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ABSTRACT

Recovering from processor failures in distributed sys-
tems is an important problem in the design and
development of reliable systems. Several solutions to
this problem have been presented in the literature.
Most of them recover from failures by storing
sufficient extra information in stable storage and using
this information when there are failures. In this
paper, we present two solutions to this problem which
involve very little overhead. Without appending any
information to the messages of the application pro-
gram, we show that it is possible to recover from
failures using O(IVIIEl) messages where VI is the
number of processors and |E! is the number of com-
munication links in the system. The second algorithm
can be used to recover from processor failures
without forcing non-faulty processors to roll back
under certain conditions. With a small modification,
the second algorithm can also be used to recover from
processor failures even if no stable storage is avail-
able.

1. INTRODUCTION

Distributed systems are becoming popular
because of several advantages they have over central-
ized ones. The advantages include efficient utilization
of resources, ability to enhance the system gradually,
greater degree of fault-tolerance, etc. An important
and desirable property of a distributed system is its
ability to tolerate failures. As the size of distributed
systems grows, so does the probability that some
component may fail. Thus, it is important to deal with
failures of the components of the system. Fault toler-
ance is provided at two levels of the system -- at the
hardware level and at the protocol level. At the
hardware level, components are designed and built
with high reliability. Faults that occur in spite of the
high reliability of the components are dealt with at the
protocol level. Thus, specific steps must be taken at
the protocol level to increase the reliability of distri-
buted systems.

Coping with processor failures is hard in solv-
ing simple problems (and is impossible in instances
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such as distributed consensus [ 3]) even if the proces-
sor failure mode is restricted to fail-stop failures,
while communication failures are comparatively
easier to deal with.

In distributed transaction processing systems,
there is a need to recover from processor failures
quickly to increase the availability of the system.
Checkpointing and rollback recovery is a scheme that
is widely used. Each processor locally saves its
current state and its history in a stable storage from
time to time so that if the processor fails, it can restart
from the most recently saved state. This process of
saving processor states is called checkpointing. For
the underlying computation to restart from a con-
sistent global state, it may be necessary for some or
all of the processors in the system to restart from a
processcr state that occurred before the latest saved
state. This is called rolling back. To prevent the
domino effect and to rollback the processor states to
the maximum consistent state, certain additional
information is appended to each message of the appli-
cation program. The reader is referred to [2] for a
discussion on consistent states of a distributed compu-
tation, [16] for a discussion on repeated global state
determination, [17] for domino effect, [5] for max-
imum consistent states in crash recovery, and [6, 12]
for a discussion on appending additional information
to application messages to aid in rolling back.

Checkpointing has been widely used and stu-
died by many researchers [2,5-9,12-14,17]. There
are two approaches towards checkpointing and crash
recovery: the synchronous approach and asynchro-
nous approach. The synchronous approach is to
ensure that all processors keep local checkpoints in
stable storage and coordinate their local checkpoint-
ing actions such that the global checkpoints (the set of
local checkpoints) in the system is guaranteed to be
consistent [2,7,9,15,17]. When a failure occurs,
processors roll back and restart from their most recent
checkpoints. That is part of the recent global check-
points. While crash recovery is easy and simple in this
case, additional messages are generated for each
checkpoint, and synchronization delays are introduced



during normal operations. If there are no failures,
then the above approach places an unnecessary bur-
den on the system in the form of additional messages
and delays. Similarly, when a processor rolls back
and restarts after a failure, a number of additional pro-
cessors are forced to roll back with it. The processors
indeed roll back to a consistent state, but not neces-
sarily to the maximum consistent state.

In the asynchronous approach, each processor
takes local checkpoints independently and a con-
sistent global state is constructed using these local
checkpoints during recovery. To aid in crash recovery
and minimize the amount of work undone in each
processor, all of the incoming application messages
are logged by the recipient. Message logging can be
performed in two ways and the two schemes are pes-
simistic and optimistic message logging.

In pessimistic message logging, each applica-
tion message is synchronously logged to stable
storage before it is processed [1, 10]. Thus the stable
logged information across processors is always con-
sistent and crash recovery is easy. However, since
synchronization is needed between logging and pro-
cessing each of the incoming messages, this protocol
slows down the application computation of each pro-
cessor. It is easy to see that considerably severe over-
head is placed on the system even if there are no pro-
cessor failures.

