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ABSTRACT 
Wireless sensor networks have become increasingly common in 
everyday applications due to decreasing technology costs and 
improved product performance. An ideal application for wireless 
sensor networks is a biomedical patient monitoring tool. Wireless 
patient monitoring systems improve quality of life for the subject by 
granting them more freedom to continue their daily routine, which 
would not be feasible if wired monitoring equipment were used. 
This paper explores an application of wireless biomedical sensor 
networks, which attempts to monitor patients for a specific 
condition in a completely non-invasive, non-intrusive manner. This 
non-invasive technique uses an accelerometer to determine if a 
person’s arm movement is similar to that of a person suffering from 
a seizure. The effectiveness of the presented algorithm has been 
verified on test subjects and showed rare occurrences of false 
positives.  
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1. INTRODUCTION 
Wireless biomedical sensor network (WBSN) is an emerging field 
that leverages advancements in microelectromechanical sensor 
technologies and efficient wireless communication platforms in 
order to produce small, low cost and low power devices capable of 
monitoring patients for specific ailments or medical events. Well-
defined standards such as IEEE 802.15.4 and ZigBee [10] have 
provided recent advances that are bringing deployments of WBSNs 
within reach. For example, a common concern with transmitting 
medical data is security. A patient’s data should not be readable by 
anyone other than authorized parties. ZigBee and IEEE 802.15.4 
have well defined encryption mechanisms that can be used to ensure 
data security. 

Even with recent advances, WBSN applications are not trivial to 
develop. Processing speed, memory, power consumption and data 
transmission capacity are major constraints that require careful 
design to meet without compromising system performance. The 
volume of data generated by conventional physiological signals 
complicates satisfying these constraints. Forwarding raw data to a 
nearby higher power PC is an option but only if battery life 
constraints of the device are removed. Much of the current body of 
literature for WBSNs relies on this type of off-line computation to 
detect events gathered from sensor data [9][1][2]. Wide scale 
WBSN adoption is unlikely until events can be detected in real-time 
on the patient device. This paper joins a body of literature that runs 
movement classification algorithms autonomously on sensor 
devices in real-time [4][7]. 

Our biomedical application of wireless sensor networks is based 
upon the premise that a small wireless node with an accelerometer is 
attached to a human wrist, like a wristwatch. This paper describes a 
threshold-based algorithm that uses this device to identify rapid 
shaking movements that usually accompany myoclonic, clonic and 
tonic-clonic seizures [5]. Upon detecting an abnormal event, the 
algorithm sounds an auditory alarm from the wrist-device and 
transmits an alarm message through a ZigBee wireless network to a 
patient monitoring station staffed by medical personnel.  

2. Wireless Accelerometer Node Prototype 
A small (1.75”x2.85”x1.00”) wireless communication and 
accelerometer prototype was designed in order to develop the 
abnormal movement detection algorithm.  

2.1 ZigBee Wireless Node 
The smaller board with the antenna in Figure 1 is a standard radio 
communication module (RCM) in the Ember EM2420 based 
development kit. This board contains all of the hardware necessary 
to sustain wireless communication and execute basic computation 
that supports wireless sensor network applications. The Ember 
EM2420 radio communication module is primarily a pairing of the 
Ember EM2420 IEEE 802.15.4 RF Transceiver and the Atmel 
AtMega128L 8-bit microcontroller. 

The larger board in Figure 1 contains the remaining facilities 
necessary to develop accelerometer-based abnormal movement 
detection algorithms. The significant components on the board are 
the following: Common 3V battery, Two momentary press buttons 
for programmable action and a 3-axis, 1.5g to 6g, 6mm x 6mm x 
1.45mm accelerometer. Copyright is held by the author/owner(s). 
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2.2 Accelerometer Functionality 
The accelerometer selected for this project is the Freescale 
Semiconductor MMA7260Q device. This accelerometer has the 
ability to detect dynamic changes of acceleration in all directions by 
using independent X, Y, and Z axes. Each axis reports the current 
magnitude of acceleration with an analog voltage that is 
proportional to an acceleration “g-value” where “1g” is equal to the 
acceleration due to Earth’s gravity. The g-value can be positive or 
negative with the 0g mapped to half of the accelerometer supply 
voltage.  

3. Signal Processing 
The algorithm for abnormal movement detection requires a set of 
data processing operations that interpret the voltages generated by 
the accelerometer and then convert them into interpretable data. 
These operations are described at depth in Burchfield and 
Venkatesan [3]. The goal of these operations is to generate a single 
smoothly changing curve that represents the recent activity level of 
the test subject. The algorithms use a sample rate of 20Hz. 

The smooth curve is generated by first converting measured 
voltages into g acceleration values as defined by the accelerometer 
specification [6]. In order to reduce memory and processing 
requirements the next step combines the g acceleration value for 
each axis into a single value by using the root-mean-squared (RMS) 
method for taking the magnitude of a vector. Following RMS 
computation, the absolute difference from the previous sample is 
calculated as �g_rms. Finally, the average of the �g_rms values 
taken over the last 1 second is computed. 1-second was chosen 
because it allows new movement trends to manifest quickly in the 
algorithms’ input and temporary, erroneous values are sufficiently 
diluted by the rest of the samples. 

