ∅, then one
can project the estimates onto the positive semidefinite cone. However this is unlikely to happen when nr is large,
because of the consistency of Algorithm 1, as shown in the next section.
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Algorithm 1
Multiple-trajectory averaging least-squares (MALS)

1: for t from 0 to ℓ− 1 do
2: Generate νt ∈ R

m and Ūt ∈ R
m×m with Ūt � 0.

3: end for
4: for k from 1 to nr do

5: Generate x
(k)
0 independently from the initial multivariate distribution X0.

6: for t from 0 to ℓ− 1 do
7: Generate u

(k)
t independently from a multivariate distribution with first moment νt and second central

moment Ūt,

8: x
(k)
t+1 = (A+ Ā

(k)
t )x

(k)
t + (B + B̄

(k)
t )u

(k)
t .

9: end for
10: end for
11: for t from 0 to ℓ do
12: Compute

µ̂t :=
1

nr

nr∑

k=1

x
(k)
t ,

ˆ̃Xt :=
1

nr
P1 vec

(
nr∑

k=1

x
(k)
t (x

(k)
t )⊺

)
,

Ŵt :=
1

nr
vec

(
nr∑

k=1

x
(k)
t ν⊺t

)
= vec(µ̂tν

⊺

t ),

Ŵ ′
t :=

1

nr
vec

(
nr∑

k=1

νtx
(k)
t

⊺

)
= vec(νtµ̂

⊺

t ),

Ũt := P2 vec(Ūt + νtν
⊺

t ).

13: end for

14: (Â, B̂) = argmin
(A,B)

{∑ℓ−1
t=0 ‖µ̂t+1 − (Aµ̂t +Bνt)‖22

}
,

15: Compute ˆ̃A = P1(Â⊗ Â)Q1,
ˆ̃B = P1(B̂ ⊗ B̂)Q2, K̂BA = P1(B̂ ⊗ Â), and K̂AB = P1(Â ⊗ B̂), where P1, P2, Q1,

and Q2 are given before (5),

16: ( ˆ̃Σ′
A,

ˆ̃Σ′
B) = argmin

(Σ̃′

A
,Σ̃′

B
)

{∑ℓ−1
t=0 ‖

ˆ̃Xt+1 − [Ã ˆ̃Xt +KBAŴt +KABŴ
′
t + B̃Ũt + Σ̃′

A
ˆ̃Xt + Σ̃′

BŨt]‖22
}
.

3.2 Consistency of Algorithm 1

In this section we analyze the consistency of Algorithm 1 by investigating the moment dynamics (3) and (5).

3.2.1 Moment Dynamics

Note again if we know µt and X̃t, then it is possible to recover the parameters via least-squares as in lines 14-16 in
Algorithm 1. Let

Y := [µℓ · · · µ1], Z :=

[
µℓ−1 · · · µ0

νℓ−1 · · · ν0

]
, C := [Cℓ · · · C1], D :=

[
X̃ℓ−1 · · · X̃0

Ũℓ−1 · · · Ũ0

]
, (8)

where Ct = X̃t−
(
ÃX̃t−1+KBAWt−1+KABW

′
t−1+B̃Ũt−1

)
, 1 ≤ t ≤ ℓ. Then closed-form solutions of the least-squares

problems are

[
Â B̂

]
= YZ⊺(ZZ⊺)†,

[
ˆ̃Σ′
A

ˆ̃Σ′
B

]
= CD⊺(DD⊺)†,
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whereC, D,Y, and Z are defined in (8), and the sign † represents the pseudoinverse. When the inverse matrices exist,

the solutions are identical to true values, that is, [Â B̂] = [A B] and [ ˆ̃Σ′
A

ˆ̃Σ′
B] = [Σ̃′

A Σ̃′
B]. Hence, the first question

towards the consistency of Algorithm 1 is whether the matrices ZZ⊺ and DD⊺ are invertible. As to be shown, this
invertibility can be obtained by designing a proper input sequence, if systems (A,B) and (Ã + Σ̃′

A, B̃ + Σ̃′
B) are

controllable, and the rollout length ℓ is large enough.

Proposition 3 Suppose that ℓ ≥ n + m and (A,B) is controllable. For fixed µ0 ∈ R
n, the matrix Z has full row

rank, and consequently ZZ⊺ is invertible, for almost all [ν⊺0 · · · ν⊺ℓ−1]
⊺ ∈ R

mℓ.

PROOF. See Appendix A.

Remark 3 The above proposition shows that for large enough time step of each rollout, the full row rank of Z can
be guaranteed for almost all [ν⊺0 · · · ν⊺ℓ−1]

⊺ ∈ R
mℓ. In the proof, the controllability of (A,B) plays a key role, similar

to classic results on identification of linear systems [16]. The condition ℓ ≥ n+m is necessary for the invertibility of
ZZ⊺. According to the proposition, ZZ⊺ is invertible with probability one if one randomly generates the first moments
of inputs i.i.d. from a distribution absolutely continuous with respect to Lebesgue measure, e.g., Gaussian distribution
or uniform distribution. This proposition can be seen as a generalization of the single-input case in [39].

Proposition 4 Suppose that ℓ ≥ [n(n + 1) + m(m + 1)]/2 and (Ã + Σ̃′
A, B̃ + Σ̃′

B) is controllable. For fixed

µ0 ∈ R
n and X̃0 ∈ R

n(n+1)/2, the matrix D has full row rank, and consequently DD⊺ is invertible, for almost
all [ν⊺0 · · · ν⊺ℓ−1 svec(Ū0)

⊺ · · · svec(Ūℓ−1))
⊺]⊺ ∈ R

ℓm(m+3)/2, where Ūt is defined in line 2 of Algorithm 1.

PROOF. See Appendix B.

Remark 4 The controllability condition in Proposition 4 reflects the nature of the multiplicative noise, i.e., coupling
between Āt and xt, and that between B̄t and ut. It also indicates that a controllability condition on (5) is necessary to
ensure the successful identification of the covariance matrix. The condition ℓ ≥ [n(n+1)+m(m+1)]/2 is necessary

for the invertibility of DD⊺. As in Algorithm 1, Ũt = svec(Ūt+ νtν
⊺

t ), so random generation of νt and Ūt can ensure
DD⊺ is invertible with probability one.

Corollary 1 Suppose that ℓ ≥ [n(n+1)+m(m+1)]/2, and both (A,B) and (Ã+Σ̃′
A, B̃+Σ̃′

B) are controllable. For

fixed µ0 ∈ R
n and X̃0 ∈ R

n(n+1)/2, the matrices ZZ⊺ and DD⊺ are invertible, for almost all [ν⊺0 · · · ν⊺ℓ−1 svec(Ū0)
⊺

· · · svec(Ūℓ−1))
⊺]⊺ ∈ R

ℓm(m+3)/2, where Ūt is defined in line 2 of Algorithm 1.

Remark 5 From the proof of Propositions 3 and 4, we know that the existence of (ZZ⊺)−1 and (DD⊺)−1 can indeed
be guaranteed with probability one, as long as νt and Ūt, the mean and covariance matrix of the input at time t,
are independently generated from distributions that is absolutely continuous with respect to Lebesgue measure. For
example, the entries of νt are generated i.i.d. from a non-degenerate Gaussian distribution and then Ūt is generated
i.i.d. from a non-degenerate Wishart distribution, 0 ≤ t ≤ ℓ− 1.

3.2.2 Consistency

After the discussion in the previous section, we now assume that the expectations and covariance matrices of inputs
have been generated, and both ZZ⊺ and DD⊺ have been designed to be invertible. The closed-form estimates
generated by Algorithm 1 are

[
Â B̂

]
= ŶẐ⊺(ẐẐ⊺)†, (9)

[
ˆ̃Σ′
A

ˆ̃Σ′
B

]
= ĈD̂⊺(D̂D̂⊺)†, (10)

where

Ŷ :=
[
µ̂ℓ · · · µ̂1

]
, Ẑ :=

[
µ̂ℓ−1 · · · µ̂0

νℓ−1 · · · ν0

]
, (11)
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Ĉ :=
[
Ĉℓ · · · Ĉ1

]
, D̂ :=

[ ˆ̃Xℓ−1 · · · ˆ̃X0

Ũℓ−1 · · · Ũ0

]
, (12)

and Ĉt =
ˆ̃Xt −

( ˆ̃A ˆ̃Xt−1 + K̂BAŴt−1 + K̂ABŴ
′
t−1 +

ˆ̃BŨt−1

)
, 1 ≤ t ≤ ℓ. Here ˆ̃A, ˆ̃B, K̂AB, and K̂BA are estimates

of Ã, B̃, KAB, and KBA, obtained from Â and B̂ given by Algorithm 1. The estimates above depend on the
number of rollouts nr, but we omit it for convenience. Before stating the convergence result, we present the following
assumptions.

Assumption 1 For all rollouts indexed by 1 ≤ k ≤ nr, the below conditions hold.
(i) The rollout length is ℓ ≥ [n(n+ 1) +m(m+ 1)]/2.

(ii) The initial states x
(k)
0 , 1 ≤ k ≤ nr, are i.i.d. subject to the same distribution X0 with finite second moment, and

are independent of the multiplicative noise and inputs.

(iii) {Ā(k)
t , 0 ≤ t ≤ ℓ, 1 ≤ k ≤ nr} and {B̄(k)

t , 0 ≤ t ≤ ℓ, 1 ≤ k ≤ nr}, are i.i.d. sequences respectively and are

mutually independent, both with zero mean and finite second moments; i.e., E{Ā(k)
t } and E{B̄(k)

t } are zero matrices,
and ‖ΣA‖2, ‖ΣB‖2 < ∞.
(iv) The parameters of inputs are given by lines 1-3 of Algorithm 1, and the inputs are generated, according to line 7
of Algorithm 1, independently of the multiplicative noise.
(v) Both ZZ⊺ and DD⊺ are invertible.

Under Assumption 1 the rollouts {x(k)
0 , . . . , x

(k)
l }, 1 ≤ k ≤ nr, are i.i.d., so consistency can be established from

strong law of large numbers.

Theorem 1 (Consistency) Suppose that Assumption 1 holds, then the estimators (9)-(10) are asymptotically con-
sistent, i.e.,

[
Â B̂

]
→ [A B], and

[
ˆ̃Σ′
A

ˆ̃Σ′
B

]
→
[
Σ̃′

A Σ̃′
B

]
,

with probability one as the number of rollouts nr → ∞.

PROOF. See Appendix C.

Remark 6 This theorem indicates that a relatively small rollout length suffices, while consistency is guaranteed by
an increasing number of rollouts. In [29], the estimation of the first and second moments of multiplicative noise is

decoupled, while here the estimate of [Σ̃′
A Σ̃′

B] relies on [Â B̂]. This is because we estimate the covariance matrix of
the noise, which from definition depends on its first moment. Note that we assume that ℓ is fixed and do not consider
the case where ℓ → ∞, since an averaging step is used in Algorithm 1, to simplify the analysis. Study of the case
with increasing rollout length is left to future work.

3.3 Finite-Sample Analysis

In this subsection we present a finite-sample result of Algorithm 1, demonstrating its non-asymptotic behavior. The
existence of multiplicative noise complicates the analysis, so here we introduce additional assumptions for simplicity
to ensure that the states are bounded a.s.

Assumption 2 For all rollouts indexed by 1 ≤ k ≤ nr, the following conditions hold.
(i) The initial state is bounded a.s. for all rollouts 1 ≤ k ≤ nr as

‖x(k)
0 ‖ ≤ cX < ∞.

(ii) The inputs are bounded a.s. for all 0 ≤ t ≤ ℓ− 1 and 1 ≤ k ≤ nr as

‖u(k)
t ‖ ≤ cU < ∞.
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(iii) The multiplicative noise, Ā
(k)
t and B̄

(k)
t , is bounded a.s. for all 0 ≤ t ≤ ℓ− 1 and 1 ≤ k ≤ nr as

‖Ā(k)
t ‖2 ≤ cĀ < ∞, ‖B̄(k)

t ‖2 ≤ cB̄ < ∞.

Remark 7 The assumption of bounded multiplicative noise is reasonable for physical systems, which cannot have
infinite variations. For example, in interconnected systems, the noise represents randomly varying topologies of
subsystems, and is naturally bounded.

Introduce the state- and input-deviation quantities

e
(k)
t := x

(k)
t − E[x

(k)
t ] = x

(k)
t − µt,

d
(k)
t := u

(k)
t − E[u

(k)
t ] = u

(k)
t − νt.

The next proposition is a natural consequence of Assumption 2.

Proposition 5 Under Assumption 2, the following results hold.
(i) The initial state-deviation is bounded a.s. for all rollouts 1 ≤ k ≤ nr as

‖e(k)0 ‖ ≤ cµ < ∞.

(ii) The outer product initial state deviation is bounded a.s. for all rollouts 1 ≤ k ≤ nr as

∥∥∥vec
(
x
(k)
0 (x

(k)
0 )⊺ − E

[
x
(k)
0 (x

(k)
0 )⊺

])∥∥∥ ≤ c∆X .

(iii) The input-deviations are bounded a.s. for all 0 ≤ t ≤ ℓ− 1 and 1 ≤ k ≤ nr as

‖d(k)t ‖ ≤ cν < ∞.

(iv) The Kronecker products of Ā
(k)
t and B̄

(k)
t are bounded a.s. for all 0 ≤ t ≤ ℓ− 1 and 1 ≤ k ≤ nr as

‖Ā(k)
t ⊗ Ā

(k)
t − Σ′

A‖2 ≤ cΣ′

A
,

‖B̄(k)
t ⊗ B̄

(k)
t − Σ′

B‖2 ≤ cΣ′

B
.

Remark 8 This proposition captures the deviations of random components of System (1) from their expectations.
Using the bounds in Assumption 2 one could upper-bound these deviations, for instance,

∥∥∥vec
(
x
(k)
0 (x

(k)
0 )⊺ − E

[
x
(k)
0 (x

(k)
0 )⊺

])∥∥∥ ≤
∥∥∥x(k)

0 (x
(k)
0 )⊺

∥∥∥
F
+
∥∥∥E
{
x
(k)
0 (x

(k)
0 )⊺

}∥∥∥
F
≤ 2c2X ,

and

‖Ā(k)
t ⊗ Ā

(k)
t − Σ′

A‖2 ≤ ‖Ā(k)
t ⊗ Ā

(k)
t ‖2 + ‖Σ′

A‖2 = ‖Ā(k)
t ‖22 + ‖Σ′

A‖2 ≤ c2Ā + ‖Σ′
A‖2,

‖B̄(k)
t ⊗ B̄

(k)
t − Σ′

B‖2 ≤ ‖B̄(k)
t ⊗ B̄

(k)
t ‖2 + ‖Σ′

B‖2 = ‖B̄(k)
t ‖22 + ‖Σ′

B‖2 ≤ c2B̄ + ‖Σ′
B‖2.

However, these bounds may not depend on those in Assumption 2. For example, when x
(k)
0 is a nonzero constant,

cµ = 0 but cX is positive.

The boundedness of the states and state-deviations follows from Assumptions 1 and 2 according to the below
statement.

Lemma 1 Suppose that Assumptions 1 and 2 hold, then for all 1 ≤ k ≤ nr and 0 ≤ t ≤ ℓ we have that

∥∥x(k)
t

∥∥ ≤ cM ,
∥∥e(k)t

∥∥ ≤ cN ,
∥∥x(k)

t (x
(k)
t )⊺

∥∥
2
≤ c2M ,

∥∥e(k)t (e
(k)
t )⊺

∥∥
2
≤ c2N ,
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and

∥∥∥vec
(
x
(k)
t (x

(k)
t )⊺ − E

{
x
(k)
t (x

(k)
t )⊺

})∥∥∥ ≤ cF ,
∥∥∥vec

(
x
(k)
t (u

(k)
t )⊺ − E

{
x
(k)
t (u

(k)
t )⊺

})∥∥∥ ≤ cW ,

where

cM := max
0≤t≤ℓ

{
ctAcX +

t−1∑

i=0

ciAcBcU

}
,

cN := max
0≤t≤ℓ

{
‖A‖t2cµ +

t−1∑

i=0

‖A‖i2(‖B‖2cν + cĀcM + cB̄cU )

}
,

cF := max
0≤t≤ℓ

{
(‖A‖22 + ‖Σ′

A‖2)tc∆X +
t−1∑

i=0

(‖A‖22 + ‖Σ′
A‖2)i(cFX + cFU + cFXU )

}
,

cW := cNcU + cMcν ,

and

cA := ‖A‖2 + cĀ,

cB := ‖B‖2 + cB̄,

cFX := (2‖A‖2cĀ + cΣ′

A
)c2M ,

cFU := 3(‖B‖22 + ‖Σ′
B‖2)cU cν + (2‖B‖2cB̄ + cΣ′

B
)c2U ,

cFXU := 2‖A‖2‖B‖2cW + (2‖A‖2cB̄ + 2‖B‖2cĀ + 2cĀcB̄)cMcU .