On the other hand, optimistic protocols perform
message logging asynchronously [5, 6,12, 14]. In this
case, each processor continues to execute normally,
and the received messages are logged periodically. In
case of failure, any message m sent by a failed pro-
cessor after its checkpoint will create an inconsistent
system state if the recipient of message m does not
roll back to a point before message m is received.
Intuitively, a maximum consistent state which undoes
the minimal number of application computation in
each processor is needed for recovering from failures
and restarting the computation.

The algorithm of Strom and Yemini [14] using
asynchronous checkpointing approach and optimistic
logging protocol causes a processor to roll back
0 (2'"") times in the worst case where IVl is the total
number of processors in the system. It also needs an
exponential number of message exchanges to recover
from the failure of one processor. Johnson and
Zwaenepoel [5] consider several issues relating to
optimistic crash recovery and present algorithms for
crash recovery using optimistic message logging pro-
tocol. Their algorithms use matrices and hence they
cannot be directly implemented in distributed sys-
tems. Sistla and Welch [12] present two algorithms
using the asynchronous approach to recover from pro-
cessor failures and restart the computation from a
maximum consistent global state. One algorithm
requires O (1V1?) message exchanges when O(IVI)
additional information is appended to each application
message and the other algorithm uses additional
O (V%) messages when O (1) extra information is
appended to each message. Juang and Venkatesan [6],
present two algorithms using the optimistic approach
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-- one algorithm that uses O(IV1%) messages to
recover from the failures of any number of processors
by adding O(1) additional information to each appli-
cation message, and another algorithm that uses only
O(IVI) messages for ring networks (again, by adding
O(1) additional information), and can handle multiple
processor failures.

Adding additional information to each applica-
tion message increases the load on the communication
system which degrades the system performance.
Also, saving any information in stable storage places
a load on the system. In this paper, we present two
schemes -- one in which no additional information is
appended to the messages of the underlying computa-
tion. If there are no processor failures or if processor
failures are very rare, then this method is very desir-
able, since that algorithm uses O(IVIEl) messages in
the absence of any additional information. This com-
pares well with the best known scheme of [6] which
requires O(|V12) messages, but that scheme appends
one number to each application message. In the
second scheme, no roll back is necessary when O(1)
additional information is appended to each application
message and no more than two adjacent processors
fail. Thus, the second algorithm can be used even if
no stable storage is available. In both cases, we
present recovery algorithms and formally prove that
our algorithms are correct as long as no further
failures occur during the recovery algorithm.

The paper is organized as follows: In section 2,
the computational model and some definitions are
presenied; section 3 contains a recovery algorithm
when no additional information is appended to the
application messages; section 4 presents a recovery
algorithm where no processor needs to roll back as
long as the above-mentioned two conditions hold
good and finally section 5 concludes the paper.

2. SYSTEM MODEL

A distributed system can be viewed as a finite
collection of processors which are spatially separated,
without shared memory or clock, and which commun-
icate with each other by exchanging messages
through communication channels. Channels are
assumed to have infinite buffers, to be error-free, and
to deliver messages in the order sent. The delay
experienced by a message in a channel is arbitrary but
finite. Processors directly connected by a communica-
tion lirk are called neighbors.
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As defined in [14], a set of processor states in
which each pair of processors agrees on the commun-
ication that has taken place between them is called a
set of consistent states. For example, the time cuts ¢
and ¢’ in Figure 2.1 are consistent and inconsistent
cuts respectively. A state of a processor can be lost if
the processor fails before that state is saved. If the
state of a processor that has sent a message is ever
lost, then in order for the system state to be consistent,
the state change resulting from the receipt of that
message in the receiving processor must be undone;
that is, the processor must be rolled back. We say
that the system is in an optimum consistent state if the
processor states are consistent and the amount of roll-
back in each processor is minimum.

