MESSAGE-OPTIMAL INCREMENTAL
SNAPSHOTS

S. Venkatesan

Department of Computer Science
University of Pittsburgh
Pittsburgh, PA 15260

ABSTRACT

The problem of obtaining a global state or snapshot of
a distributed processing system has been considered
and efficient solutions have been proposed in the litera-
ture. They are useful for stable property detection, de-
bugging distributed programs, monitoring distributed
predicates and events, efficient rollback recovery in
data bases, taking a check point of the system, etc. All
of these applications require taking successive
snapshots of the system. In this paper, this interesting
problem is considered and a message efficient protocol
is presented for obtaining an incremental snapshots. It
is shown that the protocol uses the minimum number
of additional messages possible, and hence it is
message-optimal.

1. INTRODUCTION

The problem of constructing a snapshot or a global
state of a distributed processing system is among the
fundamental problems encountered in distributed sys-
tems. The snapshot may be thought of as the state of
the entire distributed system at some instant of time
assuming that the whole system is frozen. The need
for snapshots arises not only for the purposes of debug-
ging distributed software (f{ﬂ and discarding obsolete
information in distributed databases [10], but also
because a snapshot can be used to monitor distributed
events [12], set distributed break points and halt distri-
buted computations [7], for protocol verification [5],
and to detect any stable property of a distributed
computation [2] such as deadlocks and protocol termi-
nation. A snapshot is also useful if a check point of a
distributed system is to be recorded [1], and for taking
a log of the distributed system to record events as the
last snapshot taken (the most recent log) would pro-
vide crash recovery techniques similar to [8].

In order that the snapshot be accurate and con-
sistent, an accounting be made not only of the state of
each process in the network, but also of any messages
in transit on the communication links. Chandy and
Lamport {2] propose a theory of stable property detec-
tion in a distributed system. Their model is based on
the partial ordering of events for achieving consistency.
They also present a protocol to determine the global
state of the system at some consistent point of compu-
tation.

* Current address: Department of Computer Science, University of Texas at Dallas.

CH2706-0/89/0000/0053$01.00 © 1989 IEEE

33

All of the applications mentioned above require
that a large number of successive snapshots be
obtained when the distributed system is in operation to
get vital information about the components of the sys-
tem. One approach to obtaining successive snapshots
is to run the protocol of Chandy and Lamport [2] every
time a snapshot is required. However, this approach
uses a large number of messages. Also, rerunning the
complete protocol for snapshots many times is an over-
kill especially when the change between the successive
snapshots is small. It is this interesting problem that is
considered in this paper. Any snapshot protocol gen-
erates additional messages and these overhead messages
should be minimized for good system performance as
the snapshots of the system are taken several times. A
widely accepted preformance measure of protocols for
distributed systems is the number of overhead messages
generated.

We present the notion of incremental snapshots in
this paper and present two worst case lower bounds on
the message complexity of any protocol for incremental
snapshots. We then present a protocol for obtaining a
snapshot of the system using the most recent snapshot.
The message complexity of the incremental snapshot
protocol presented in this paper matches the two lower
bounds simultaneously, and hence the protocol is
asymptotically message optimal. Also, our protocol is
elegant and easy to implement because of its simplicity.

The paper is organized as follows. The computa-
tion model of a distributed system is presented in sec-
tion 2. The snapshot protocol of {2] is reviewed and a
description of the incremental snapshot problem is
presented in section 3. Section 4 contains two worst
case lower bounds on the message complexity. Section
5 presents a message-optimal protocol and section 6
concludes the paper.

2. SYSTEM MODEL

A distributed processing system can be represented
by an undirected graph G = (V,E) where V represents
the set of nodes and E represents the set of communi-
cation links or channels. At each node, there is a pro-
cessor available and processes execute on the processors.
Whenever no confusion arises, the terms node, proces-
sor and process will be used interchangeably. The
nodes are connected to each other by an underlying
communication network which consists of a set of com-
munication links. A communication link connects two
nodes of the network, and the two end nodes of a link
are called neighbors of each other. Message ordering
is preserved by the links - messages transmitted at one

end of a link are received at the other end in the same
order in which they are sent. The communication links
are bidirectional - the links can be used to transmit
messages in either direction. Each bidirectional link
can be viewed as a pair of unidirectional links going in
opposite directions.