PROOF. See Appendix D.

Remark 9 The quantity cM can be interpreted as a bound on the radius from the origin to the outer boundary of
the set of reachable states from any valid x0 over ℓ time steps. If the system is not robustly stable in the sense that
cA > 1, then the limit as ℓ → ∞ of cM could be infinite. However, since we consider only finite-length rollouts, cM
is finite regardless of the stability properties of the system.

Analogous interpretations follow for the quantity cN and the reachable state-deviations. Notice that the constants cN
grows with increasing maximum initial state and input deviations cµ and cν , and maximum noise magnitudes cĀ and
cB̄. Conversely, cN vanishes as those quantities become smaller, i.e. in the case that the initial state x0 is a fixed
deterministic value, the inputs ut follow a deterministic sequence, and there is no multiplicative noise. Likewise, cF
vanishes in such a scenario, so that c∆X = cFX = cFU = cFXU = 0.

We have the following finite-sample result for the estimates of [A B] and [Σ̃′
A Σ̃′

B], whose proofs are given in
Appendices F and G respectively.

Theorem 2 Suppose that Assumptions 1-2 hold. Fix a failure probability δ ∈ (0, 1). It holds with probability at
least 1− δ that

∥∥∥
[
Â B̂

]
− [A B]

∥∥∥
2
= O



√

ℓ log (ℓ/δ)

nr


 .

Theorem 3 Under the same condition of Theorem 2, with probability at least 1− δ, it holds that

∥∥∥
[
ˆ̃Σ′
A

ˆ̃Σ′
B

]
−
[
Σ̃′

A Σ̃′
B

]∥∥∥
2
= O




√

ℓ log (ℓ/δ)

nr



 .
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Remark 10 In Theorems 2 and 3 qualitative high-probability upper bounds are given for the estimates of [A B]

and [Σ̃′
A Σ̃′

B]. It can be observed that these bounds converge to zero as the number of rollouts, nr, grows to infinity,
indicating the consistency of the estimator. It should be noted that the bounds are deterministic, though they depend
on the failure probability δ. The theorems also indicate that given a positive constant, the probability of the estimation
error exceeding this constant decays exponentially fast as nr increases, which is illustrated in Section 4.1.

The O(·) notation hides the coefficients of the error bounds, and the polynomial and exponential factors of n and m
in the logarithm term. Their explicit forms are given in Appendices F and G. The coefficient of the estimation error
of [A B] increases with ‖Y‖2, ‖Z‖2, and the bound of the system, but decreases with the minimum eigenvalue of ZZ⊺.

Similarly, the coefficient of the estimation error of [Σ̃′
A Σ̃′

B] decreases with the minimum eigenvalue of DD⊺, but
increases with ‖C‖2, ‖D‖2, and the bound of the system. It also increases with ‖A‖2, ‖B‖2, and quantities related

to the second-moment dynamic of system states, due to the dependence of [ ˆ̃Σ′
A

ˆ̃Σ′
B ] on [Â B̂]. From definition, Y,

Z, C, and D depend on the parameters of the system and inputs, so proper input design could reduce the estimation
error. But since the nominal matrix is unknown, optimal input design strategies and data-dependent bounds still need
to be studied.

Note that the current bounds imply that longer rollout length ℓ leads to worse performance, which seems to be contrary
to the intuition that longer trajectory provides more data. This could result from the averaging step which eliminates
some excitation. Future work will consider how to use the data more efficiently.

4 Numerical Simulations

In this section we empirically validate the theoretical results for Algorithm 1, and compare its performance with the
recursive least-squares algorithm [14,16].

4.1 Consistency and Finite-Sample Result

We continue to consider Example 1, with parameters as follows,

A =

[
1 0.2

0 1

]
, B =

[
0.8

1

]
, ΣA =

1

40




8 −2 0 0

−2 16 2 0

0 2 2 0

0 0 0 8



, ΣB =

1

40

[
5 −2

−2 20

]
.

According to the reshaping operator G defined in Section 1.4 and Example 1, we have

Σ̃′
A =

1

40




8 0 2

−2 2 0

16 0 8


 , Σ̃′

B =
1

40

[
5 −2 20

]⊺
. (13)

A simulated experiment is conducted with rollout data of length ℓ = [n(n+ 1)+m(m+ 1)]/2 = 4. For 0 ≤ t ≤ 3, νt
is generated independently from uniform distribution U([0, 1]) and then fixed. Three types of inputs are considered:
Gaussian, uniform, and deterministic inputs. An identical sequence of input covariances, independently generated
from one-dimensional Wishart distribution Wp(0.1, 1) and then fixed, are used in the former two cases. For the case
of deterministic inputs, the covariances are set to be zero, i.e., Ūt = 0. This is able to make DD⊺ invertible because
the second moment of the input at time t satisfies that Ut = Ūt + νtν

⊺

t , and the generation of the latter provides
randomness. For each case, Algorithm 1 is run for 50 times. The mean of estimation error in each case is shown in
Fig. 1. It can be seen that Algorithm 1 converges and performs similarly under all three types of control inputs, with
convergence rate O(1/

√
nr). The algorithm fluctuates when the number of rollouts is small, which may result from

error arising in averaging trajectories.

Fig. 2 provides the relative frequency of the normalized estimates, ‖[Â B̂] − [A B]‖2/‖[A B]‖2 and ‖[ ˆ̃Σ′
A

ˆ̃Σ′
B]

−[Σ̃′
A Σ̃′

B]‖2/ ‖[Σ̃′
A Σ̃′

B]‖2, exceeding a given constant, under the uniform input case. This indicates an exponential
decay and validates the finite-sample result. The relative frequence of nr rollouts is denoted by pnr

.
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Fig. 2. Finite-sample result of Algorithm 1.

From Remark 1 and (7), (13) defines an equivalent class of covariance matrices that generates the same second-
moment dynamic of system states. In the current example, ΣB is unique, but the following covariance matrix is
equivalent to ΣA in the previously discussed sense,

ΣA(α) =
1

40




8 −2 0 1 + α

−2 16 1− α 0

0 1− α 2 0

1 + α 0 0 8



,

where α ∈ R and is such that ΣA(α) � 0. In Fig. 3, we illustrate the dynamic (4) given by (ΣA,ΣB), (ΣA(1),ΣB), and
the estimated parameters of Algorithm 1 respectively, starting with the same initial condition µ0 = 02 and X0 = 04.
The parameters of inputs, νt and Ūt, are the same as the uniform input case above. Note that ΣA(−1) = ΣA, and
ΣA(1) ≻ 0. It can be observed that the dynamics given by (ΣA,ΣB) and (ΣA(1),ΣB) are identical, and the dynamic
given by the estimates from Algorithm 1 is close to the former.

It is assumed that there is no additive noise in System (1), but Algorithm 1 can also be applied to identify lin-
ear systems with both multiplicative and additive noise. If additive noise wt, independent of the inputs and the
multiplicative noise, exists, then we can write the system as

xt+1 = (A+ Āt)xt + (B + B̄t)ut + wt

= (A+ Āt)xt +
[
B + B̄t wt

]
[
ut

1

]
. (14)

This means that we consider wt as a part of multiplicative noise corresponding to a constant input with value one.
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Fig. 4. Consistency of Algorithm 1 under both multiplicative and additive noise.

Consider the above 2-dimensional system with wt ∼ N (02, σ
2I2), i.e., Gaussian noise with zero mean and σ = 0.2,

and Gaussian inputs designed as above. Note that in this case we need ℓ = 6 because the dimension of inputs
increases by one in (14), compared with the original system. Fig. 4 shows the consistency of Algorithm 1 under the
presence of additive noise.

4.2 Performance Comparison

The recursive form of ordinary least-squares (OLS), i.e., recursive least-squares (RLS), is widely used in identification
of dynamic systems [14, 16]. It is possible to apply RLS to identify System (1) if certain conditions hold. Note that
from System (1), we have that

xt+1 = Axt +But + (Ātxt + B̄tut)

= Axt +But + w
(1)
t ,

where w
(1)
t := Ātxt + B̄tut is considered to be noise. Under Assumption 1, {w(1)

t ,Ft} is a martingale difference

sequence, i.e., E{w(1)
t |Ft−1} = 0, where Ft := σ(Āk, B̄k, uk, 0 ≤ k ≤ t). A mild condition for w

(1)
t to ensure

convergence of RLS in literature [14,16] is supt E{‖w(1)
t ‖β |Ft−1} < ∞ a.s. for some β > 2. However in our case w

(1)
t

is state-dependent, so certain stability assumption is needed to ensure this boundedness condition. This means that
RLS could fail if the nominal part of System (1) is marginally stable (ρ(A) ≤ 1) or unstable (ρ(A) > 1). In contrast,
Algorithm 1 can handle this situation with the help of multiple trajectory data. Similarly, the noise covariance matrix
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of System (1) may be estimated using the following dynamic

P1 vec(xt+1x
⊺

t+1)

= P1

(
(A+ Āt)⊗ (A+ Āt)

)
Q1P1 vec(xtx

⊺

t ) + P1

(
(B + B̄t)⊗ (B + B̄t)

)
Q2P2 vec(utu

⊺

t )

+ P1

(
(B + B̄t)⊗ (A+ Āt)

)
vec(xtu

⊺

t ) + P1

(
(A+ Āt)⊗ (B + B̄t)

)
vec(utx

⊺

t )

= P1E
{
(A+ Āt)⊗ (A+ Āt)

}
Q1P1 vec(xtx

⊺

t ) + P1E
{
(B + B̄t)⊗ (B + B̄t)

}
Q2P2 vec(utu

⊺

t )

+ P1(B ⊗ A) vec(xtu
⊺

t ) + P1(A⊗B) vec(utx
⊺

t ) + w
(2)
t ,

where

w
(2)
t := P1

(
(A+ Āt)⊗ (A+ Āt)− E{(A+ Āt)⊗ (A+ Āt)}

)
Q1P1 vec(xtx

⊺

t )

+ P1

(
(B + B̄t)⊗ (B + B̄t)− E{(B + B̄t)⊗ (B + B̄t)}

)
Q2P2 vec(utu

⊺

t )

+ P1(B ⊗ Āt + B̄t ⊗A+ B̄t ⊗ Āt) vec(xtu
⊺

t )

+ P1(A⊗ B̄t + Āt ⊗B + Āt ⊗ B̄t) vec(utx
⊺

t ).

One can obtain that under Assumption 1, though state-dependent, {w(2)
t ,Ft} is also a martingale difference sequence.

To estimate the covariance matrix of the multiplicative noise, [29] applies OLS, equivalent to RLS, to the above
dynamic. It should be noted that when utilizing OLS/RLS, one estimates the second moments of A + Āt and
B + B̄t, rather than their covariance matrices, ΣA and ΣB in our context. The estimation of noise covariance
is still coupled with the estimation of the nominal system, since Σ′

A = E{(A + Āt) ⊗ (A + Āt)} − A ⊗ A and
Σ′

B = E{(B + B̄t)⊗ (B + B̄t)} −B ⊗B.

To compare the performance of RLS and Algorithm 1, we consider four systems. In the first case, let the nominal
system matrices be

A =

[
0.6 0.2

0 0.6

]
, B =

[
0.8

1

]
,

and ΣA = ΣB be all-zero matrices. That is, a linear system without noise and ρ(A) = 0.6. We use this case to

show the consistency of RLS. In the other three cases, the matrix A is set to be

[
0.6 0.2

0 0.6

]
,

[
0.8 0.2

0 0.8

]
, and

[
1 0.2

0 1

]
,

respectively. B is the same as the first case, while ΣA and ΣB in Section 4.1 are adopted to be the covariance matrices.
The implementation of Algorithm 1 is the same as in Section 4.1. That is, νt and Ūt are randomly generated, and
then fixed in all runs of the entire numerical experiment. The input ut at time 0 ≤ t ≤ ℓ − 1 in each rollout is
generated from Gaussian distribution N (νt, Ūt). In addition, ℓ is set to be 4. Since RLS is based on single trajectory
data, we set the length of the trajectory as ℓnr, so that the number of samples that RLS uses is the same as that
of Algorithm 1. We consider RLS with independent standard Gaussian inputs as a baseline. In order to rule out the
effect of different input design, we also consider RLS with periodic inputs (RLSp for short) satisfying that in each
period, the inputs are generated in the same way as those in a rollout of Algorithm 1.

For each system, we run the three algorithms, RLS, RLSp, and Algorithm 1, for 50 times respectively. The mean of
estimation error in each case is presented in Fig. 5. It can be observed that RLS and RLSp perform similarly for all
cases. When multiplicative noise is absent, they converge slightly quicker than Algorithm 1. They are also a little
better than Algorithm 1, in the case ρ(A) = 0.6 with noise, for the estimation of [A B], indicating OLS could be
applied in Algorithm 1 to replace the averaging step. However, Algorithm 1 surpasses RLS and RLSp in identifying
the noise covariance matrix. Moreover the performance of RLS gets worse as ρ(A) grows. Interestingly, in the case of
ρ(A) = 0.8, although the nominal system is stable, the second-moment dynamic of system states is not. This leads
to degraded performance of RLS when estimating [A B] and divergence of RLS estimating the covariance matrix. In
the marginally stable case, namely ρ(A) = 1, RLS and RLSp explode in finite time. In contrast, Algorithm 1 behaves
almost identically for all cases (the consistency of Algorithm 1 in the marginally stable case is shown in Fig. 1). To
sum up, Algorithm 1 can deal with the estimation of noise covariance matrix better and relies less on the stability
of both the nominal system and the second-moment dynamic of system states.
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Fig. 5. Performance comparison of RLS, RLSp, and Algorithm 1.

5 Conclusion and Future Work

In this paper we proposed an identification algorithm for linear systems with multiplicative noise based on multiple
trajectory data. By designing appropriate exciting inputs, the proposed algorithm is able to jointly estimate the nom-
inal system and multiplicative noise covariance. The asymptotic and non-asymptotic performance of the algorithm
were analyzed, and illustrated by numerical simulations. Future work include studying more efficient algorithms that
can be used in online setting, optimal and adaptive design of inputs, sparsity-promoting regularization for identifi-
cation of networked systems, and obtaining end-to-end finite-sample performance guarantees for identification-based
optimal control.
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A Proof of Proposition 3

We begin with a standard result from real analysis [40, 41] regarding the zero set of a polynomial.

Lemma 2 A polynomial function R
n to R is either identically 0 or non-zero almost everywhere.

We only need to consider the case with ℓ = n +m, implying Z is a square matrix. Note that when (A,B) and µ0

are fixed, |Z| is a polynomial of ν := [ν⊺0 · · · ν⊺ℓ−1]
⊺ ∈ R

mℓ. Hence if we can find a vector in R
mℓ such that |Z| 6= 0,

then we know that |Z| 6= 0 almost everywhere from Lemma 2.

First we verify the conclusion for µ0 = 0n. It follows from the definition of controllability and the assumption that
[An−1B An−2B · · · B] has full row rank. Without loss of generality, let B1, AB1, . . . , A

r1B1, B2, . . . , A
r2B2, . . . ,

Bp, . . . , A
rpBp be a basis of Rn, where Bi is the i-th column of B, 1 ≤ p ≤ m, 0 ≤ ri ≤ n − 1, 1 ≤ i ≤ p, and

p+
∑p

i=1 ri = n. Moreover, AkBi, k > ri and 1 ≤ i ≤ p, can be written as a linear combination of B1, . . . , A
r1B1,

· · · , AriBi.