To recover from processor crashes and restore
the system to a consistent state, we use two types of
logs - volatile log and stable log [4,10]. Accessing
volatile logs requires less time, but the contents of a
volatile log are lost if the corresponding processor
fails. At irregular intervals, each processor (indepen-
dently) saves the contents of the volatile log in a
stable storage and clears the volatile log, and this is
called checkpointing . The goal of checkpointing is to
eventually log a snapshot of a previous state of the
processor in stable storage. We assume that the
underlying computation or the application program is
event—driven where a processor p waits until a mes-
sage m is received, processes the message m,
changes its state from s to s*, and sends a (possibly
empty) set of messages to some of its neighbors. The
new state s° and the contents of the messages
transmitted depend on state s (the state of the sender)
when m was received and the contents of the message
m . For example, in Figure 2.2, processor p, changes
its state from s, t0 553 when it processes message m
sent by p.
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Figure 2.2

Each time a processor receives a message, it
begins a new State Transition Interval (or STI) which
is the interval of time between a processor receiving a
message and the time it completes all of the actions
associated with processing the message received
(including sending messages to its neighbors). Each
STI is identified by a unique sequential number called
interval index, which is simply a count of the number
of messages that the processor has received and pro-
cessed. Since the resulting state of the receiver of a
message depends on the state of the sender and the
contents of the message, a dependency is created by
each message. For example, in Figure 2.2, state 593
depends on state 5, and message m. The contents of
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m, in turn, depends on state s,. Thus, processor state
5,3 depends on processor state s4;. This is an exam-
ple of a direct dependency. Note that this dependency
relation is transitive. In the same example, state 5,3
depends on state 5,3, and since state 5,3 depends on
state s3;, processor state §y3 transitively depends on
state s3;. Several more transitive dependencies can be
inferred from Figure 2.2.

Consider the case when p, fails at time ¢ as
marked in Figure 2.2. Processor p, restarts from state
52 since that is the latest processor state available in
the latest local checkpoint of p, (taken at ckp). Since
the state s,, was lost, messages m, and m, become
orphan messages. So, p; and p; both need to roll
back to states sy, and 53y, respectively. In the next
two sections, we present recovery techniques that
construct consistent global states from which the
application program can resume execution, after
failures.

3. RECOVERY WITH NO ADDITIONAL
INFORMATION

We now present a recovery scheme that works
correctly even if no information is added to each
application message. This algorithm uses O(IVIIE])
messages when an arbitrary number of processors fail
where V| is the total number of processors and [E! is
the total number of communication links. If the
failures are few and the number of application mes-
sages sent is large, this method is preferable. This is
because the recovery procedure is run rarely (as pro-
cessor failures are rare) and no additional load is
placed on the communication system as nothing is
added to the application messages when the distri-
buted system operates without failures.
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Consider a sample network consisting of three
processors as shown in Figure 3.1(a). Assume that a



distributed application program is run on this system
and let Figure 3.1(b) represent the run of the program.,
In that figure, e;; represents the j ™ Jocal event (of the
application program) of processor p;. Similarly, ¢;;
represents the j* checkpoint made by p;. Assume
that p, fails. All of the messages that became orphan
messages due to direct and transitive dependencies
becasue of the failure of p, must be identified. Pro-
cessor p, must roll back to the processor state
immediately after event ey. This implies that for
consistency of the application program, p; and p,
must roll back to processor states after events e,; and
¢4 respectively. For p, and p; to roll back correctly,
po must inform p, and p that messages m and m” are
orphan messages. To correctly identify the orphan
messages in the absence of additional information
being appended to the application messages, we use
the following strategy: Note that every processor has
a record of its complete behavior from the beginning
to its latest checkpoint. Thus, processor p, can deter-
mine when it failed with respect to the number of
messages it sent to p;. In Figure 3.1(b), it is clear that
if only p, and p, are under consideration, then as far
as rolling back processor p; is concerned, p, failed
after sending the first message to p;. Thus, p, can
inform p, that the second message from p, to p; is an
orphan message. This is the main idea of the algo-
rithm which follows. We first have some definitions.

Each processor p;, after its j* event e;
records a triple {ps;, m, M_sent;; } in volatile storage
where ps; is the state of the processor p; before the
j™ event, m is the message (including the identity of
the sender which is available as m .SENDER) respon-
sible for the event e;; and M_sent;; is the set of mes-
sages (including the destination) sent by p; in event
e;;. From time to time, each processor independently
saves the contents of the volatile log in stable storage
and clears the volatile log. For an arbitrary processor
pi, let REC; denote the current recovery point. Let
SENT;_,;(REC;) represent the total number of mes-
sages sent by p; to 14 and let RECEIVEDH_I (REC;)
be the total number of messages received by p; form
p; (from the beginning of the application program) till
the recovery point REC;. We first present an informal
description of the recovery algorithm.