We consider point to point networks with no
shared memory. Thus, communication between the
nodes is by message-passing only. The nodes and the
links incur unpredictable but finite delays in perform-
ing their tasks (that is, they are asynchronous).

A distributed algorithm or a protocol is a collection
of local algorithms at each of the nodes participating in
the protocol. Each local algorithm consists of several
steps. In a step, a node reads some or all of the mes-
sages received from (a subset of) its neighbors, per-
forms some local computation and sends a message to
any subset of its neighbors. Each node has a unique ¢d
(of length O(log|V]) bits) associated with it, and before
the protocol begins, each node knows its own id and
the ids of its neighbors (and the link that leads to each
of these neighbors)

To avoid trivial solutions, we assume that the
messages are of length O(log IV[) bits. The performance
of a protocol for distributed systems is measured by
the worst-case communication complexity of the
protocol expressed as a function of the number of nodes
and/or links in the network - the maximum number of
messages generated by the protocol during any execu-
tion on any network with the given number of nodes

and/or links.

3. SNAPSHOTS OF A DISTRIBUTED SYS-
TEM

We first consider the problem of obtaining
snapshots in a network. A snapshot of a given distri-
buted system can be defined to be a consistent state of
the entire system. Note that the state of the system
consists of the node states and the link states. The
state of a node is simply the contents of the local
memory, and the state of a link consists of the set of
messages sent on that link, but not yet received by the
recipient at the other end of the link. Assume that the
whole system is frozen at some instance. Now, the
node and the link states can be put together, and one
can form a snapshot of the system. However, an asyn-
chronous system cannot be frozen simultaneously.
Also, the system should not be frozen (even if it is pos-
sible to do so) as the distributed computation that is
already in progress should not be altered. Thus, a
separate protocol has to be used to obtain a snapshot.

In the network, there are at least two distributed
protocols running - the original protocol of the underiy-
tng computation and the snapshot protocol. Messages
generated by the underlying computation are called
primary messages while the messages generated by the
snapshot protocol are called secondary messages or con-
trol messages. Any snapshot protocol is to be superim-
posed on the underlying computation; it must run con-
currently with, but not alter the underlying computa-
tion. A snapshot protocol first attempts to record the
states of the processors and the links so that these

54

states form a complete and consistent state of the sys-
tem. Chandy and Lamport [2] have dealt with the
problem of obtaining snapshots of a distributed system
in a landmark work and we review their solution.

The snapshot algorithm of [21‘] has two phases -
each node records its component of the global state in
the first phase Srecording phase), and all of these com-
ponents are collected to construet the global state in
the second phase (dissemination phase). The algorithm
augments just one type of message called markers to
the underlying computation in the first phase. Mes-
sages describing the components of the global states are
used in the second phase. Assume that a single node p
called the central processor initiates the snapshot pro-
tocol. First, p records its local state and sends markers
on all of the links before it sends further messages of
the underlying computation. The algorithm given in
Figure 3.1 is used to process a marker message received
by the node ¢ from a neighbor on a channel ¢.

Since the network is connected, every node eventually
receives markers on all of its links, and thus, each node
records its state and the states of all links incident on
it. This completes the first phase of the algorithm
(recording phase).

Consider the sample network shown in Figure 3.2
with 4 processors and 6 channels.
Let the processor labeled 2 be the central processor.
Assume that the distributed system represents an on-
line banking system where the processor state
represents the amount of funds available at the node,
and the messages represent electronic funds in transit.
A snapshot can be used to find the total amount of

/* executed ¢ receives a marker on ¢ */

if ¢ has not recorded its state then begin

g records its state.

g sends one marker along every link after
recordings its state but before ¢ sends
another primary message.

g records state of channel ¢ as empty.

end

else

g records the state of the channel ¢ as sequence
of messages received along ¢ after
¢’s state was recorded but before ¢
received the marker along ¢

Figure 3.1

funds available within the system. Let the state of the
system at some instant be as shown in Figure 3.3.