Let ν̃ := [ν̃⊺0 · · · ν̃⊺n−1]
⊺ be such that ν̃0 = em1 , ν̃q1 = em2 , . . . , ν̃qk = emk+1, . . . , ν̃qp−1

= emp (or any nonzero multiplier

of respective unit vectors), where qk = k +
∑k

i=1 ri, 1 ≤ k ≤ p, and ν̃i = 0m for other 1 ≤ i ≤ n − 1. Then for
µ̃t+1 = Aµ̃t +Bν̃t, 0 ≤ t ≤ n− 1, and µ̃0 = 0n, it holds that

µ̃t = At−1B1, 1 ≤ t ≤ q1,

µ̃t = At−q1−1B2 +At−1B1, q1 + 1 ≤ t ≤ q1 + q2,

...
...

µ̃t = At−qp−1−1Bp + · · ·+At−q1−1B2 +At−1B1, qp−1 + 1 ≤ t ≤ n.

From the definition of B1, . . . , A
rpBp, and qk, we know that µ̃1, . . . , µ̃n are linearly independent. Hence we show

that there exists a vector [ν⊺0 · · · ν⊺n−1]
⊺ such that [µ1 · · · µn] has full rank. If m = 1, then let ν = [ν̃⊺ 0]⊺ and

Z =

[
µ̃n · · · µ̃1 0n

0 · · · 0 1

]

has full rank. In the case of m ≥ 2, fix νn to be zero. Set νn+1 = c1e
m
2 , c1 ∈ R, and

∣∣∣∣∣∣∣∣

µn+1 µ̃n · · · · · · µ̃q1 · · · · · · 0n

0 0 · · · · · · 0 · · · 0 1

c1 0 · · · 0 d1 0 · · · 0

∣∣∣∣∣∣∣∣
= c1

∣∣∣∣∣
µ̃n · · · µ̃1 0n

0 · · · 0 1

∣∣∣∣∣+ (−1)2n+4−q1d1

∣∣∣∣∣
µn+1 µ̃n · · · µ̃q1+1 µ̃q1−1 · · · 0n

0 0 · · · · · · · · · 0 1

∣∣∣∣∣ ,

where d1 = 1 if p > 1 and d1 = 0 if p = 1. Hence there must exist c̃1 ∈ R, such that the above determinant is
nonzero. Inductively, set νn+k = cke

m
k+1, 2 ≤ k ≤ m− 1, and we can find c̃k, 2 ≤ k ≤ m− 1, (consequently ν̃0, . . . ,

ν̃n+m−1) such that |Z| 6= 0.

Now suppose that the system starts with µ0 6= 0n. Since [A
n−1B An−2B · · · B] has full row rank, so does the matrix

[An−1B An−2B · · · B An−1µ0 · · · µ0]. Hence without loss of generality we can assume that µ0, Aµ0, . . . , A
r0µ0,

B1, . . . , A
r1B1, . . . , Bp, . . . , A

rpBp is a basis of Rn, where 0 ≤ p ≤ m (p = 0 means there is no Bi), 0 ≤ ri ≤ n− 1,
0 ≤ i ≤ p, and p+ 1+

∑p
i=0 ri = n. Moreover, ri ≤ n− 2 for all 1 ≤ i ≤ p. One can verify that there exists a vector

[ν⊺0 · · · ν⊺n−1]
⊺ such that [µ0 · · · µn−1] has full rank. Therefore in a similar way the conclusion can be obtained.

Remark 11 From the proof we know that even if (A,B) is not controllable, Z can still have full row rank as long
as [An−1B An−2B · · · B An−1µ0 · · · µ0] has full row rank for some µ0 ∈ R

n.
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B Proof of Proposition 4

Write (5) as

X̃t+1 = (Ã+ Σ̃′
A)X̃t + (B̃ + Σ̃′

B)Ũt + [KBAWt +KABW
′
t ]

:= ĂX̃t + B̆Ũt + ηt.

Note that after setting νt = 0 for all 0 ≤ t ≤ ℓ− 1, Ũt = svec(Ūt) and the above dynamic becomes

X̃t+1 = ĂX̃t + B̆Ũt.

Similar to the proof of Proposition 3, we first examine if X̃0, ĂX̃0, . . . , Ă
n(n+1)/2−1X̃0 are linearly independent.

If not, we can select some columns of [Ăn(n+1)/2−1B̆, . . . , B̆] to together form a basis of Rn(n+1)/2. The rest is

essentially the same as the proof of Proposition 3, by considering Ũt as an input.

C Proof of Theorem 1

Consider each rollout [(x
(k)
0 )⊺, . . . , (x

(k)
ℓ )⊺]⊺ as an independent sample of the random vector xℓ := [x⊺

0 , . . . , x
⊺

ℓ ]
⊺, and

from Assumption 1 (ii) and (iii) we know that the random vector xℓ has finite first and second moments. So it

follows from the Kolmogorov’s strong law of large numbers that Ŷ → Y a.s., and similarly Ẑ → Z a.s., as nr → ∞.
Hence ŶẐ⊺ → YZ⊺ and ẐẐ⊺ → ZZ⊺ a.s. From the assumption that ZZ⊺ is invertible and the continuous mapping
theorem (Theorem 2.3 of [42]), it can be obtained that as nr → ∞

(ẐẐ⊺)−1 → (ZZ⊺)−1, a.s.

When (ẐẐ⊺)−1 does not exist, in Algorithm 1 we replace it by (ẐẐ⊺)†. Thus (Â, B̂) → (A,B). Combining the above

convergence with the Kolmogorov’s strong law of large numbers, the convergence of Ĉ and D̂ follows. Therefore,

applying the continuous mapping theorem again, we obtain the consistency of the estimator ( ˆ̃Σ′
A,

ˆ̃Σ′
B).
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D Proof of Lemma 1

For the first claim, regarding states, taking the norm of both sides of System (1), at time step t we have

∥∥x(k)
t+1

∥∥ =
∥∥(A+ Ā

(k)
t )x

(k)
t + (B + B̄

(k)
t )u

(k)
t

∥∥. (D.1)

Using the triangle inequality and the fact that the spectral norm is compatible with the Euclidean norm, we have

∥∥x(k)
t+1

∥∥ ≤
∥∥(A+ Ā

(k)
t )x

(k)
t

∥∥+
∥∥(B + B̄

(k)
t )u

(k)
t

∥∥

≤
∥∥A+ Ā

(k)
t

∥∥
2

∥∥x(k)
t

∥∥+
∥∥B + B̄

(k)
t

∥∥
2

∥∥u(k)
t

∥∥.

Using the triangle inequality and Assumption 2 (iii) we have

∥∥A+ Ā
(k)
t

∥∥
2
≤ max

0≤t≤ℓ

∥∥A+ Ā
(k)
t

∥∥
2
≤ ‖A‖2 + max

0≤t≤ℓ

∥∥Ā(k)
t

∥∥
2
=: cA,

∥∥B + B̄
(k)
t

∥∥
2
≤ max

0≤t≤ℓ

∥∥B + B̄
(k)
t

∥∥
2
≤ ‖B‖2 + max

0≤t≤ℓ

∥∥B̄(k)
t

∥∥
2
=: cB,

so from Assumption 2 (ii)

∥∥x(k)
t+1

∥∥ ≤ cA
∥∥x(k)

t

∥∥+ cBcU . (D.2)

For the base case when t = 0, we have by Assumption 2 (i) that
∥∥x(k)

0

∥∥ ≤ cX . Applying (D.2) inductively with the
base case proves the first claim.

For the second claim, regarding the state-deviations, we have

e
(k)
t+1 = x

(k)
t+1 − E

{
x
(k)
t+1

}

=
(
A+ Ā

(k)
t

)
x
(k)
t +

(
B + B̄

(k)
t

)
u
(k)
t − E

{(
A+ Ā

(k)
t

)
x
(k)
t +

(
B + B̄

(k)
t

)
u
(k)
t

}

=
(
A+ Ā

(k)
t

)
x
(k)
t +

(
B + B̄

(k)
t

)
u
(k)
t −AE

{
x
(k)
t

}
−BE

{
u
(k)
t

}

= A
(
x
(k)
t − E

{
x
(k)
t

})
+B

(
u
(k)
t − E

{
u
(k)
t

})
+ Ā

(k)
t x

(k)
t + B̄

(k)
t u

(k)
t

= Ae
(k)
t +Bd

(k)
t + Ā

(k)
t x

(k)
t + B̄

(k)
t u

(k)
t .

Taking the norm of both sides, using submultiplicativity and triangle inequality, we have

‖e(k)t+1‖ = ‖Ae(k)t +Bd
(k)
t + Ā

(k)
t x

(k)
t + B̄

(k)
t u

(k)
t ‖

≤ ‖A‖2‖e(k)t ‖+ ‖B‖2‖d(k)t ‖+ ‖Ā(k)
t ‖2‖x(k)

t ‖+ ‖B̄(k)
t ‖2‖u(k)

t ‖
≤ ‖A‖2‖e(k)t ‖+ ‖B‖2cν + cĀcM + cB̄cU , (D.3)

where the final inequality follows from the first part of Lemma 1 and Assumptions 2 (ii) and (iii). For the base case

when t = 0, we have by Assumption 2 (i) that
∥∥e(k)0

∥∥ ≤ cµ. Applying (D.3) inductively with the base case proves
the second claim.

By the definition of the spectral norm and the first and second claims we have

∥∥x(k)
t x

(k)
t

⊺∥∥
2
=
∥∥x(k)

t

∥∥2
2
≤ c2M ,

∥∥e(k)t e
(k)
t

⊺∥∥
2
=
∥∥e(k)t

∥∥2
2
≤ c2N ,

proving the third and fourth claims.
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For the fifth and sixth claims, define the quantities

∆Xt := vec
(
x
(k)
t (x

(k)
t )⊺ − E

{
x
(k)
t (x

(k)
t )⊺

})
= vec

(
x
(k)
t (x

(k)
t )⊺

)
−Xt,

∆Ut := vec
(
u
(k)
t (u

(k)
t )⊺ − E

{
u
(k)
t (u

(k)
t )⊺

})
= vec

(
u
(k)
t (u

(k)
t )⊺

)
− Ut,

∆Wt := vec
(
x
(k)
t (u

(k)
t )⊺ − E

{
x
(k)
t (u

(k)
t )⊺

})
= vec

(
x
(k)
t (u

(k)
t )⊺

)
−Wt.

We can bound ‖∆Ut‖ as

‖∆Ut‖ =
∥∥∥vec

(
u
(k)
t (u

(k)
t )⊺ − E

{
u
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})∥∥∥
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∥∥∥vec
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t

(
u
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t }
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E{u(k)
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(
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t − Eu
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)⊺})∥∥∥

=
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(
u
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F
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t
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)⊺∥∥∥

F
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u
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F

}

≤ 3cUcν .

For the sixth claim, we can bound ‖∆Wt‖ as

‖∆Wt‖ =
∥∥∥vec
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≤ cNcU + cMcν =: cW .

For the fifth claim, substituting the dynamics and expanding the products we have
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Considering the first of the four terms of (D.4), we have
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(k)
t )x

(k)
t (x

(k)
t )⊺(A+ Ā
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Ax

(k)
t (x

(k)
t )⊺A⊺ +Ax

(k)
t (x

(k)
t )⊺(Ā

(k)
t )⊺ + Ā

(k)
t x

(k)
t (x

(k)
t )⊺A⊺ + Ā

(k)
t x

(k)
t (x

(k)
t )⊺(Ā

(k)
t )⊺

−AE
{
x
(k)
t (x

(k)
t )⊺

}
A⊺ − 0− 0− E

{
Ā

(k)
t x

(k)
t (x

(k)
t )⊺(Ā

(k)
t )⊺

})

= (A⊗A) vec
(
x
(k)
t (x

(k)
t )⊺ − E

{
x
(k)
t (x

(k)
t )⊺

})

+ (A⊗ Ā
(k)
t ) vec

(
x
(k)
t (x

(k)
t )⊺

)
+ (Ā

(k)
t ⊗A) vec

(
x
(k)
t (x

(k)
t )⊺

)

+ (Ā
(k)
t ⊗ Ā

(k)
t ) vec

(
x
(k)
t (x

(k)
t )⊺

)
− E

{
(Ā

(k)
t ⊗ Ā

(k)
t )
}
E
{
vec
(
x
(k)
t (x

(k)
t )⊺

)}

= (A⊗A) vec
(
x
(k)
t (x

(k)
t )⊺ − E

{
x
(k)
t (x

(k)
t )⊺

})

+ (A⊗ Ā
(k)
t ) vec

(
x
(k)
t (x

(k)
t )⊺

)
+ (Ā

(k)
t ⊗A) vec

(
x
(k)
t (x

(k)
t )⊺

)

+
[
(Ā

(k)
t ⊗ Ā

(k)
t )− E

{
(Ā

(k)
t ⊗ Ā

(k)
t )
}]

vec
(
x
(k)
t (x

(k)
t )⊺

)

+ E
{
(Ā

(k)
t ⊗ Ā

(k)
t )
}
vec
(
x
(k)
t (x

(k)
t )⊺ − E

{
x
(k)
t (x

(k)
t )⊺

})
.

Taking norms, and substituting notated quantities, we have

∥∥∥∥ 1

∥∥∥∥ ≤ ‖A⊗A‖2‖∆Xt‖+ ‖A⊗ Ā
(k)
t ‖2‖ vec(x(k)

t (x
(k)
t )⊺)‖+ ‖Ā(k)

t ⊗A‖2‖ vec(x(k)
t (x

(k)
t )⊺)‖

+ ‖(Ā(k)
t ⊗ Ā

(k)
t )− Σ′

A‖2‖ vec(x(k)
t (x

(k)
t )⊺)‖+ ‖Σ′

A‖2‖∆Xt‖
≤ (‖A‖22 + ‖Σ′

A‖2)‖∆Xt‖+
(
2‖A‖2‖Ā(k)

t ‖2 + ‖(Ā(k)
t ⊗ Ā

(k)
t )− Σ′

A‖2
)
‖x(k)

t ‖2

≤ (‖A‖22 + ‖Σ′
A‖2)‖∆Xt‖+ (2‖A‖2cĀ + cΣ′

A
)c2M .

Applying identical arguments to the fourth term of (D.4)

4 := vec
(
(B + B̄

(k)
t )u

(k)
t (u

(k)
t )⊺(B + B̄

(k)
t )⊺ − E

{
(B + B̄

(k)
t )u

(k)
t (u

(k)
t )⊺(B + B̄

(k)
t )⊺

})
,

we obtain the norm bound

∥∥∥∥ 4

∥∥∥∥ ≤ (‖B‖22 + ‖Σ′
B‖2)‖∆Ut‖+ (2‖B‖2cB̄ + cΣ′

B
)c2U

≤ 3(‖B‖22 + ‖Σ′
B‖2)cU cν + (2‖B‖2cB̄ + cΣ′

B
)c2U .