The algorithm consists of V! iterations. The
first iteration at a processor starts when it is one of the
failed processors that restarts after the failure (called a
faulty processor), or it is one of the non-faulty proces-
sorg and it knows about the failure of another proces-
sor”. During the beginning of the first iteration, each
processor finds the (temporary) recovery point based
only on the local information. Processor p; sets REC;
to the latest event logged in the stable storage if it is a
faulty processor and its sets REC; to the latest event

1 It 1S not necessary (0 save processor states every lime; saving

t ly w latile log is empty jis sufficient.
E'X‘s’?ﬁfr?é 1 aaf iv er); a aeilne"i,%:oo:ssoogrlrseslags?it broaclccl:?ts a
message informing other processors about its failure. See [11]
for broadcasting a message using O('El) messages where |El is
the total number of links.
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that took place in p; if it is a non-faulty processor.
For each neighbor p;, p; computes SENT;_,,(REC;)
and p; sends a message rollback(SENT;_,; (REC;)) to
pj. It now waits for a rollback message from each
neighbor. This completes the first iteration of the
recovery algorithm at p;. In general, a processor
proceeds to the next iteration only after it receives a
rollback message from every neighbor during the
current iteration.

During the k™ iteration, processor p; processes
the rollback messages it received from all of its
neighbors in the k~1* iteration. Let rollback(c) be a
message received by processor p; from its neighbor
p;. Recall that REC; is the current recovery point for
processor p;. Processor p; scans its log and deter-
mines RECEIVED;_;(REC;), the total number of
messages it received from p; until REC;. If
RECEIVED; ;(REC;) > c, it is clear that p; rolled
back to a state such that it (processor p;) sent only ¢
messages totally to p; till its (p;’s) current rollback
state while REC; denotes that p; has received more
than ¢ messages. Thus, for the state of p; to be con-
sistent with respect to the rollback state of p;, p; must
roll back. P; examines its log, finds the latest event e
such that RECEIVED;_:(e) = ¢ and sets REC; to e.
On the other hand if RECEIVED; _;(REC;) < c, there
is no need for p; to roll back further as its current roll-
back point is consistent with respect to the current
recovery point of p;. In this manner, all of the roll-
back messages are processed and REC; is updated.
After processing all of the rollback messages, p;
determines SENT;_,;(REC;) for each neighbor and
sends the value in a rollback message. This con-
cludes the k* iteration. As explained earlier, p; starts
the k+1° iteration after it receives a rollback message
from all of its neighbors.

At the end of VI iterations, the recovery pro-
cedure ends and REC; denotes the recovery point for
p;. A formal description of the algorithm can be
found in Figure 3.2. We now present an example
before proving that the scheme works correctly.

Example
Consider a distributed computer system consist-

ing of four processors. Figure 3.3 shows a run of the
system when an application program is run.

Assume that processors p, and p4 fail and both
restart from the most recent checkpointed states ¢y
and c4,, respectively. For convenience, let an event e
of processor p represent its recovery point, such that
the state of p after e is the state used for restarting if
e is the current recovery point. In addition, let RP(*)
represent a vector of current recovery points and let
RB; (*) represent the vector of rollback messages sent
bz processor p; during the current iteration where the
j™ component of RB;(*) = SENT;_,;(REC;). When
the recovery procedure is started, i.e., n the first itera-
ﬁon’ RP(*) = [e 14,€ 247e33se40]1 RB I(*) = [-i2$070]s
RBy(*) = [3,-1,1], RB3(*) = [1,2,-,1] and RB4(*) =
[0,0,0,-]. In the second iteration, p; processes the
rollback (3) message from p,. Since the value of
RECEIVED _o(e14) (ie. 4) is greater than 3, D1 needs
to roll back to the recovery point e 3 in response to



Procedure rollback_recovery
/* procedure executed by processor p; */
begin
if p; is a faulty processor then
REC; « the latest event logged in the stable
storage;
else
REC; «- the latest event that took place in p;;
endif;
for k « 1 to [Vl do /* there are IV] iterations */
for each neighboring processor p; do
compute SENT; _,; (REC;) and send a
rollback (SENT; _,;(REC;)) message 0 p;;
end; /*end for*/
repeat
wait for a rollback (¢ ) message from each
neighbor;
m « rollback (c) message received;
put m into processing queue;
until (a rollback message from each neighbor
is received)
while (processing queue # &) do begin
let m=rollback (¢ ) be a message in
processing queue,
delete m from rollback processing queue;
compute the RECEIVED,‘_j (REC;)if m
came from p
lfRECEIVEd,‘_ (REC;) > ¢ then begin
find the latest event e such that
RECEIVED;_j{e)=c;
REC; «e;
endif;
end; /* end while */
end; /* end for loop */
end; /* end procedure */
Figure 3.2: Porcedure rollback_recovery