4. Rapid Shaking Detection (RSD) Algorithm 
The RSD algorithm consists of two major conditions that are 
required in order to trigger an alarm based upon a person’s 
movements. The first criterion is that the movement shall be of 
sufficient magnitude. This is to ignore non-seizure-like shaking 
movements such as using a pencil eraser on paper or head 
scratching. The second condition is an elevated activity level for a 
prolonged duration of time. This second condition proves to be 
necessary in order to eliminate false alarms caused by brief violent 
movements such as a jump, or the repetitive acceleration jolts 
caused by walking up or down stairs. The details of these conditions 
are discussed in the following two sections. A sample average 
�g_rms graph is provided in Figure 2 to aide explanation. This two 
alarm threshold concept was originally proven to be effective at 
detecting specific events in ECG recordings by Langley et al [8]. 

4.1 Alarm Criteria – Drastic Movement 
The drastic movement condition of the RSD algorithm is 
implemented with two threshold values, Gmin and Tmin. Gmin has 
been empirically set to an average acceleration change of 0.9g per 
sample (50ms period). The Tmin value has been empirically set to 
750 ms (15 consecutive samples). Together, the Gmin and Tmin 
values ensure that the accelerometer detects an average acceleration 
change greater than 0.9g for duration no less then 0.75s in order to 
satisfy the drastic movement condition. The time at which this 
condition becomes satisfied has been labeled in the Figure 2 plot. 

4.2 Alarm Criteria – Sustained Movement 
The sustained movement condition of RSD algorithm is 
implemented in a manner similar to that of the drastic movement 
condition. A more frequently exceeded g threshold value of Gthresh 
is used to signify that the test subject is exhibiting an elevated 
activity level. The value selected for Gthresh is 0.5, which 
corresponds to, on average, half a g of acceleration change per 
sample. The corresponding time threshold is implemented 
differently for the sustained movement condition. The sustained 
movement condition is considered satisfied if the average change in 
g value exceeds Gthresh for TsCountThresh or greater non-
consecutive samples. Non-consecutive examples are required in this 
case because this condition was engineered in order to identify 
periods of elevated activity. Rapid shaking movements indicative of 
the onset of a seizure may experience brief (order of milliseconds) 
lulls that would cause the algorithm to reset unnecessarily in a 
consecutive count model. Thus, counting non-consecutive threshold 
crossings places less emphasis on the magnitude of the acceleration 
change and more emphasis on the movement trend. Since non-
consecutive threshold crossings are counted, a reset condition must 
be specified for the threshold cross counter. The threshold cross 
counter is reset to zero after a sufficient period of inactivity, defined 
to be Tthresh samples with an average value below Gthresh. We 
chose Tthresh to be 60 resulting in 3 seconds of unsuspicious 
activity from the subject. The relevance of the sustained movement 
condition to the overall algorithm is displayed in Figure 2. 

5. Dynamic Thresholds and Calibration 
We are currently working various improvements to this algorithm. 
One such improvement is the design of an auto-calibration 
mechanism that varies the RSD algorithm thresholds for a given test 
subject based upon their movement history. This implementation 
also accepts false-alarm feedback from the wearer using the 
momentary press buttons on the prototype board. For RSD alarms, 
this calibration reviews the recent average change history in order to 
determine which condition, drastic movement or sustained 
movement, was the last to be satisfied. Then the count threshold or 
the average voltage change threshold for the corresponding 
condition is adjusted.  

 

Figure 1. Wireless accelerometer platform prototype 
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6. Results 
Testing the abnormal movement algorithm is a challenge because 
the targeted movement has a low occurrence rate among the 
population. Furthermore, there is a lack of medical resources at our 
institution to complete a thorough clinical study. However, the 
algorithms can be evaluated to determine the frequency of false 
positives triggered during normal movement. This aspect of 
algorithm testing has been extremely successful. Even when 
attempting to trigger false positives with normal but exaggerated 
movements, the RSD algorithm generates rare alarms. Since no test 
data was available from a subject who had a seizure while wearing 
the prototype device, several testers were asked to wear the device 
and emulate seizure-like shaking to the best of their ability. The 
RSD algorithm was able to detect each person’s suspicious 
movements with no need for individual calibrations. The next step 
in testing is to begin longer duration trials with more test subjects in 
order to obtain statistical measure of the algorithm’s success. 

7. Conclusion 
Wireless sensor networks show great promise for biomedical 
monitoring applications. In this paper, an application of wireless 
sensor networks has been developed to detect abnormal human 
movements that could be indicative of a serious health danger. Our 
algorithm is beneficial because it runs in real-time on low power, 
embedded microcontroller devices and is non-intrusive to the 
patient’s life so patients are less likely to become non-compliant 
with the monitoring.  
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Figure 2. RSD threshold configuration 
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