Likewise, for the second term of (D.4), we have

2 := vec
(
(A+ Ā

(k)
t )x

(k)
t (u

(k)
t )⊺(B + B̄

(k)
t )⊺ − E

{
(A+ Ā

(k)
t )x

(k)
t (u

(k)
t )⊺(B + B̄

(k)
t )⊺

})

= vec

(
Ax

(k)
t (u

(k)
t )⊺B⊺ +Ax

(k)
t (u

(k)
t )⊺(B̄

(k)
t )⊺ + Ā

(k)
t x

(k)
t (u

(k)
t )⊺B⊺ + Ā

(k)
t x

(k)
t (u

(k)
t )⊺(B̄

(k)
t )⊺

−AE
{
x
(k)
t (u

(k)
t )⊺

}
B⊺ − 0− 0− E

{
Ā

(k)
t x

(k)
t (u

(k)
t )⊺(B̄

(k)
t )⊺

})

= (B ⊗A) vec
(
x
(k)
t (u

(k)
t )⊺ − E

{
x
(k)
t (u

(k)
t )⊺

})

+ (B ⊗ Ā
(k)
t ) vec

(
x
(k)
t (u

(k)
t )⊺

)
+ (B̄

(k)
t ⊗A) vec

(
x
(k)
t (u

(k)
t )⊺

)
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+ (B̄
(k)
t ⊗ Ā

(k)
t ) vec

(
x
(k)
t (u

(k)
t )⊺

)
− E

{
(B̄

(k)
t ⊗ Ā

(k)
t )
}
E
{
vec
(
x
(k)
t (u

(k)
t )⊺

)}

= (B ⊗A) vec
(
x
(k)
t (u

(k)
t )⊺ − E

{
x
(k)
t (u

(k)
t )⊺

})

+ (B ⊗ Ā
(k)
t ) vec

(
x
(k)
t (u

(k)
t )⊺

)
+ (B̄

(k)
t ⊗A) vec

(
x
(k)
t (u

(k)
t )⊺

)

+ (B̄
(k)
t ⊗ Ā

(k)
t ) vec

(
x
(k)
t (u

(k)
t )⊺

)
.

Taking norms, and substituting notated quantities, we have

∥∥∥∥ 2

∥∥∥∥ ≤ ‖A‖2‖B‖2‖∆Wt‖+ (‖A‖2cB̄ + ‖B‖2cĀ + cĀcB̄)cMcU .

The third term of (D.4) is simply the transpose of the second term, so an identical norm bound holds.

Putting together the four terms of (D.4), we obtain

‖∆Xt+1‖ ≤ (‖A‖22 + ‖Σ′
A‖2)‖∆Xt‖+ (2‖A‖2cĀ + cΣ′

A
)c2M

+ 3(‖B‖22 + ‖Σ′
B‖2)cU cν + (2‖B‖2cB̄ + cΣ′

B
)c2U

+ 2‖A‖2‖B‖2cW + (2‖A‖2cB̄ + 2‖B‖2cĀ + 2cĀcB̄)cMcU . (D.5)

For the base case when t = 0, we have by Assumption 2 (v) that ‖∆X0‖ ≤ c∆X . Applying (D.5) inductively with
the base case proves the fifth claim.
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E Basic identities and inequalities

In the proofs of Theorems 2 and 3, the following facts will be used.

Submultiplicativity of spectral norm For A ∈ R
m×n and B ∈ R

n×p,

‖AB‖2 ≤ ‖A‖2‖B‖2.

Norm of Kronecker product For A ∈ R
m×n and B ∈ R

p×q,

‖A⊗B‖2 = ‖A‖2‖B‖2.

Inverse of spectral norm For any invertible matrix A ∈ R
n×n we have

‖A−1‖2 =
1√

λmin(AA⊺)
. (E.1)

Difference of matrix inverses Suppose A,E ∈ R
n×n are invertible square matrices. Then

A−1 − E−1 = E−1(((E −A) +A)A−1)− E−1 = E−1(E −A)A−1. (E.2)

Matrix inverse perturbation bound (Equation (5.8.1) of [37])
Suppose A,A+ F ∈ R

n×n are invertible square matrices. Then

‖A−1 − (A+ F )−1‖ ≤ ‖A−1‖ · ‖F‖ · ‖(A+ F )−1‖. (E.3)

This follows from taking E = A+ F in (E.2) and using submultiplicativity of spectral norm.
Probability bound on the sum of random variables

Consider k random variables, X1, . . . , Xk, and a positive number ε. Note that Xi < ε/k for all i ∈ [k], implies∑k
i=1 Xi < ε, so it follows from the union bound that

P

{
k∑

i=1

Xi ≥ ε

}
≤

k∑

i=1

P{Xi ≥ ε/k}. (E.4)

Probability bound on the product of nonnegative random variables
Consider two nonnegative random variables, X1 and X2, and a positive number ε. Since X1 <

√
ε and X2 <

√
ε

implies X1X2 < ε we have

P{X1X2 ≥ ε} ≤ P{X1 ≥
√
ε}+ P{X2 ≥

√
ε}. (E.5)

We will need the following geometrical result later in the use of covering arguments.

Lemma 3 (Covering numbers of the Euclidean Sphere) Consider a minimal γ-net {wk, k ∈ [Mγ ]} of the n-
dimensional sphere surface Sn−1 := {w ∈ R

n : ‖w‖ = 1}. That is, for all w ∈ Sn−1 there exists wi ∈ {wk, k ∈ [Mγ ]}
such that ‖w − wi‖ ≤ γ, and Mγ is the smallest number satisfies this condition. Then for any γ > 0, the covering
number Mγ, i.e., the cardinality of the γ-net satisfies

(
1

γ

)n

≤ Mγ ≤
(
2

γ
+ 1

)n

. (E.6)

PROOF. A standard volume comparison involving Euclidean balls, e.g. Corollary 4.2.13 of [43], yields the result.
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We also need the following matrix concentration inequality.

Lemma 4 (Matrix Bernstein inequality [44]) Consider a finite sequence of independent random matrices {Xk,

k ∈ [N ]} with common dimension m×n. Assume that E{Xk} = 0 and ‖Xk‖2 ≤ L, k ∈ [N ]. Introduce S :=
∑N

k=1 Xk

and let v ≥ max{‖E{SS⊺}‖2, ‖E{S⊺S}‖2}. Then, for all ε ≥ 0,

P{‖S‖2 ≥ ε} ≤ (n+m) exp

{
−3

2
· ε2

3v + Lε

}
. (E.7)

We obtain the following corollary from Lemma 4.

Corollary 2 Consider a finite sequence of independent random matrices {Yk, k ∈ [N ]} with common dimension
m× n. Assume that E{Yk} = 0 and ‖Yk‖2 ≤ M , k ∈ [N ]. Then, for all ε ≥ 0,

P

{∥∥∥∥∥
1

N

N∑

k=1

Yk

∥∥∥∥∥
2

≥ ε

}
≤ δ(ε),

where

δ(ε) := (n+m) exp

{
−3

2
· Nε2

3M2 +Mε

}
.

PROOF. Towards application of Lemma 4, assign Xk = Yk/N and thus L = M/N . Now we get a crude bound on
v as

‖E{SS⊺}‖2 =

∥∥∥∥∥∥
E






(
N∑

k=1

Xk

)


N∑

j=1

X⊺

j









∥∥∥∥∥∥
2

=

∥∥∥∥∥∥

N∑

k=1

N∑

j=1

E
{
XkX

⊺

j

}
∥∥∥∥∥∥
2

(linearity of E{·})

=

∥∥∥∥∥

N∑

k=1

E {XkX
⊺

k }
∥∥∥∥∥
2

(mutual independence of Xk)

≤
N∑

k=1

‖E {XkX
⊺

k }‖2 (triangle inequality)

≤
N∑

k=1

E {‖XkX
⊺

k ‖2} (Jensen’s inequality)

=

N∑

k=1

E
{
‖Xk‖22

}
(property of the spectral norm)

≤
N∑

k=1

(M/N)2 = M2/N.

An identical argument shows ‖E{SS⊺}‖2 ≤ M2/N so we can take v = M2/N . Applying Lemma 4 with Xk = Yk/N ,
L = M/N , and v = M2/N yields the claim.
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F Proof of Theorem 2

In this section we obtain bounds for system parameter error matrix [Â B̂] − [A B] by decomposing the difference
using their representation in the least-squares estimators as

[
Â B̂

]
− [A B] = ŶẐ⊺(ẐẐ⊺)† −YZ⊺(ZZ⊺)−1

=
[
ŶẐ⊺ −YZ⊺

]
(ZZ⊺)−1 +YZ⊺

[
(ẐẐ⊺)† − (ZZ⊺)−1

]
+
[
ŶẐ⊺ −YZ⊺

][
(ẐẐ⊺)† − (ZZ⊺)−1

]
.

In this form it is obvious that there are four unique terms, which fall into two groups. The first group is ŶẐ⊺−YZ⊺ and
(ẐẐ⊺)†− (ZZ⊺)−1, which represent error terms amenable to analysis. The second group is (ZZ⊺)−1 and YZ⊺, which

are inherent to the system and do not depend on the estimator quality. The terms ŶẐ⊺−YZ⊺ and (ẐẐ⊺)†−(ZZ⊺)−1

are treated first, then the bound on [Â B̂]− [A B] is obtained.

Throughout this section, small probability bounds are denoted by δ[·], where [·] are various subscripts, and each of
these bounds decreases monotonically towards 0 with increasing number of rollouts nr.

The following bounds for Ŷ −Y and Ẑ− Z follow from Corollary 2.

Lemma 5 Suppose that Assumptions 1 and 2 hold. Then for all ε > 0,

P
{∥∥Ŷ −Y

∥∥
2
≥ ε
}
= P

{∥∥Ẑ− Z
∥∥
2
≥ ε
}
= P

{[∥∥Ŷ −Y
∥∥
2
≥ ε
]⋃[∥∥Ẑ− Z

∥∥
2
≥ ε
]}

≤ δY (ε),

where

δY (ε) := (n+ ℓ) exp

{
−3

2
· nrε

2

3ℓc2N + ε
√
ℓc2N

}
,

PROOF. Using the bound ‖e(k)t ‖ = ‖x(k)
t −E

{
x
(k)
t

}
‖ ≤ cN from Lemma 1, and denoting Ŷk :=

[
x
(k)
ℓ · · · x

(k)
1

]
so

Ŷ = (
∑nr

k=1 Ŷk)/nr and E
{
Ŷk

}
= Y, we obtain

∥∥Ŷk −Y
∥∥
2
≤
∥∥Ŷk −Y

∥∥
F
=

√√√√
ℓ∑

t=1

∥∥x(k)
t − E

{
x
(k)
t

}∥∥2 ≤
√
ℓc2N .

Applying Corollary 2 with Yk = Ŷk −Y, N = nr, and M =
√
ℓc2N , we conclude

P{‖Ŷ −Y‖2 ≥ ε} ≤ δY (ε).

Denote Ẑk =

[
x
(k)
ℓ−1 · · · x(k)

0

νℓ−1 · · · ν0

]
so Ẑ = (

∑nr

k=1 Ẑk)/nr and E
{
Ẑk

}
= Z. Noticing that the last m rows of Ẑk − Z all

have zero entries, we have that

∥∥Ŷ −Y
∥∥
2
=
∥∥Ẑ− Z

∥∥
2
.

Hence the events
{∥∥Ŷ −Y

∥∥
2
≥ ε
}
and

{∥∥Ẑ− Z
∥∥
2
≥ ε
}
are precisely the same, concluding the proof.

Remark 12 The reason that the last m rows of Ẑk −Z all have zero entries is that the first moments of the inputs

are known in Algorithm 1, and appear identically in both Ẑk and Z. Hence the probability bounds are independent of
the input dimension m.
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Lemma 6 Suppose that Assumptions 1 and 2 hold. Then for all ε > 0,

P
{∥∥ŶẐ⊺ −YZ⊺

∥∥
2
≥ ε
}
≤ δY Z(ε)

where

δY Z(ε) := δY



√

ε+

(‖Y‖2 + ‖Z‖2
2

)2

− ‖Y‖2 + ‖Z‖2
2


 .

PROOF. We begin with the decomposition

ŶẐ⊺ −YZ⊺ = (Ŷ −Y)(Ẑ − Z)⊺ + (Ŷ −Y)Z⊺ +Y(Ẑ − Z)⊺.

By the triangle inequality and submultiplicativity we have

∥∥ŶẐ⊺ −YZ⊺
∥∥
2
=
∥∥(Ŷ −Y)(Ẑ − Z)⊺ + (Ŷ −Y)Z⊺ +Y(Ẑ− Z)⊺

∥∥
2

≤
∥∥(Ŷ −Y)(Ẑ − Z)⊺

∥∥
2
+
∥∥(Ŷ −Y)Z⊺

∥∥
2
+
∥∥Y(Ẑ− Z)⊺

∥∥
2

≤
∥∥Ŷ −Y

∥∥
2

∥∥Ẑ− Z
∥∥
2
+
∥∥Ŷ −Y

∥∥
2
‖Z‖2 + ‖Y‖2

∥∥Ẑ− Z
∥∥
2

=
∥∥Ŷ −Y

∥∥2
2
+
∥∥Ŷ −Y

∥∥
2
(‖Y‖2 + ‖Z‖2) .

Considering a probability bound, solving the quadratic inequality in
∥∥Ŷ −Y

∥∥
2
, and applying Lemma 5 we have

P
{∥∥ŶẐ⊺ −YZ⊺

∥∥
2
≥ ε
}
≤ P

{∥∥Ŷ −Y
∥∥2
2
+
∥∥Ŷ −Y

∥∥
2
(‖Y‖2 + ‖Z‖2) ≥ ε

}

= P

{
∥∥Ŷ −Y

∥∥
2
≥ 1

2
(‖Y‖2 + ‖Z‖2)

(√
1 +

4ε

(‖Y‖2 + ‖Z‖2)2
− 1

)}

≤ δY

(
‖Y‖2 + ‖Z‖2

2

(√
1 +

4ε

(‖Y‖2 + ‖Z‖2)2
− 1

))
,

which was the claimed inequality.

Lemma 7 Suppose Assumptions 1 and 2 hold. Given a positive constant εmax, then for all 0 < ε < εmax,

P
{∥∥(ẐẐ⊺)† − (ZZ⊺)−1

∥∥
2
≥ ε
}
≤ δZZ(ε, εmax),

where

δZZ(ε, εmax) := δ0

(
1

2
λ2
min(ZZ

⊺)

(
1− ε

εmax

)
ε

)
+ δm

(
ελmin(ZZ

⊺)

εmax(2 + λmin(ZZ⊺)/λmax(ZZ⊺))

)
,

δ0(ε) := δY

(√
λmax(ZZ⊺) + ε−

√
λmax(ZZ⊺)

)
,

δm(ε) :=

(
9n+m +

(
16λmax(ZZ

⊺)

λmin(ZZ⊺)
+ 1

)n+m
)
δ0(ε).

Remark 13 The additional parameter εmax arises when bounding λ2
min(ẐẐ

⊺), and is in fact independent of the
estimation bound.

PROOF. Later we will show that ẐẐ⊺ is invertible with high probability, so we now assume the existence of
(ẐẐ⊺)−1, i.e., (ẐẐ⊺)† = (ẐẐ⊺)−1. Hence we may apply (E.3) to obtain the decomposition

∥∥(ẐẐ⊺)−1 − (ZZ⊺)−1
∥∥
2
=
∥∥[(ZZ⊺)−1(ẐẐ⊺)−1

(
ẐẐ⊺ − ZZ⊺

)∥∥
2
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≤
∥∥(ZZ⊺)−1

∥∥
2

∥∥(ẐẐ⊺)−1
∥∥
2

∥∥ẐẐ⊺ − ZZ⊺
∥∥
2
.

Considering a probability bound, rearranging, and using (E.1) we obtain

P
{∥∥(ẐẐ⊺)−1 − (ZZ⊺)−1

∥∥
2
≥ ε
}
≤ P

{∥∥(ZZ⊺)−1
∥∥
2

∥∥(ẐẐ⊺)−1
∥∥
2

∥∥(ẐẐ⊺)− (ZZ⊺)
∥∥
2
≥ ε
}

= P

{
∥∥ẐẐ⊺ − ZZ⊺

∥∥
2
≥ ε∥∥(ZZ⊺)−1

∥∥
2

∥∥(ẐẐ⊺)−1
∥∥
2

}

= P
{∥∥ẐẐ⊺ − ZZ⊺

∥∥
2
≥ ελmin(ZZ

⊺)λmin(ẐẐ
⊺)
}
. (F.1)

We are now faced with providing bounds on both
∥∥ẐẐ⊺ − ZZ⊺

∥∥
2
on the left side and λmin(ẐẐ

⊺) on the right side
of the inequality inside the probability.

First, we consider the bound of
∥∥ẐẐ⊺ − ZZ⊺

∥∥
2
by beginning with the decomposition

ẐẐ⊺ − ZZ⊺ = (Ẑ− Z)(Ẑ − Z)⊺ + (Ẑ− Z)Z⊺ + Z(Ẑ− Z)⊺.