the rollback(3) message form p,. In the same
manner, we get RP(*)=[e3.€24.€30,€ 40}, RB,(*) = [-
2,0,01, RBy(*) = [2,-,1,1], RB4(*) = [0,1,-,0] and
RB4*) = [0,0,0,-]. In the third iteration, RP(*) =
[el3reﬂ1e30’84019 RBI(*) = ["72v0o0]7 RBZ(*) = [1,'
0,11, RB 3(*) = [0,0,-,0] and RB 4(*) = [0,0,0,-]. In the
last iteration, RP(*) = [e11,620,€30,€40]. AS a result,
the recovery point for each processor is RP(*) =
[e 11,620,130, 40). It is easy to see that RP(*) is con-
sistent for this example, and the rollback at each pro-
cessor is minimum.

Correctness
We now prove that our algorithm is correct.

Lemma 3.1: At the end of each iteration of the
recovery procedure, at least one processor will roll
back to its final recovery point unless the current
recovery points are consistent.

Proof:(sketch) To ensure the consistency of proces-
sor states, we let processor roll back. It is clear that
during the first iteration, the processor that rolls back
finds the correct recovery point. At subsequent itera-
tions, it is impossible for a processor to roll back to a
state that is inconsistent with respect ot state of one of
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its neighbors. A more formal proof is by induction on
the number of iterations and by contradiction, and will
appear in the full paper.C]

Theorem 3.1: At the end of the recovery procedure,
all of the processors roll back to the optimum con-
sistent recovery points.

Proof: A processor rolls back to a state only because
the state immediatedly following that was started by a
message m that transitively depends on an unlogged
state of a failed processor. Thus, the rollback points
for all processors are optimum. From Lemma 3.1, it
is clear that the processor states are consistent.(]

We now consider the message complexity of
the recovery procedure. Since at least one processor
rolls back to its final recovery point at each iteration,
it is clear that the number of iterations is at most IVI
where V| is the total number of processors in the sys-
tem. In each iteration, every processor sends the roll-
back message to each of its neighbors and hence, 2IEl
messages are sent in each iteration where IE! is the
total number of links in the system. Thus, the total
number of messages used is O(IVIEI).

Theorem 3.2: The recovery procedure rolls back pro-
cessor states to the maximum consistent states using
O(IVIEl) messages in the worst case.dJ

4, RECOVERY WITHOUT ROLLING BACK

In this section, we present another approach to
crash recovery -- a technique which does not force
any non-faulty processor to roll back. Rolling back
processor computations wastes resources and there
are numerous situations where recovery with no roll
back is desirable. The main idea of the recovery algo-
rithm is to restore the original computation of the
failed processors by ensuring that the failed processor
receives the same sequence of messages as it did
before its failure. For our algorithm to work
corrcctly, we assume that O(1) extra information (one
integer value) is added to each application message,
and no more than two adjacent processors fail at the
same time. A set of processors are said to fail at the
same time with regard to the recovery procedure if
they fail at the same time or if one fails during the
execution of the recovery algorithm initiated because
of the failure of another processor. Should more than



two adjacent processors fail, this technique can not be
used but the algorithm presented in section 3 can be
used to roll back and restart.

From now on we assume that at most two
neighboring processors have failed. Note that the
total number of failed processors is not restricted to
two. For example, in ring networks, two thirds of the
processors can fail, and algorithm No_rollback is use-
ful as long as there does not exist three consecutive
processor failures.

When a processor ¢ fails and restarts from its
latest checkpoint, ¢ first checks how many of its
neighboring processors failed. If at most one of its
neighbors has failed, g starts the recovery procedure
No_rollback whose informal description is given
below (see Figure 4.2 for a formal description).

When a processor p sends a message m o g
during STI i of p, p appends the current STI index i
to m and sends the message to g. When g receives
message m and processes the message, it starts a new
STI j and logs the information {j, p, m, received } in
volatile storage”. In the meantime, g also sends back
a received(j) message to p where j is the STI of ¢
which was triggered by the message sent by p. For
each message received by ¢, it sends a reply (in
realty, it is an acknowledgement) to the sender of the
message informing the local relative order of this
message within processor ¢ with respect to the other
messages it received. On receipt of a received(j) mes-
sage from g, p logs the information {j,q.m,i,ack}
in volatile storage ™.