To construct a snapshot, node 1 sends markers on all
of its links. Before node 4 receives a marker, the mes-
sage in transit (with 10 units of funds) on the link (1,4)
will be received and processed. In a similar manner, all
of the other messages of the underlying computation
are recorded correctly. Finally, when all of the mes-
sages in transit reach their respective destinations, and
if the messages are combined with the processor states
(funds are added), the system state is as shown in Fig-
ure 3.4.

Figure 3.2

After recording its processor state and the states
of the incoming links as explained, each node sends its
component of the global state to p. Eventually, p
receives all of the components and constructs the global
state. This completes the second phase of the protocol
(dissemination phase). The number of overhead mes-
sages used in the first phase (recording phase) of this
algorithm is O(ED as exactly two markers are sent on
each link, one marker in each direction. In the dissemi-
nation phase, we assume that a spanning tree is used
to send messages to the central processor for message
efficiency. The message complexity of the second phase
(dissemination phase) is O(RIV(? where R is the total
amount of state information an 1 is the number of
links in a spanning tree of the network. In the

20

Figure 3.3

example above, the total amount of state information
is 1, as the states of the processors and the links can be
combined into one message. By piggy backing the
markers on the messages of the underlying computa-
tion, markers can be avoided as shown by Lai and
Yang [6]. However, this method uses a large amount of
space and messages as the complete message history of
the channels is sent.

INCREMENTAL SNAPSHOTS

We now consider the problem of obtaining sncre-
mental snapshots. Let p be a node in the system and

55

37

85

55

3
25

Figure 3.4

let snap; (p) be a snapshot of the system initiated by p
when the time on the local clock of p is to. The incre-
mental snapshot problem is to obtain snap,(p) for some
t > t, given that snap (p) is available. As mentioned
in section 1, rerunning the protocol of {3] is very expen-
sive in the number of messages. We should be exploit
the fact that a recent snapshot of the network is
already available, and the change in the system
between successive snapshots is likely to be small.
Thus, we need to obtain another snapshot of the sys-
tem using the current snapshot in an efficient manner.
For simplicity, assume that each snapshot has a unique
version number associated with it, and these numbers

are monotonically increasing. Our results remain
correct even if this assumption does not hold. We first
present two worst case lower bounds on the message
complexity of any protocol for incremental snapshots
running in an asynchronous system. In section 5, we
present a protocol for solving the incremental snapshot
problem whose message complexity (in the worst case)
matches the two lower bounds simultaneously for a
large class of applications. Thus, the protocol
presented in this paper is asymptotically message-
optimal.

4. LOWER BOUNDS ON INCREMENTAL
SNAPSHOTS

In this section, we present two worst case lower
bounds on the message complexity of any distributed
algorithm for incremental snapshots operating in an
asynchronous network. The first incremental snapshot
will be taken only after a complete snapshot of the dis-
tributed system is obtained (by running the protocol of
Chandy and Lamport [2]) and subsequent (incremen-
tal) snapshots are taken only after the completion of
the previous incremental snapshots.

Let U be the set of links on which messages have
been sent after the last snapshot was taken %ncremen—
tal or otherwise). A message m is defined to be sent on
a link after the last snapshot was taken if the state of
the link recorded by the last snapshot does not include
message m, and m was sent by the sender after it
recorded its most recent processor state. A protocol is
said to use a link if at least one message is sent on the
link in either direction. Thus, U represents the set of

links of the network which were used by the underlying
computation after the last snapshot was recorded. Let
U, be the set of links incident on ¢ on which the pro-
cessor ¢ sent messages of the underlying computation
after q recorded its most recent processor state. Thus,
U=UU,, ¢ €V. We now show that YU)) messages
are generated in the worst case by any snapshot proto-
col.

Lemma 4.1: Any protocol for incremental snapshots
uses at least messages in the worst case.