Using the triangle inequality, submultiplicativity, and solving the quadratic inequality in
∥∥Ẑ− Z

∥∥
2
, we obtain

P
{∥∥ẐẐ⊺ − ZZ⊺

∥∥
2
≥ ε
}
= P

{∥∥(Ẑ− Z)(Ẑ − Z)⊺ + (Ẑ− Z)Z⊺ + Z(Ẑ− Z)⊺
∥∥
2
≥ ε
}

≤ P
{∥∥(Ẑ− Z)(Ẑ − Z)⊺

∥∥
2
+
∥∥(Ẑ− Z)Z⊺

∥∥
2
+
∥∥Z(Ẑ− Z)⊺

∥∥
2
≥ ε
}

≤ P
{∥∥Ẑ− Z

∥∥2
2
+ 2
∥∥Ẑ− Z

∥∥
2

∥∥Z
∥∥
2
≥ ε
}

= P

{∥∥Ẑ− Z
∥∥
2
≥ ‖Z‖2

(√
1 +

ε

‖Z‖22
− 1

)}
.

Applying Lemma 5 with the appropriate settings of ε yields

P
{∥∥ẐẐ⊺ − ZZ⊺

∥∥
2
≥ ε
}
≤ δY

(
‖Z‖2

(√
1 +

ε

‖Z‖22
− 1

))
=: δ0(ε). (F.2)

Now we seek a lower bound of λmin(ẐẐ
⊺). First an upper bound of

∥∥ẐẐ⊺
∥∥
2
is needed. To obtain this, we put forward

a covering argument. Begin by constructing a quadratic form of ẐẐ⊺ with w ∈ R
n+m, ‖w‖ = 1 and use the earlier

result in (F.2) to obtain

P
{
w⊺ẐẐ⊺w > ‖ZZ⊺‖2 + ε

}
≤ P

{
w⊺ẐẐ⊺w > w⊺ZZ⊺w + ε

}
(definition of spectral norm)

= P
{
w⊺ẐẐ⊺w − w⊺ZZ⊺w ≥ ε

}

= P
{
w⊺
(
ẐẐ⊺ − ZZ⊺

)
w ≥ ε

}

≤ P
{∥∥ẐẐ⊺ − ZZ⊺

∥∥
2
≥ ε
}

(definition of spectral norm, ‖w‖ = 1)

≤ δ0(ε). (F.3)

Consider a minimal γ-net {wk, k ∈ [Mγ ]} of the (n+m)-sphere surface Sn+m−1 := {w ∈ R
n+m : ‖w‖ = 1}. Hence

for all w ∈ Sn+m−1 there exists k ∈ [Mγ ] such that

w⊺ẐẐ⊺w = (w − wk)
⊺ẐẐ⊺w + w⊺

kẐẐ
⊺(w − wk) + w⊺

k ẐẐ
⊺wk

≤ 2γ‖ẐẐ⊺‖2 + max
k∈[Mγ ]

w⊺

k ẐẐ
⊺wk,

where the inequality follows by ‖A‖2 = max‖x‖=1,‖y‖=1 y
⊺Ax for A ∈ R

n and ‖w − wk‖ ≤ γ. Taking supremum of
the left side of the inequality over w, using the definition of the spectral norm, and rearranging implies that

∥∥ẐẐ⊺
∥∥
2
≤ 1

1− 2γ
max

k∈[Mγ ]
w⊺

kẐẐ
⊺wk. (F.4)
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By construction ‖wk‖ = 1, so we may apply (F.3) to wk in place of w from earlier in the proof:

P

{
w⊺

kẐẐ
⊺wk > ‖ZZ⊺‖2 + ε

}
≤ δ0(ε).

Now apply the union bound over the Mγ terms to obtain

P

{[
max

k∈[Mγ ]
w⊺

k ẐẐ
⊺wk

]
> ‖ZZ⊺‖2 + ε

}
= P






Mγ⋃

k=1

[
w⊺

kẐẐ
⊺wk > ‖ZZ⊺‖2 + ε

]





≤
Mγ∑

k=1

P
{[

w⊺

kẐẐ
⊺wk > ‖ZZ⊺‖2 + ε

]}

≤
Mγ∑

k=1

δ0(ε) = Mγδ0(ε).

Note that tighter bounds can be obtained via more complicated arguments e.g. as in [45,46]. For definiteness, choose
γ = 1/4. By (E.6) we know Mγ ≤ 9n+m. Thus (F.4) becomes

∥∥ẐẐ⊺
∥∥
2
≤ 2 max

k∈[9n+m]
w⊺

k ẐẐ
⊺wk.

Considering a probability bound we have

P
{
‖ẐẐ⊺‖2 ≥ 2 (‖ZZ⊺‖2 + ε)

}
≤ P

{
2 max
k∈[9n+m]

w⊺

kẐẐ
⊺wk ≥ 2 (‖ZZ⊺‖2 + ε)

}

= P

{
max

k∈[9n+m]
w⊺

k ẐẐ
⊺wk ≥ ‖ZZ⊺‖2 + ε

}

≤ 9n+mδ0(ε) =: δ1(ε). (F.5)

We are now in a position to derive a lower bound for λmin(ẐẐ
⊺). Again we construct a quadratic form of ẐẐ⊺ with

w ∈ R
n+m, ‖w‖ = 1 and use the earlier result in (F.2) to obtain

P
{
w⊺ẐẐ⊺w < λmin(ZZ

⊺)− ε
}
= P

{
λmin(ZZ

⊺) > w⊺ẐẐ⊺w + ε
}

≤ P
{
w⊺ZZ⊺w > w⊺ẐẐ⊺w + ε

}
(property of minimum eigenvalue)

= P
{
w⊺ZZ⊺w − w⊺ẐẐ⊺w ≥ ε

}

= P
{
w⊺
(
ZZ⊺ − ẐẐ⊺

)
w ≥ ε

}

≤ P
{∥∥ZZ⊺ − ẐẐ⊺

∥∥
2
≥ ε
}

(definition of spectral norm, ‖w‖ = 1)

≤ δ0(ε). (F.6)

Consider again a minimal γ-net {wk, k ∈ [Mγ ]} of Sn+m−1, and for all w ∈ Sn+m−1, there exists k ∈ [Mγ ] such that

w⊺ẐẐ⊺w = (w − wk)
⊺ẐẐ⊺w + w⊺

kẐẐ
⊺(w − wk) + w⊺

k ẐẐ
⊺wk

≥ −2γ‖ẐẐ⊺‖2 + min
k∈[Mγ ]

w⊺

kẐẐ
⊺wk, (F.7)

where the inequality follows by ‖A‖2 = max‖x‖=1,‖y‖=1 y
⊺Ax for A ∈ R

n and ‖wk − w‖ ≤ γ. By construction
‖wk‖ = 1, so we may apply (F.6) to wk in place of w from earlier in the proof:

P
{
w⊺

kẐẐ
⊺wk < λmin(ZZ

⊺)− ε
}
≤ δ0(ε).
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As before, apply the union bound over the Mγ terms to obtain

P

{[
min

k∈[Mγ ]
w⊺

k ẐẐ
⊺wk

]
< λmin(ZZ

⊺)− ε

}
= P





Mγ⋃

k=1

[
w⊺

kẐẐ
⊺wk < λmin(ZZ

⊺)− ε
]




≤
Mγ∑

k=1

P
{[

w⊺

kẐẐ
⊺wk < λmin(ZZ

⊺)− ε
]}

≤
Mγ∑

k=1

δ0(ε) = Mγδ0(ε).

For definiteness choose γ = λmin(ZZ
⊺)/(8λmax(ZZ

⊺)) = λmin(ZZ
⊺)/(8‖ZZ⊺‖2). By (E.6) we know

Mγ ≤
(
16‖ZZ⊺‖2
λmin(ZZ⊺)

+ 1

)n+m

.

Hence,

P

{[
min

k∈[Mγ ]
w⊺

k ẐẐ
⊺wk

]
< λmin(ZZ

⊺)− ε

}
≤
(
16‖ZZ⊺‖2
λmin(ZZ⊺)

+ 1

)n+m

δ0(ε) =: δ2(ε). (F.8)

Also, using our choice of γ = λmin(ZZ
⊺)/(8‖ZZ⊺‖2), we have

−4γ(‖ZZ⊺‖2 + ε) = −4 · λmin(ZZ
⊺)

8‖ZZ⊺‖2
(‖ZZ⊺‖2 + ε)

= −1

2
λmin(ZZ

⊺)

(
1 +

ε

‖ZZ⊺‖2

)
.

Considering a probability bound and using the result on
∥∥ẐẐ⊺

∥∥
2
in (F.5), we have

P

{
−2γ

∥∥ẐẐ⊺
∥∥
2
≤ −1

2
λmin(ZZ

⊺)

(
1 +

ε

‖ZZ⊺‖2

)}

= P
{
− 2γ

∥∥ẐẐ⊺
∥∥
2
≤ −4γ(‖ZZ⊺‖2 + ε)

}

= P
{∥∥ẐẐ⊺

∥∥
2
≥ 2(‖ZZ⊺‖2 + ε)

}

≤ δ1(ε). (F.9)

Combining (F.8) and (F.9) and using the union bound we obtain that

−2γ‖ẐẐ⊺‖2 + min
k∈[Mγ ]

w⊺

k ẐẐ
⊺wk ≥ −1

2
λmin(ZZ

⊺)

(
1 +

ε

‖ZZ⊺‖2

)
+ λmin(ZZ

⊺)− ε

=
1

2
λmin(ZZ

⊺)−
(
1 +

λmin(ZZ
⊺)

2‖ZZ⊺‖2

)
ε

takes place with high probability at least 1− [δ1(ε) + δ2(ε)]. Recalling (F.7) we have

λmin(ẐẐ
⊺) = min

w∈Sn+m−1

w⊺ẐẐ⊺w ≥ −2γ‖Ẑ‖22 + min
k∈[Mγ ]

w⊺

kẐẐ
⊺wk,

and thus the probability bound

P

{
λmin(ẐẐ

⊺) <
1

2
λmin(ZZ

⊺)−
(
1 +

λmin(ZZ
⊺)

2‖ZZ⊺‖2

)
ε

}
≤ δ1(ε) + δ2(ε) =: δm(ε). (F.10)
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In fact, this means that ẐẐ⊺ is invertible with probability at least 1 − δm(ε), if we take ε small enough, since
λmin(ZZ

⊺) > 0 from Assumption 1 (iv). We conclude the proof by returning to the overall bound in (F.1) and using

both the bound of ẐẐ⊺ − ZZ⊺ in (F.2) and the bound of λmin(ẐẐ
⊺) in (F.10) to obtain

P
{∥∥(ẐẐ⊺)† − (ZZ⊺)−1

∥∥
2
≥ ε
}

≤ P

{[∥∥(ẐẐ⊺)† − (ZZ⊺)−1
∥∥
2
≥ ε
]⋂[

λmin(ẐẐ
⊺) ≥ 1− τ

2
λmin(ZZ

⊺)

]}
+ P

{
λmin(ẐẐ

⊺) <
1− τ

2
λmin(ZZ

⊺)

}

= P

{[∥∥(ẐẐ⊺)−1 − (ZZ⊺)−1
∥∥
2
≥ ε
]⋂[

λmin(ẐẐ
⊺) ≥ 1− τ

2
λmin(ZZ

⊺)

]}
+ P

{
λmin(ẐẐ

⊺) <
1− τ

2
λmin(ZZ

⊺)

}

≤ P

{[∥∥ẐẐ⊺ − ZZ⊺
∥∥
2
≥ ελmin(ZZ

⊺)λmin(ẐẐ
⊺)
]⋂[

λmin(ẐẐ
⊺) ≥ 1− τ

2
λmin(ZZ

⊺)

]}

+ P

{
λmin(ẐẐ

⊺) <
1− τ

2
λmin(ZZ

⊺)

}

≤ P

{∥∥ẐẐ⊺ − ZZ⊺
∥∥
2
≥ 1− τ

2
ελ2

min(ZZ
⊺)

}
+ P

{
λmin(ẐẐ

⊺) <
1− τ

2
λmin(ZZ

⊺)

}

≤ δ0

(
1− τ

2
λ2
min(ZZ

⊺)ε

)
+ δm

(
τλmin(ZZ

⊺)

2 + λmin(ZZ⊺)/‖ZZ⊺‖2

)
,

where 0 < τ < 1. Note that τ may be chosen arbitrarily small. In order to preserve useful dependence of the bound
on ε, fix a maximum εmax > ε and set τ = ε/εmax, so the bound becomes

P
{∥∥(ẐẐ⊺)† − (ZZ⊺)−1

∥∥
2
≥ ε
}

≤ δ0

(
1

2
λ2
min(ZZ

⊺)

(
1− ε

εmax

)
ε

)
+ δm

(
ελmin(ZZ

⊺)

εmax(2 + λmin(ZZ⊺)/‖ZZ⊺‖2)

)
=: δZZ(ε, εmax). (F.11)

Theorem 4 (Theorem 2 restated) Suppose Assumptions 1 and 2 hold. Given a positive value εmax, then for all

0 < ε < 3εmaxmin{
√
λmax(YY⊺)λmax(ZZ⊺), εmax},

P
{∥∥[Â B̂

]
− [A B]

∥∥
2
≥ ε
}
≤ δAB(ε),

where

δAB(ε) = δAB(ε, εmax)

:= δY Z

(
1

3
λmin(ZZ

⊺)ε

)
+ δY Z

(√
ε

3

)
+ δZZ

(
ε

3
√
λmax(YY⊺)λmax(ZZ⊺)

, εmax

)
+ δZZ

(√
ε

3
, εmax

)
.

PROOF. Decompose the system parameter error matrix using the least-squares estimators, as discussed earlier, as

[
Â B̂

]
− [A B] = ŶẐ⊺(ẐẐ⊺)† −YZ⊺(ZZ⊺)−1

=
[
ŶẐ⊺ −YZ⊺

]
(ZZ⊺)−1

︸ ︷︷ ︸
=:Π1

+YZ⊺
[
(ẐẐ⊺)† − (ZZ⊺)−1

]
︸ ︷︷ ︸

=:Π2

+
[
ŶẐ⊺ −YZ⊺

][
(ẐẐ⊺)† − (ZZ⊺)−1

]
︸ ︷︷ ︸

=:Π3

.

Considering a probability bound and using (E.4) we obtain

P

{[
Â B̂

]
− [A B] ≥ ε

}
= P {Π1 +Π2 +Π3 ≥ ε}
≤ P {Π1 ≥ ε/3}+ P {Π2 ≥ ε/3}+ P {Π3 ≥ ε/3} .

For the first term, use the submultiplicative property, rearrange, and use (E.1) to obtain

P

{
Π1 ≥ ε

3

}
= P

{∥∥[ŶẐ⊺ −YZ⊺
]
(ZZ⊺)−1

∥∥
2
≥ ε

3

}

34



≤ P

{∥∥ŶẐ⊺ −YZ⊺
∥∥
2

∥∥(ZZ⊺)−1
∥∥
2
≥ ε

3

}

= P

{∥∥ŶẐ⊺ −YZ⊺
∥∥
2
≥ ε

3‖(ZZ⊺)−1‖2

}

= P

{∥∥ŶẐ⊺ −YZ⊺
∥∥
2
≥ 1

3
λmin(ZZ

⊺)ε

}

≤ δY Z

(
1

3
λmin(ZZ

⊺)ε

)
,

where the last step follows by applying Lemma 6 with the appropriate setting of ε.

For the second term, use submultiplicativity and rearrange to obtain

P

{
Π2 ≥ ε

3

}
= P

{∥∥YZ⊺
[
(ẐẐ⊺)† − (ZZ⊺)−1

]∥∥
2
≥ ε

3

}

≤ P

{
‖Y‖2‖Z‖2

∥∥(ẐẐ⊺)† − (ZZ⊺)−1
∥∥
2
≥ ε

3

}

= P

{∥∥(ẐẐ⊺)† − (ZZ⊺)−1
∥∥
2
≥ ε

3‖Y‖2‖Z‖2

}

≤ δZZ

(
ε

3‖Y‖2‖Z‖2
, εmax

)
,

where the last step follows by applying Lemma 7 with the appropriate setting of ε.