To recover from the failure, processor g first
sends a failed(j) message to every neighbor where j is
the index of the last STI saved in the stable storage. It
then waits for resend messages from its neighbors.
When processor p receives a failed(j) message from
q, it (processor p) sends a resend(M,, _,, (j),max,(q))
message to q. The resend message contains two
parameters M, _,, (j) and max,(g). The first parame-
ter M, _,, (j) represents the sequence of messages sent
by p to q that were received and processed by ¢ after
STI j of q. Recall that a processor sending a mes-
sage to another processor receives an acknowledge-
ment from the recipient in the form of a received mes-
sage. The acknowledgement also identifies the STI of
the recipient during which the message sent was pro-
cessed. Thus, p can construct M, _,,(j) easily using
the local information. It is easy to see that for proces-
sor p’ Mp—)q(i) = {[mll indexl]""a [mkn ind‘exk]},
where for 1 <t <k, {index,, q, m;, *, ack} is in the
local log of processor p and index, > j (here, *
denotes a wildcard that matches any number). The
sequence of resent messages is a subsequence of the
sequence of messages sent by p to ¢, and is a subse-
quence of the messages received by g between the

3 It is not necessary to log all of this information and in fact, it
is possible to recover from failures even if only {j,p,received}
is logged.

4 It is possible to recover from failures even if only {j,g,i,ack}
is logged.
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latest checkpoint (of ¢) and the failed point (of ¢).
Processor p has to resend those messages because of
q’s failure. The second parameter max, (g) is the last
STI of ¢ during which a message was sent by g top.
In other words, max,(q) = STI i of ¢ such that dur-
ing STI i, q sent a message m to p and STI i is the
latest STI. Recall that to each message m that is sent,
the sender appends the STI index during which m
was generated. Thus, p can get the value of max, (q)
by examining its local log.

Upon receiving each resend(M,max) message,
¢ adds M to its message processing queue and stores
max in a local data structure. Recall that each entry
of M is of the form [m, index] where message m was
sent to ¢ and this message was processed during STI
index of processor q. After g receives resend mes-
sages from all of its neighbors, it sorts the messages in
the message processing queue in ascending order
using the second component (index) as the key. Pro-
cessor ¢ also computes maxsti (¢) where maxsti(q) =
maximum { max,(q) | p is a neighbor}. In other
words, maxsti(q) is the maximum STI index of ¢ that
other processors know about. Let the contents of the
message processing queue be ([m,index,], ..,
[m, jgndex,]).

If index, = j+1 (one more than the index of the
last STI in stable storage of ¢), and index,, ..., index;
are continuous, it is clear that ¢ has all of the mes-
sages and in the correct order. It processes them, and
after emptying the message processing queue, it ter-
minates the recovery procedure. On the other hand, if
¢ does not have all of the messages, it is clear that
one of its neighbors had failed and ¢ must wait for
those messages from the failed processor. In this
case, ¢ starts processing messages drawn from the
message processing queue as long as the indexes
associated with them are contiguous. When there is a
gap, it waits for a message from the failed processor.
After the message processing queue is empty and its
current STI index is greater than or equal to the
maxsti(q), q sends a completed message to the other
failed processor if there is one. If ¢ already received
a completed message from the neighboring failed
processor, ¢ terminates the recovery procedure and
begins its normal operation. Otherwise, ¢ waits and
processes all of the messages that come from the
neighboring failed processor until receives a com-
pleted message. During execution of the recovery
procedure, if ¢ receives any other messages from its
neighbors, ¢ adds these messages to a different queue
and processes these messages only after completing
the recovery procedure.

Example

Consider a distributed computer system consist-
ing of four processors. Figure 4.1 shows the complete
run of the system when an application program is run
before a failure occurs. In the figure to each message
sent the STI index (number in <>) is appended, and
each sender of a message will receive a received
message (numbers in ()) from the receiver. For exam-
ple, message m is appended the STI index <2> and
p1 receives a received (5) message in return.