For the third term, use submultiplicativity and (E.5) to obtain

P

{
Π3 ≥ ε

3

}
= P

{∥∥[ŶẐ⊺ −YZ⊺
][
(ẐẐ⊺)† − (ZZ⊺)−1

]∥∥
2
≥ ε

3

}

≤ P

{∥∥ŶẐ⊺ −YZ⊺
∥∥
2

∥∥(ẐẐ⊺)† − (ZZ⊺)−1
∥∥
2
≥ ε

3

}

≤ P

{∥∥ŶẐ⊺ −YZ⊺
∥∥
2
≥
√

ε

3

}
+ P

{∥∥(ẐẐ⊺)† − (ZZ⊺)−1
∥∥
2
≥
√

ε

3

}

≤ δY Z

(√
ε

3

)
+ δZZ

(√
ε

3
, εmax

)
,

where the last step follows by applying Lemmas 6 and 7 with the appropriate settings of ε. The conclusion follows
by combining the probability bounds for each term.

PROOF OF THEOREM 2.
The qualitative claim in Theorem 2 is found by inverting the bound of Theorem 4 and examining the behavior of
the bound as nr → ∞. To be specific, from Lemma 5, given fixed δ ∈ (0, 1), we can find εY (δ) such that

P
{∥∥Ŷ −Y

∥∥
2
≥ εY (δ)

}
≤ δ,

where εY (δ) satisfies

δY (εY (δ)) = (n+ ℓ) exp

{
−3

2
· nrε

2
Y (δ)

3ℓc2N + εY (δ)
√
ℓc2N

}
= δ.

Solving for εY (δ) in terms of δ using the quadratic formula, we obtain

εY (δ) =
1

2nr

(
2

3

√
ℓc2N log

n+ ℓ

δ
±
√

4

9
ℓc2N log2

n+ ℓ

δ
+ 8nrℓc2N log

n+ ℓ

δ

)
.
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Since εY (δ) ≥ 0, we have that

εY (δ) =
1

2nr

(
2

3

√
ℓc2N log

n+ ℓ

δ
+

√
4

9
ℓc2N log2

n+ ℓ

δ
+ 8nrℓc2N log

n+ ℓ

δ

)

=
1

3nr

√
ℓc2N log

n+ ℓ

δ
+

√
1

9n2
r

ℓc2N log2
n+ ℓ

δ
+

2

nr
ℓc2N log

n+ ℓ

δ

= O



√

ℓc2N log[(n+ ℓ)/δ]

nr


 .

An identical argument holds for
∥∥Ẑ− Z

∥∥
2
. Therefore, for fixed δ ∈ (0, 1), with probability at least 1− δ,

∥∥Ŷ −Y
∥∥
2
< εY (δ) = O




√

ℓc2N log[(n+ ℓ)/δ]

nr



 ,

∥∥Ẑ− Z
∥∥
2
< εY (δ) = O




√

ℓc2N log[(n+ ℓ)/δ]

nr



 .

We proceed with this argument. Now from Lemma 6 it follows that for fixed δ ∈ (0, 1) there is εY Z(δ) such that

P
{∥∥ŶẐ⊺ −YZ⊺

∥∥
2
≥ εY Z(δ)

}
≤ δY Z(εY Z(δ)) = δ.

This implies

δY Z(εY Z(δ)) = δY




√

εY Z(δ) +

(‖Y‖2 + ‖Z‖2
2

)2

− ‖Y‖2 + ‖Z‖2
2



 = δ,

and solving for εY Z(δ) we obtain

εY Z(δ) = ε2Y (δ) + (‖Y‖2 + ‖Z‖2)εY (δ).

Thus when nr is large enough it holds that

εY Z(δ) = O
(
(‖Y‖2 + ‖Z‖2)εY (δ)

)
= O


(√λmax(YY⊺) +

√
λmax(ZZ⊺)

)
√

ℓc2N log[(n+ ℓ)/δ]

nr


 ,

which is the bound of ‖ŶẐ⊺ −YZ⊺‖2 with probability at least 1− δ.

Similarly, under the condition of Lemma 7, we have that for fixed δ ∈ (0, 1) and large enough nr, there are
ε0(δ), εm(δ) > 0 with δ0(ε0(δ)) = δ and δm(εm(δ)) = δ such that

ε0(δ) = ε2Y (δ) + 2εY (δ)
√

λmax(ZZ⊺) = O



√λmax(ZZ⊺)

√
ℓc2N log[(n+ ℓ)/δ]

nr



 ,

εm(δ) = O



√λmax(ZZ⊺)

√
ℓc2N log{(n+ ℓ)[9n+m + (16λmax(ZZ⊺)/λmin(ZZ⊺) + 1)n+m]/δ}

nr





36



For fixed δ, εmax ∈ (0, 1) and εZ1(δ) ∈ (0, εmax), suppose that

δ0

(
1

2
λ2
min(ZZ

⊺)

(
1− εZ1(δ)

εmax

)
εZ1(δ)

)
= δ,

and we know that

1

2
λ2
min(ZZ

⊺)

(
1− εZ1(δ)

εmax

)
εZ1(δ) = ε0(δ),

which implies

εZ1(δ) =
1

2
εmax

(
1±

√
1− 8ε0(δ)

λ2
min(ZZ

⊺)

)
.

Because for any nonnegative random variable X and constants a > b > 0, P{X ≥ a} ≤ P{X ≥ b}, we choose the
smaller root. Thus,

εZ1(δ) =
1

2
εmax

(
1−

√
1− 8ε0(δ)

λ2
min(ZZ

⊺)

)

=
1

2
εmax

(
1−

(
1−O

(
ε0(δ)

λ2
min(ZZ

⊺)

)))

= O




√
λmax(ZZ⊺)

λ2
min(ZZ

⊺)

√
ℓc2N log[(n+ ℓ)/δ]

nr



 .

For δ, εmax ∈ (0, 1) and εZ2(δ) ∈ (0, εmax), if

δm

(
εZ2(δ)λmin(ZZ

⊺)

εmax(2 + λmin(ZZ⊺)/λmax(ZZ⊺))

)
= δ,

then

εZ2(δ) =
εmax(2 + λmin(ZZ

⊺)/λmax(ZZ
⊺))

λmin(ZZ⊺)
εm(δ)

= O




(
2 +

λmin(ZZ
⊺)

λmax(ZZ⊺)

)√
λmax(ZZ⊺)

λmin(ZZ⊺)

√
ℓc2N log{(n+ ℓ)[9n+m + (16λmax(ZZ⊺)/λmin(ZZ⊺) + 1)n+m]/δ}

nr





Note that c1ε
2/(c2 + c3ε) is monotonically increasing on (0,+∞) for any positive constants c1, c2, and c3, so from

the monotonicity of composite functions, we know that δY (ε) is monotonically decreasing. So are δY Z(ε), δ0(ε), and
δm(ε). In addition, (1−ε/εmax)ε is monotonically increasing on (0, εmax/2) for fixed εmax > 0, implying δZZ(ε, εmax)
is monotonically decreasing on (0, εmax/2). Let εZZ(δ) := max{εZ1(δ/2), εZ2(δ/2)}. Since for fixed δ, εmax ∈ (0, 1),
when nr is large enough, εZ1(δ/2), εZ2(δ/2) < εmax/2, it holds that

P
{∥∥(ẐẐ⊺)† − (ZZ⊺)−1

∥∥
2
≥ εZZ(δ)

}

≤ δZZ(εZZ(δ), εmax)

= δ0

(
1

2
λ2
min(ZZ

⊺)

(
1− εZZ(δ)

εmax

)
εZZ(δ)

)
+ δm

(
εZZ(δ)λmin(ZZ

⊺)

εmax(2 + λmin(ZZ⊺)/λmax(ZZ⊺))

)

≤ δ0

(
1

2
λ2
min(ZZ

⊺)

(
1− εZ1(δ/2)

εmax

)
εZ1(δ/2)

)
+ δm

(
εZ2(δ/2)λmin(ZZ

⊺)

εmax(2 + λmin(ZZ⊺)/λmax(ZZ⊺))

)
= δ.
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Therefore, we know that with probability at least 1− δ,

∥∥(ẐẐ⊺)† − (ZZ⊺)−1
∥∥
2

< εZZ(δ)

= O
(
max

{√
λmax(ZZ⊺)

λ2
min(ZZ

⊺)

√
ℓc2N log[2(n+ ℓ)/δ]

nr
,

(
2 +

λmin(ZZ
⊺)

λmax(ZZ⊺)

)√
λmax(ZZ⊺)

λmin(ZZ⊺)

√
ℓc2N log{2(n+ ℓ)[9n+m + (16λmax(ZZ⊺)/λmin(ZZ⊺) + 1)

n+m
]/δ}

nr

})
.

Similarly, let

εAB(δ) := max

{
3εY Z(δ/4)

λmin(ZZ⊺)
, 3ε2Y Z(δ/4), 3

√
λmax(YY⊺)λmax(ZZ⊺)εZZ(δ/4), 3ε

2
ZZ(δ/4)

}
, (F.12)

and from Theorem 4 it holds for large enough nr that

P
{∥∥[Â B̂

]
− [A B]

∥∥
2
≥ εAB(δ)

}

≤ δAB(εAB(δ))

= δY Z

(
1

3
λmin(ZZ

⊺)εAB(δ)

)
+ δY Z

(√
εAB(δ)

3

)
+ δZZ

(
εAB(δ)

3
√
λmax(YY⊺)λmax(ZZ⊺)

, εmax

)

+ δZZ

(√
εAB(δ)

3
, εmax

)

≤ δY Z(εY Z(δ/4)) + δY Z(εY Z(δ/4)) + δZZ(εZZ(δ/4), εmax) + δZZ(εZZ(δ/4), εmax) = δ.

Therefore, we have that with probability 1− δ, for large enough nr,

∥∥[Â B̂
]
− [A B]

∥∥
2
< εAB(δ),

where

εAB(δ)

= O
(
max

{√
λmax(YY⊺) +

√
λmax(ZZ⊺)

λmin(ZZ⊺)

√
ℓc2N log[4(n+ ℓ)/δ]

nr
,

(
(√

λmax(YY⊺) +
√
λmax(ZZ⊺)

)
√

ℓc2N log[4(n+ ℓ)/δ]

nr

)2

,

√
λmax(YY⊺)λmax(ZZ

⊺)

λ2
min(ZZ

⊺)

√
ℓc2N log[8(n+ ℓ)/δ]

nr
,

(
2 +

λmin(ZZ
⊺)

λmax(ZZ⊺)

)√
λmax(YY⊺)λmax(ZZ

⊺)

λmin(ZZ⊺)

√
ℓc2N log{8(n+ ℓ)[9n+m + (16λmax(ZZ⊺)/λmin(ZZ⊺) + 1)

n+m
]/δ}

nr
,

(√
λmax(YY⊺)λmax(ZZ

⊺)

λ2
min(ZZ

⊺)

√
ℓc2N log[8(n+ ℓ)/δ]

nr

)2

,

((
2 +

λmin(ZZ
⊺)

λmax(ZZ⊺)

)√
λmax(YY⊺)λmax(ZZ

⊺)

λmin(ZZ⊺)
√

ℓc2N log{8(n+ ℓ)[9n+m + (16λmax(ZZ⊺)/λmin(ZZ⊺) + 1)n+m]/δ}
nr

)2})

= O
(
max

{√
λmax(YY⊺) +

√
λmax(ZZ⊺)

λmin(ZZ⊺)

√
ℓc2N log[4(n+ ℓ)/δ]

nr
,

√
λmax(YY⊺)λmax(ZZ

⊺)

λ2
min(ZZ

⊺)

√
ℓc2N log[8(n+ ℓ)/δ]

nr
,
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(
2 +

λmin(ZZ
⊺)

λmax(ZZ⊺)

)√
λmax(YY⊺)λmax(ZZ

⊺)

λmin(ZZ⊺)

√
ℓc2N log{8(n+ ℓ)[9n+m + (16λmax(ZZ⊺)/λmin(ZZ⊺) + 1)n+m]/δ}

nr

})

= O
(
max

{√
λmax(YY⊺) +

√
λmax(ZZ⊺)

λmin(ZZ⊺)

√
ℓc2N log[4(n+ ℓ)/δ]

nr
,

√
λmax(YY⊺)λmax(ZZ

⊺)

λ2
min(ZZ

⊺)

√
ℓc2N log[8(n+ ℓ)/δ]

nr
,

√
λmax(YY⊺)

(
1 +

2λmax(ZZ
⊺)

λmin(ZZ⊺)

)√
ℓc2N log{8(n+ ℓ)[9n+m + (16λmax(ZZ⊺)/λmin(ZZ⊺) + 1)n+m]/δ}

nr

})
.

The qualitative claim in Theorem 2 follows by dropping dependence on quantities other than δ, nr, and ℓ.

Remark 14 It can be seen from the above bound that smaller λmax(YY⊺), λmax(ZZ
⊺), cN , and larger λmin(ZZ

⊺),
all of which depend on both system parameters and input design, yield faster convergence speed of Algorithm 1. The
exponential term of n+m is technical and could be tightened [45, 46]. In addition, the estimation error has higher
order terms, e.g., O(1/nr), which may be relatively large when nr is small. This could explain the performance of
Algorithm 1 with small number of rollouts in simulation.
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G Proof of Theorem 3

Now we derive bounds for [ ˆ̃Σ′
A

ˆ̃Σ′
B]− [Σ̃′

A Σ̃′
B]. The proofs follow a similar structure to that of the proofs for bounds

on [Â B̂] − [A B], but with more complicated expressions due to the greater complexity of the second-moment
dynamic.

Throughout this section, small probability bounds are denoted by η[·], where [·] are various subscripts, and each of
these bounds decreases monotonically towards 0 with increasing number of rollouts nr.

Recalling notations in Section 3, we have

ˆ̃Xt =
1

nr
P1 vec

(
nr∑

k=1

x
(k)
t (x

(k)
t )⊺

)
, X̃t = P1 vec(E{xtx

⊺

t }),

Ũt = P2 vec(Ūt + νtν
⊺

t ),

Ŵt =
1

nr
vec

(
nr∑

k=1

x
(k)
t ν⊺t

)
, Wt = vec(E{xtu

⊺

t }),

Ŵ ′
t =

1

nr
vec

(
nr∑

k=1

νt(x
(k)
t )⊺

)
, W ′

t = vec(E{u⊺

t xt}),

ˆ̃A = P1(Â⊗ Â)Q1, Ã = P1(A⊗A)Q1,

ˆ̃B = P1(B̂ ⊗ B̂)Q2, B̃ = P1(B ⊗B)Q2,

K̂BA = P1(B̂ ⊗ Â), KBA = P1(B ⊗A),

K̂AB = P1(Â⊗ B̂), KAB = P1(A⊗B).

Further denote

M1 :=
[
X̃ℓ−1 · · · X̃0

]
, L1 :=

[
Wℓ−1 · · ·W0

]
, U :=

[
Ũℓ−1 · · · Ũ0

]
.

Lemma 8 Suppose Assumptions 1 and 2 hold. Then for all ε > 0,

P
{∥∥D̂−D

∥∥
2
≥ ε
}
≤ ηD(ε),

where

ηD(ε) :=

(
n(n+ 1)

2
+ ℓ

)
exp

{
−3

2
· nrε

2

3ℓc2F + ε
√
ℓc2F

}
,

and

P
{∥∥Ĉ−C

∥∥
2
≥ ε
}
≤ ηC(ε),

where

ηC(ε) := ηD(ε/5) + ηAM (ε/5) + 2ηKL(ε/5) + ηB

(
ε

5‖U‖2

)
,

ηAM (ε) := ηA

(
ε

3‖M1‖2

)
+ ηD

(
ε

6‖A‖22

)
+ ηA(

√
ε/3) + ηD(

√
ε/3),

ηKL(ε) := ηAB

(
ε

3‖L1‖2

)
+ ηL

(
ε

3‖A‖2‖B‖2

)
+ ηAB

(√
ε/3
)
+ ηL

(√
ε/3
)
,

ηA(ε) := δAB

(√
ε/2
)
+ δAB

(
ε/(8

√
‖A‖2)

)
,
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ηB(ε) := δAB

(√
ε/2
)
+ δAB

(
ε/(8

√
‖B‖2)

)
,

ηAB(ε) := 2δAB

(√
ε/3
)
+ δAB

(
ε/(3

√
‖B‖2)

)
+ δAB

(
ε/(3

√
‖A‖2)

)
,

ηL(ε) := (nm+ ℓ) exp

{
−3

2
· nrε

2

3ℓc2W + ε
√
ℓc2W

}
.

Here, δAB(ε) = δAB(ε, εmax), ε ∈ (0, εmax) and εmax ∈ (0, 1), is defined in Theorem 4, and we omit εmax for
simplicity.

PROOF. Denote

M1 :=
[
X̃ℓ−1 · · · X̃0

]
, M̂1 :=

[ ˆ̃Xℓ−1 · · · ˆ̃X0

]
,

M2 :=
[
X̃ℓ · · · X̃1

]
, M̂2 :=

[ ˆ̃Xℓ · · · ˆ̃X1

]
,

L1 := [Wℓ−1 · · ·W0], L̂1 :=
[
Ŵℓ−1 · · · Ŵ0

]
,

L2 := [W ′
ℓ−1 · · ·W ′

0], L̂2 :=
[
Ŵ ′

ℓ−1 · · · Ŵ ′
0

]
,

U :=
[
Ũℓ−1 · · · Ũ0

]
,

which will be used both for the development of the bound on
∥∥Ĉ−C

∥∥
2
and on

∥∥D̂−D
∥∥
2
.

We begin by justifying the claim regarding a bound on
∥∥D̂−D

∥∥
2
. We make the new definitions

Xk :=
[
vec
(
x
(k)
ℓ−1(x

(k)
ℓ−1)

⊺ − E
{
x
(k)
ℓ−1(x

(k)
ℓ−1)

⊺
})

· · · vec
(
x
(k)
0 (x

(k)
0 )⊺ − E

{
x
(k)
0 (x

(k)
0 )⊺

})]
,

X̃k := P1Xk,

so that

M̂1 −M1 =
1

nr

nr∑

k=1

X̃k.

Considering a single column of Xk, we use the bound from Lemma 1 to obtain

∥∥X̃k

∥∥
2
≤ ‖P1‖2‖Xk‖2 (by submultiplicativity)

= ‖Xk‖2 (since ‖P1‖2 = 1 by definition of P1)

≤ ‖Xk‖F (by ordering of ‖ · ‖2 and ‖ · ‖F )

=

√√√√
ℓ−1∑

t=0

∥∥∥vec
(
x
(k)
t (x

(k)
t )⊺ − E

{
x
(k)
t (x

(k)
t )⊺

})∥∥∥
2

(by definition of Xk, vec, ‖ · ‖F )

≤
√
ℓc2F .

Notice that

∥∥D̂−D
∥∥
2
=

∥∥∥∥∥

[ ˆ̃Xℓ−1 · · · ˆ̃X0

Ũℓ−1 · · · Ũ0

]
−
[
X̃ℓ−1 · · · X̃0

Ũℓ−1 · · · Ũ0

]∥∥∥∥∥
2

=
∥∥∥
[
ˆ̃Xℓ−1 · · · ˆ̃X0

]
−
[
X̃ℓ−1 · · · X̃0

]∥∥∥
2

=

∥∥∥∥∥
1

nr

nr∑

k=1

X̃k

∥∥∥∥∥
2

(G.1)
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Thus we have the small probability bound

P
{∥∥D̂−D

∥∥
2
≥ ε
}
≤ ηD(ε),

where

ηD(ε) :=

(
1

2
n(n+ 1) + ℓ

)
exp

{
−3

2
· nrε

2

3ℓc2F + ε
√
ℓc2F

}
,

which follows by applying Corollary 2 with Yk = X̃k, N = nr, and M =
√
ℓc2F .

We now justify the claim regarding a bound on
∥∥Ĉ−C

∥∥
2
. The prior statement implies

P
{∥∥M̂1 −M1

∥∥
2
≥ ε
}
≤ ηD(ε). (G.2)

An identical argument, but shifting the time indices of all terms by 1, leads to the bound

P
{∥∥M̂2 −M2

∥∥
2
≥ ε
}
≤ ηD(ε). (G.3)

We will also need probabilistic bounds on the cross-terms L̂1−L1 and L̂2−L2. To this end, make the new definition

Wk :=
[
vec
(
x
(k)
ℓ−1(u

(k)
ℓ−1)

⊺ − E
{
x
(k)
ℓ−1(u

(k)
ℓ−1)

⊺
})

· · · vec
(
x
(k)
0 (u

(k)
0 )⊺ − E

{
x
(k)
0 (u

(k)
0 )⊺

})]
,

so that

L̂1 − L1 =
1

nr

nr∑

k=1

Wk.

Considering a single column of Wk, we use the bound from Lemma 1 to obtain

‖Wk‖2 ≤ ‖Wk‖F (by ordering of ‖ · ‖2 and ‖ · ‖F )

=

√√√√
ℓ−1∑

t=0

∥∥∥vec
(
x
(k)
t (u

(k)
t )⊺ − E

{
x
(k)
t (u

(k)
t )⊺

})∥∥∥
2

(by definition of Wk, vec, ‖ · ‖F )

≤
√
ℓc2W .

Thus we have the probability bound

P
{∥∥L̂1 − L1

∥∥
2
≥ ε
}
≤ ηL(ε), (G.4)

where

ηL(ε) := (nm+ ℓ) exp

{
−3

2
· nrε

2

3ℓc2W + ε
√
ℓc2W

}
,

which follows by applying Corollary 2 with Yk = Wk, N = nr, and M =
√
ℓc2W . An identical argument yields the

same bound for L̂2 − L2, i.e.

P
{∥∥L̂2 − L2

∥∥
2
≥ ε
}
≤ ηL(ε). (G.5)
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Denote the optimal estimation error bounds on A and B as

δA,∗(ε) := P
{
‖Â−A‖2 ≥ ε

}
, δB,∗(ε) := P

{
‖B̂ −B‖2 ≥ ε

}
.

By Theorem 2 we know δA,∗(ε) ≤ δAB(ε) and δB,∗(ε) ≤ δAB(ε), so we can use the computable bound δAB(ε) in
Theorem 2 as a conservative approximation of δA,∗(ε) and δB,∗(ε).

From the assumption of Theorem 3, it holds that

P
{∥∥ ˆ̃A− Ã

∥∥
2
≥ ε
}

= P
{∥∥P1(Â⊗ Â)Q1 − P1(A⊗A)Q1

∥∥
2
≥ ε
}

(definition of ˆ̃A, Ã)

≤ P
{
‖P1‖2

∥∥Â⊗ Â−A⊗A
∥∥
2
‖Q1‖2 ≥ ε

}
(submultiplicativity)

≤ P
{
2
∥∥Â⊗ Â−A⊗A

∥∥
2
≥ ε
}

(by definition, ‖P1‖2 = 1, ‖Q1‖2 ≤ 2)

= P
{∥∥(Â−A)⊗ (Â−A) + (Â−A)⊗A+A⊗ (Â−A)

∥∥
2
≥ ε/2

}

≤ P
{∥∥(Â−A)⊗ (Â−A)

∥∥
2
≥ ε/4

}
+ P

{∥∥(Â−A)⊗A+A⊗ (Â−A)
∥∥
2
≥ ε/4

}
(by E.4)

= P
{∥∥Â−A

∥∥
2
≥ √

ε/2
}
+ P

{∥∥Â−A
∥∥
2
≥ ε/(8‖A‖2)

}
(‖A⊗B‖2 = ‖A‖2‖B‖2)

= δA,∗

(√
ε/2
)
+ δA,∗

(
ε/(8

√
‖A‖)

)

≤ δAB

(√
ε/2
)
+ δAB

(
ε/(8

√
‖A‖)

)
(G.6)

=: ηA(ε), (G.7)

and by an identical argument

P
{∥∥ ˆ̃B − B̃

∥∥
2
≥ ε
}

≤ δB,∗

(√
ε/2
)
+ δB,∗

(
ε/(8

√
‖A‖)

)

≤ δAB

(√
ε/2
)
+ δAB

(
ε/(8

√
‖B‖)

)
=: ηB(ε). (G.8)

Similarly,

P
{∥∥K̂AB −KAB

∥∥
2
≥ ε
}

= P
{∥∥K̂BA −KBA

∥∥
2
≥ ε
}

(by symmetry)

= P
{∥∥P1(Â⊗ B̂)− P1(A⊗B)

∥∥
2
≥ ε
}

= P
{
‖P1‖2

∥∥(Â⊗ B̂)− (A⊗B)
∥∥
2
≥ ε
}

≤ P
{∥∥(Â−A)⊗ (B̂ −B) + (Â−A)⊗ B +A⊗ (B̂ −B)

∥∥
2
≥ ε
}

≤ P
{∥∥(Â−A)⊗ (B̂ −B)

∥∥
2
≥ ε/3

}
+ P

{∥∥(Â−A)⊗B
∥∥
2
≥ ε/3

}
+ P

{∥∥A⊗ (B̂ −B)
∥∥
2
≥ ε/3

}

≤ P
{∥∥Â−A

∥∥
2
≥
√
ε/3
}
+ P

{∥∥B̂ −B
∥∥
2
≥
√
ε/3
}
+ P

{∥∥Â−A
∥∥
2
≥ ε/(3‖B‖2)

}
+ P

{∥∥B̂ −B
∥∥
2
≥ ε/(3‖A‖2)

}

= δA,∗

(√
ε/3
)
+ δB,∗

(√
ε/3
)
+ δA,∗

(
ε/(3

√
‖B‖)

)
+ δB,∗

(
ε/(3

√
‖A‖)

)

≤ 2δAB

(√
ε/3
)
+ δAB

(
ε/(3

√
‖B‖)

)
+ δAB

(
ε/(3

√
‖A‖)

)
(G.9)

=: ηAB(ε). (G.10)

Consider the decomposition of Ĉ−C as

Ĉ−C

=
([ ˆ̃Xℓ · · · ˆ̃X1

]
−
[
X̃ℓ · · · X̃1

])
−
( ˆ̃A
[ ˆ̃Xℓ−1 · · · ˆ̃X0

]
− Ã

[
X̃ℓ−1 · · · X̃0

])
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−
(
K̂BA

[
Ŵℓ−1 · · · Ŵ0

]
−KBA

[
Wℓ−1 · · ·W0

])
−
(
K̂AB

[
Ŵ ′

ℓ−1 · · · Ŵ ′
0

]
−KAB

[
W ′

ℓ−1 · · ·W ′
0

])

−
( ˆ̃B
[
Ũℓ−1 · · · Ũ0

]
− B̃

[
Ũℓ−1 · · · Ũ0

])

=
(
M̂2 −M2

)
−
( ˆ̃AM̂1 − ÃM1

)
−
(
K̂BAL̂1 −KBAL1

)
−
(
K̂ABL̂2 −KABL2

)
−
( ˆ̃B − B̃

)
U. (G.11)

We treat each of these five terms separately.

For the first term, M̂2 −M2, we have the bound in (G.3).

For the second term, ˆ̃AM̂1 − ÃM1, we have the decomposition

ˆ̃AM̂1 − ÃM1 =
( ˆ̃A− Ã

)
M1 + Ã

(
M̂1 −M1

)
+
( ˆ̃A− Ã

)(
M̂1 −M1

)
.

Considering a probability bound for each of these three subterms, we have

P
{∥∥( ˆ̃A− Ã)M1

∥∥
2
≥ ε
}

≤ P
{∥∥ ˆ̃A− Ã

∥∥
2
‖M1‖2 ≥ ε

}
(by submultiplicativity)

= P

{∥∥( ˆ̃A− Ã)
∥∥
2
≥ ε

‖M1‖2

}

≤ ηA

(
ε

‖M1‖2

)
, (by (G.7))

P
{∥∥Ã(M̂1 −M1)

∥∥
2
≥ ε
}

≤ P
{∥∥Ã

∥∥
2

∥∥M̂1 −M1

∥∥
2
≥ ε
}

(by submultiplicativity)

≤ P
{
2‖A‖22

∥∥M̂1 −M1

∥∥
2
≥ ε
}

(since
∥∥Ã
∥∥
2
= ‖P1(A⊗A)Q1‖2 ≤ 2‖A⊗A‖2 = 2‖A‖22)

= P

{∥∥M̂1 −M1

∥∥
2
≥ ε

2‖A‖22

}

≤ ηD

(
ε

2‖A‖22

)
, (by (G.2))

and

P
{∥∥( ˆ̃A− Ã)(M̂1 −M1)

∥∥
2
≥ ε
}

≤ P
{∥∥ ˆ̃A− Ã

∥∥
2

∥∥M̂1 −M1

∥∥
2
≥ ε
}

(by submultiplicativity)

≤ P
{∥∥ ˆ̃A− Ã

∥∥
2
≥ √

ε
}
+ P

{∥∥M̂1 −M1

∥∥
2
≥ √

ε
}

(by (E.5))

≤ ηA(
√
ε) + ηD(

√
ε). (by (G.7) and (G.2))

Putting together the bounds for the three subterms,

P
{∥∥ ˆ̃AM̂1 − ÃM1

∥∥
2
≥ ε
}

≤ P
{∥∥( ˆ̃A− Ã)M1

∥∥
2
≥ ε/3

}
+ P

{∥∥Ã(M̂1 −M1)
∥∥
2
≥ ε/3

}
+ P

{∥∥( ˆ̃A− Ã)(M̂1 −M1)
∥∥
2
≥ ε/3

}
(by (E.4))

≤ ηA

(
ε

3 ‖M1‖2

)
+ ηD

(
ε

6 ‖A‖22

)
+ ηA(

√
ε/3) + ηD(

√
ε/3)

=: ηAM (ε).

For the third term, K̂BAL̂1 −KBAL1, we have the decomposition

K̂BAL̂1 −KBAL1 = (K̂BA −KBA)L1 +KBA(L̂1 − L1) + (K̂BA −KBA)(L̂1 − L1).
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Considering a probability bound for each of these three subterms, we have

P
{∥∥(K̂BA −KBA)L1

∥∥
2
≥ ε
}

≤ P
{∥∥K̂BA −KBA

∥∥
2
‖L1‖2 ≥ ε

}
(by submultiplicativity)

= P

{∥∥K̂BA −KBA

∥∥
2
≥ ε

‖L1‖2

}

≤ ηAB

(
ε

‖L1‖2

)
, (by (G.10))

P
{∥∥KBA(L̂1 − L1)

∥∥
2
≥ ε
}

≤ P
{
‖KBA‖2

∥∥L̂1 − L1

∥∥
2
≥ ε
}

(by submultiplicativity)

≤ P
{
‖A‖‖B‖

∥∥L̂1 − L1

∥∥
2
≥ ε
}

(since ‖KBA‖2 = ‖P1(B ⊗A)‖2 ≤ ‖P1‖2‖B ⊗A‖2 = ‖A‖2‖B‖2)

= P

{∥∥L̂1 − L1

∥∥
2
≥ ε

‖A‖2‖B‖2

}

≤ ηL

(
ε

‖A‖2‖B‖2

)
, (by (G.4))

and

P
{∥∥(K̂BA −KBA)(L̂1 − L1)

∥∥
2
≥ ε
}

≤ P
{∥∥K̂BA −KBA

∥∥
2
≥ √

ε
}
+ P

{∥∥L̂1 − L1

∥∥
2
≥ √

ε
}

(by (E.5))

≤ ηAB

(√
ε
)
+ ηL

(√
ε
)
. (by (G.10) and (G.4))

Putting together the bounds for the three subterms,

P
{∥∥K̂BAL̂1 −KBAL1

∥∥
2
≥ ε
}

≤ P
{∥∥(K̂BA −KBA)L1

∥∥
2
≥ ε/3

}
+ P

{∥∥KBA(L̂1 − L1)
∥∥
2
≥ ε/3

}
+ P

{∥∥(K̂BA −KBA)(L̂1 − L1)
∥∥
2
≥ ε/3

}

(by (E.4))

≤ ηAB

(
ε

3 ‖L1‖2

)
+ ηL

(
ε

3‖A‖2‖B‖2

)
+ ηAB

(√
ε/3
)
+ ηL

(√
ε/3
)

=: ηKL(ε).