Assume that two neighboring processors p, and
p, fail. Processor p, restarts from the latest check-
point ¢, and runs No_rollback procedure. It first
sends a failed (4) message to all its neighbors. Upon
receiving the failed message, p, sends a resend mes-
sage with m; and max,(2)=7 to p,. When p, finishes
processing m, it waits for the message m, and m;
from the failed processor p4. After finishing process-
ing ms, p, knows that it has recovered to STI seven
since maxsti (2)=7. P, then, sends a completed mes-
sage to ps. Processor p, also recovers in a similar
manner.

5) STI=3 STI=4
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1
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Figure 4.1.

v

v

/* the recovery procedure is executed by the failed
processor ¢ after it restarts from its latest
checkpoint*/

Procedure No_rollback;

begin
J < the number of the last STI index in the stable

storage;
check how many neighboring failed processors there are;
if more than two neighboring failed processors then
run the rollback recovery algorithm and stop;
else begin
neighbor_done < 0;
send a failed (j) message to every neighbor;
wait for the resend messages;
m < message received;
repeat
case m of /* assume m came from p */
resend message:
maxsti (q) < Max(maxsti (g), max, (q));
add messages in M,,_,, (j) to norollback
processing queue in ascending order;
application message:
add m to a different processing queue
/* not norollback processing queue*/
completed message:
neighbor_done « 1;
end /* end case */
Until (all neighbors send back the recovery
messages except the other failed processor);
end; /*end else*/
endif;
repeat
m ¢« message in the norollback processing queue,
jej+l
if j = index with m then begin
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process message m as a normal application
message;
delete m from rollback processing queue;
end
else begin
wait for a resend message from the other failed
processor;
m < message received;
if m is a resend message then
process m as a normal application message;
else /* m is an application message that came
from a nonfaulty processor*/
add m to processing queue;
endif
end /*end else*/
endif
Until (j = maxsti (p))
send a completed message to the neighboring failed
Processor;
if neighbor_done # 1 then
repeat
wait for the resend message from the failed
Processor;
/* if the received message is an application
message, put the message into processing
queue */
process the resend message;
Until (a completed message is received from the
other failed processor);
end; /* end procedure */
Figure 4.2: Procedure No_rollback

Correctness

Recall that we assume the channel is reliable
and each time a processor changes its state form s to
s, the resulting state s* is determined based only on
state s and the contents of the message received.
Thus, for a failed processor to execute in a different
manner in the second run (after crashing), it must
receive a different sequence of messages in the
second run which is not possible since the messages
that are resent also contain some information about
the positions of those messages.

Theorem 4.1: After completing the recovery algo-
rithm, the system can be restored to its original global
state.

Proof:(sketch) By ensuring that the sequence of mes-
sages a failed processor receives after failure is identi-
cal to the sequence of messages received by the same
processor before failure, it is easy to see that a failed
processor’s behavior is the same after failure also. It
is easy to verify that the processor states are con-
sistent. A formal proof (by contradiction) is involved
and will appear in the full paper.]

Thus, in this scheme, there is no need for non-
faulty processors to roll back and the faulty proces-
sors simply re-execute, and all the processor states are
restored to consistent and correct states.

We can modify the algorithm to the case when
no stable storage is assumed to be present. In this
case, non-faulty processors resend all of the messages



they had sent in the original run, and faulty-
processors start executing from the beginning instead
of restarting from the latest checkpoint. Thus, check-
pointing is limited to volatile memory only. Certain
optimizations are possible, and the algorithm can be
shown to be correct. The details are complex and will
appear in the full paper.

5. CONCLUSIONS

The problem of recovering from processor
failures is of paramount importance in the design and
development of distributed systems. Traditionally,
recovery was achieved using checkpointing and rol-
ling back in conjunction with stable and volatile
storage. To recover from failures, additional informa-
tion was added to each message of the application
program, thus placing a load on the communication
system. In this paper, two new approaches to crash
recovery were considered -- one where there is no
overhead during normal operation of the system but
O(IVIIEl) messages are generated in case of processor
failure, and another in which no non-faulty processor
needs to rollback because of the failure of some of the
processors unless more than two adjacent processors
fail at the same time. Thus, our techniques are very
useful in systems where the possibility of processor
failures is low. However, if processor failures are fre-
quent, then the apprgach of [6] is more desirable since
it only uses O(1V|?) messages in the worst case to
recover from the failures of an arbitrary number of
Processors.

There are several directions in which future
work can proceed. Investigating the nature and
amount of information to be added to the application
messages, establishing lower bounds on message
complexities of problems that involve crash recovery,
etc. are just some examples, and we are currently
working on these and related problems.
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