For the fourth term, K̂ABL̂2 − KABL2, an identical argument to that for the third term using (G.10) and (G.5)
yields

P
{∥∥K̂ABL̂2 −KABL2

∥∥
2
≥ ε
}
≤ ηKL(ε).

For the fifth term,
( ˆ̃B − B̃

)
U, we have

P
{∥∥( ˆ̃B − B̃

)
U
∥∥
2
≥ ε
}

≤ P
{∥∥ ˆ̃B − B̃

∥∥
2
‖U‖2 ≥ ε

}
(by submultiplicativity)

= P

{∥∥ ˆ̃B − B̃
∥∥
2
≥ ε

‖U‖2

}

≤ ηB

(
ε

‖U‖2

)
. (by (G.8))
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Putting together the bounds for the five terms, we have

P
{∥∥Ĉ−C

∥∥
2
≥ ε
}

≤ P
{∥∥M̂2 −M2

∥∥
2
≥ ε/5

}
+ P

{∥∥ ˆ̃AM̂1 − ÃM1

∥∥
2
≥ ε/5

}
+ P

{∥∥K̂BAL̂1 −KBAL1

∥∥
2
≥ ε/5

}

+ P
{∥∥K̂ABL̂2 −KABL2

∥∥
2
≥ ε/5

}
+ P

{∥∥( ˆ̃B − B̃
)
U
∥∥
2
≥ ε/5

}
(by (E.4))

≤ ηD(ε/5) + ηAM (ε/5) + 2ηKL(ε/5) + ηB

(
ε

5 ‖U‖

)

=: ηC(ε).

Lemma 9 Suppose Assumptions 1 and 2 hold. Then for all ε > 0,

P
{∥∥ĈD̂⊺ −CD⊺

∥∥
2
≥ ε
}
≤ ηCD(ε),

where

ηCD(ε) := ηC

(√
ε

3

)
+ ηD

(√
ε

3

)
+ ηC

(
ε

3 ‖D‖2

)
+ ηD

(
ε

3 ‖C‖2

)
.

PROOF. The proof follows from using the decomposition

ĈD̂⊺ −CD⊺ =
(
Ĉ−C

)(
D̂−D

)⊺
+
(
Ĉ−C

)
D⊺ +C

(
D̂−D

)⊺

to provide conservative decompositions into terms of the form

P
{∥∥Ĉ−C

∥∥
2
≥ ε
}
≤ η, P

{∥∥D̂−D
∥∥
2
≥ ε
}
≤ η,

which are suitable for the bounds of Lemma 8.

Lemma 10 Suppose Assumptions 1 and 2 hold. Given a positive value εmax, then for all 0 < ε < εmax,

P
{∥∥(D̂D̂⊺)† − (DD⊺)−1

∥∥
2
≥ ε
}
≤ ηDD(ε, εmax),

where

ηDD(ε, εmax) := η0

(
1

2
λ2
min(DD⊺)

(
1− ε

εmax

)
ε

)
+ ηm

(
ελmin(DD⊺)

εmax(2 + λmin(DD⊺)/λmax(DD⊺))

)
,

η0(ε) := ηD

(√
λmax(DD⊺) + ε−

√
λmax(DD⊺)

)
,

ηm(ε) :=

(
9[n(n+1)+m(m+1)]/2 +

(
16λmax(DD⊺)

λmin(DD⊺)
+ 1

)[n(n+1)+m(m+1)]/2
)
η0(ε).

PROOF. The proof follows an identical argument to Lemma 7:

(1) Replace Z by D, n by n(n+ 1)/2, and m by m(m+ 1)/2.
(2) we apply (E.2) to obtain the decomposition

(D̂D̂⊺)† − (DD⊺)−1 = (DD⊺)−1(D̂D̂⊺)†
[
(D̂D̂⊺)− (DD⊺)

]
.

(3) Apply Lemma 8 with the appropriate settings of ε to get the bound

P
{∥∥D̂D̂⊺ −DD⊺

∥∥
2
≥ ε
}
≤ ηD

(√
λmax(DD⊺) + ε−

√
λmax(DD⊺)

)
=: η0(ε). (G.12)

46



(4) Apply a similar γ-net argument to obtain an upper bound of λmax(D̂D̂⊺), then a lower bound of λmin(D̂D̂⊺),
and finally the claimed bound.

Theorem 5 (Theorem 3 restated) Suppose Assumptions 1 and 2 hold. Given a positive value εmax, then for all

0 < ε < 3εmax ·min{
√
λmax(CC⊺)λmax(DD⊺), εmax},

P

{∥∥∥
[
ˆ̃Σ′
A

ˆ̃Σ′
B

]
−
[
Σ̃′

A Σ̃′
B

]∥∥∥
2
≥ ε
}
≤ η(ε),

where

η(ε) := ηCD

(
1

3
λmin(CC⊺)ε

)
+ ηCD

(√
ε

3

)
+ ηDD

(
ε

3
√
λmax(CC⊺)λmax(DD⊺)

, εmax

)
+ ηDD

(√
ε

3
, εmax

)
.

PROOF. The proof follows an identical argument to Theorem 4:

(1) Replace A and B by Σ̃′
A and Σ̃′

B, and replace Y and Z by C and D.
(2) Decompose the error matrix using the least-squares estimators as

[
ˆ̃Σ′
A

ˆ̃Σ′
B

]
−
[
Σ̃′

A Σ̃′
B

]

= ĈD̂⊺(D̂D̂⊺)−1 −CD⊺(DD⊺)−1

=
[
ĈD̂⊺ −CD⊺

]
(DD⊺)−1 +CD⊺

[
(D̂D̂⊺)−1 − (DD⊺)−1

]
+
[
ĈD̂⊺ −CD⊺

][
(D̂D̂⊺)−1 − (DD⊺)−1

]
.

(3) Consider a probability bound and use (E.4).
(4) Apply Lemmas 9 and 10 with the appropriate settings of ε in each term.
(5) The conclusion follows by combining the probability bounds for each term.

PROOF OF THEOREM 3.
The qualitative claim in Theorem 3 is found by inverting the bound of Theorem 5 and examining the behavior of
the bound as nr → ∞. The argument is similar to the proof of Theorem 2, so we just state the major steps.

From Lemma 8, it follows that for fixed δ ∈ (0, 1) and εD(δ) > 0 such that P{‖D̂−D‖2 ≥ εD(δ)} ≤ ηD(εD(δ)) = δ,

εD(δ) = O



√

ℓc2F log{[n(n+ 1)/2 + ℓ]/δ}
nr


 .

Write ηC(ε) in Lemma 8 explicitly,

ηC(ε) = ηD(ε/5) + ηD

(
ε

30‖A‖22

)
+ ηD(

√
ε/15) + 2ηL

(
ε

15‖A‖2‖B‖2

)
+ 2ηL

(√
ε/15

)
+ δAB

(
1

2

√
ε

15‖M1‖2

)

+ δAB

(
ε

120‖M1‖2
√
‖A‖2

)
+ δAB

(
1

2

(
ε

15

) 1
4

)
+ δAB

(
1

8

√
ε

15‖A‖2

)
+ δAB

(
1

2

√
ε

5‖U‖2

)

+ δAB

(
ε

40‖U‖2
√
‖B‖2

)
+ 4δAB

(√
ε

45‖L1‖2

)
+ 2δAB

(
ε

45‖L1‖2
√
‖A‖2

)
+ 2δAB

(
ε

45‖L1‖2
√

‖B‖2

)

+ 4δAB

(
1√
3

(
ε

15

) 1
4

)
+ 2δAB

(
1

3
√
‖A‖2

√
ε

15

)
+ 2δAB

(
1

3
√
‖B‖2

√
ε

15

)
.
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Hence for fixed δ ∈ (0, 1) we can find εC(δ) > 0 such that P{‖Ĉ−C‖2 ≥ εC(δ)} ≤ ηC(εC(δ)) ≤ δ holds for large
enough nr, εL(δ) such that ηL(εL(δ)) = δ, and εAB(δ), given in (F.12)+. That is,

εC(δ)

= O
(
max

{
5εD(δ/17), 30‖A‖22εD(δ/17), 15ε2D(δ/17), 15‖A‖2‖B‖2εL(δ/34), 15ε2L(δ/34), 60‖M1‖2ε2AB(δ/17),

120‖M1‖2
√
‖A‖2εAB(δ/17), 240ε

4
AB(δ/17), 960‖A‖2ε2AB(δ/17), 20‖U‖2ε2AB(δ/17), 40‖U‖2

√
‖B‖2εAB(δ/17),

45‖L1‖2ε2AB(δ/68), 45‖L1‖2
√
‖A‖2εAB(δ/34), 45‖L1‖2

√
‖B‖2εAB(δ/34), 135ε

4
AB(δ/68), 135‖A‖2ε2AB(δ/34),

135‖A‖2ε2AB(δ/34)
})

= O
(
max

{
5εD(δ/17), 30‖A‖22εD(δ/17), 15‖A‖2‖B‖2εL(δ/34), 120‖M1‖2

√
‖A‖2εAB(δ/17),

40‖U‖2
√
‖B‖2εAB(δ/17), 45‖L1‖2

√
‖A‖2εAB(δ/34), 45‖L1‖2

√
‖B‖2εAB(δ/34)

})

= O
(
max

{
‖A‖22

√
17ℓc2F log{[n(n+ 1)/2 + ℓ]/δ}

nr
, ‖A‖2‖B‖2

√
34ℓc2W log[(nm+ ℓ)/δ]

nr
,

max{‖M1‖2
√
‖A‖2, ‖U‖2

√
‖B‖2, ‖L1‖2

√
‖A‖2, ‖L1‖2

√
‖B‖2}εAB(δ/34)

})
,

where in the last equation we drop the constants and only show the dependence of the bound on system parameters,
and εAB(δ) is given in (F.12).

Next, for δ ∈ (0, 1), let

εCD(δ) = max{3ε2C(δ/4), 3ε2D(δ/4), 3‖D‖2εC(δ/4), 3‖C‖2εD(δ/4)}
= O (max{‖D‖2εC(δ/4), ‖C‖2εD(δ/4)}) ,

and then from Lemma 9 we know that

P
{∥∥ĈD̂⊺ −CD⊺

∥∥
2
≥ εCD(δ)

}
≤ ηCD(εCD(δ)) ≤ δ.

Under the condition of Lemma 10, for fixed δ ∈ (0, 1), define εη0(δ), εηm(δ) > 0 as follows such that δ0(εη0(δ)) = δ
and δm(εηm(δ)) = δ

εη0(δ) := ε2D(δ) + 2εD(δ)
√

λmax(DD⊺) = O
(√

λmax(DD⊺)εD(δ)
)
,

εηm(δ) := ε2D(δ/d(n,m)) + 2εD(δ/d(n,m))
√

λmax(DD⊺) = O
(√

λmax(DD⊺)εD(δ/d(n,m))
)
,

where

d(n,m) := 9[n(n+1)+m(m+1)]/2 +

(
16λmax(DD⊺)

λmin(DD⊺)
+ 1

)[n(n+1)+m(m+1)]/2

. (G.13)

For fixed δ, εmax ∈ (0, 1), let εD1(δ) ∈ (0, εmax) such that

εD1(δ) =
1

2
εmax

(
1−

√
1− 8εη0(δ)

λ2
min(DD⊺)

)
= O

(√
λmax(DD⊺)

λ2
min(DD⊺)

εD(δ)

)
,

and set εD2(δ) ∈ (0, εmax) such that

εD2(δ) =
εmax(2 + λmin(DD⊺)/λmax(DD⊺))

λmin(DD⊺)
εηm(δ)
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= O
((

2 +
λmin(DD⊺)

λmax(DD⊺)

)√
λmax(DD⊺)

λmin(DD⊺)
εD(δ/d(n,m))

)
.

Now define εDD(δ) := max{εD1(δ/2), εD2(δ/2)}. Since for fixed δ, εmax ∈ (0, 1), when nr is large enough, εD1(δ/2),
εD2(δ/2) < εmax/2, it holds that

P
{∥∥(D̂D̂⊺)† − (DD⊺)−1

∥∥
2
≥ εDD(δ)

}

≤ ηDD(εDD(δ), εmax)

= η0

(
1

2
λ2
min(DD⊺)

(
1− εDD(δ)

εmax

)
εDD(δ)

)
+ ηm

(
εDD(δ)λmin(DD⊺)

εmax(2 + λmin(DD⊺)/λmax(DD⊺))

)

≤ η0

(
1

2
λ2
min(DD⊺)

(
1− εD1(δ/2)

εmax

)
εD1(δ/2)

)
+ ηm

(
εD2(δ/2)λmin(DD⊺)

εmax(2 + λmin(DD⊺)/λmax(DD⊺))

)
= δ.

Finally, let

εΣ(δ) := max

{
3εCD(δ/4)

λmin(DD⊺)
, 3ε2CD(δ/4), 3

√
λmax(CC⊺)λmax(DD⊺)εDD(δ/4), 3ε2DD(δ/4)

}
,

and it can be observed that for fixed δ ∈ (0, 1) and large enough nr,

P

{∥∥∥
[
ˆ̃Σ′
A

ˆ̃Σ′
B

]
−
[
Σ̃′

A Σ̃′
B

]∥∥∥
2
≥ εΣ(δ)

}

≤ η(εΣ(δ))

= ηCD

(
1

3
λmin(DD⊺)εΣ(δ)

)
+ ηCD

(√
εΣ(δ)

3

)
+ ηDD

(
εΣ(δ)

3
√
λmax(CC⊺)λmax(DD⊺)

, εmax

)

+ ηDD

(√
εΣ(δ)

3
, εmax

)

≤ ηCD(εCD(δ/4)) + ηCD(εCD(δ/4)) + ηDD(εDD(δ/4), εmax) + ηDD(εDD(δ/4), εmax) = δ.

Moreover,

εΣ(δ)

= O
(
max

{
εCD(δ/4)

λmin(DD⊺)
,
√
λmax(CC⊺)λmax(DD⊺)εDD(δ/4)

})

= O
(
max

{√
λmax(DD⊺)

λmin(DD⊺)
εC(δ/4),

√
λmax(CC⊺)

λmin(DD⊺)
εD(δ/4),

√
λmax(CC⊺)λmax(DD⊺)

λ2
min(DD⊺)

εD(δ/8),

√
λmax(CC⊺)

(
1 +

2λmax(DD⊺)

λmin(DD⊺)

)
εD(δ/8d(n,m))

})

= O
(
max

{√
λmax(DD⊺)‖A‖22
λmin(DD⊺)

√
17ℓc2F log{4[n(n+ 1)/2 + ℓ]/δ}

nr
,

√
λmax(CC⊺)

λmin(DD⊺)

√
ℓc2F log{4[n(n+ 1)/2 + ℓ]/δ}

nr
,

√
λmax(CC⊺)λmax(DD⊺)

λ2
min(DD⊺)

√
ℓc2F log{8[n(n+ 1)/2 + ℓ]/δ}

nr
,

√
λmax(CC⊺)

(
1 +

2λmax(DD⊺)

λmin(DD⊺)

)√
ℓc2F log{8[n(n+ 1)/2 + ℓ]d(n,m)/δ}

nr

√
λmax(DD⊺)‖A‖2‖B‖2

λmin(DD⊺)

√
34ℓc2W log[4(nm+ ℓ)/δ]

nr
,
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max{‖M1‖2
√
‖A‖2, ‖U‖2

√
‖B‖2, ‖L1‖2

√
‖A‖2, ‖L1‖2

√
‖B‖2}

√
λmax(DD⊺)

λmin(DD⊺)
εAB(δ/136)

})
,

where εAB(δ) is given in (F.12), and d(n,m) is given in (G.13). This completes the proof by noticing the bound of
εAB(δ) in the proof of Theorem 2.
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