Proof: We will prove this lemma by contradiction
using an adversary. The adversary will keep track of
the set of links used by the underlying computation
and the links used by the the protocol for incremental
snapshots. Assume that there exists a protocol
which generates less than |U| messages. This implies
that there exists at least one channel ¢ € U such that
no control message of Il is sent on ¢. Since ¢ €U, it is
clear that a message m was sent on ¢ by the sender
after it recorded its most recent processor state. Now,
the adversary simply delays the delivery of m to the
recipient until II completes the execution (the adver-
sary can delay any message by an arbitrary but finite
amount of time as the links are asynchronous and II
does not send any message on c¢). After II completes
its execution, the adversary delivers m to the recipient.
Clearly, the (incremental) snapshot obtained by II is
incorrect as one message (m in this case) is not included
in the snapshot. Thus, the lower bound follows.0

We now show a lower bound of Y[V]) on the
message complexity of any protocol which obtains a
snapshot (either completely or incrementally).

Lemma 4.2: A lower bound on the message complex-
ity of any distributed protocol for (incremental)
snapshots is (V).

Proof: Given two processors i and j, let d(i,j) be the
minimum number of links between i and j and let

0—0—0

1 2 3 n-1 n
Figure 4.1

r(i) = max;d(i,j). The network topology may be linear
in the worst case as shown in Figure 4.1, and for th

v
2

Thus, in the dissemination phase (where the loca
states are assembled to form the global state), at least

messages are generated. Even if there is no dis-
semination phase, the lower bound holds because of the
following reasoning:

network shown, the value of r(i) is at least

Consider any two sets of processors separated by a
distance of 2. If these two are the only processors
which changed their local states or sent/received mes-
sages, the processors in the two sets have to be

56

informed about the need to take an incremental

snapshot.O0

Theorem 4.3: A worst case lower bound on the mes-
sage complexity of any distributed protocol for incre-
mental snapshots is ﬂ(iJI-HV[)D

In the next section, we present a protocol whose
message complexity matches the lower bound of
Theorem 4.3.

5. AMESSAGE-OPTIMAL PROTOCOL

In this section, we present a protocol for obtaining
an incremental snapshot of a distributed system in a
distributed manner. The protocol consists of several
procedures. Since snapshots are taken successively, a
version number is associated with each snapshot. For
simplicity, we assume that the snapshot protocol is ini-
tiated by one node p called the central processor.
(This assumption can be relaxed by modifying our pro-
tocol using the results of [13]). Whenever a processor
needs a snapshot of the system, it sends a message to
the central processor requesting it to initiate the incre-
mental snapshot protocol. When a processor requests
the central processor, or when the central processor
decides to obtain a snapshot, the central processor
checks if the previous snapshot protocol has completed
its execution (the notion of completing a snapshot will
be explained shortly). If the previous snapshot proto-
col has completed its execution, then p initiates the
next snapshot (incremental). On the other hand, if the
previous protocol is still executing, p waits until it is

completed. The node p initiates the (incremental)
snapshot protocol, and when it is constructed, the
snapshot is sent to the processor(s) that requested a
snapshot.

If a central processor is not available in a network,
then the minimum spanning tree algorithm of Gallager
et al. [4] can be run to elect a leader using
O(EH-MloglV]) messages. For reducing the message
complexity of the protocol, a spanning tree of the net-
work is assumed to exist (note that the algorithm of [4]
constructs a spanning tree). Since this is a one-time
preprocessing step, the message complexity of this step
will not be included in analyzing the message complex-
ity of the incremental snapshot protocol.

We now present the main idea of the protocol. In
the protocol presented below, p represents the central
processor while ¢ and r represent arbitrary processors
(including the central processor).

The main idea

We now give an informal description of the main
idea of our protocol. Note that each node knows which
of its outgoing links are in U (the set of links on which
it sent messages after it recorded its processor state the
last time), but it does not know exactly which of its
incoming links are in U. In the algorithm of [2], all of
the outgoing links are assumed to be in U; thus, mark-
ers are sent on all of the outgoing links and markers
are received on all of the incoming links. However,
sending markers on all of the outgoing links generates

O(E]) messages.

To minimize the number of additional messages
sent, we let the node ¢ send markers on outgoing links
that are in U,, so that the states of such links are
correctly recorded by the nodes at the other end of the
links. An acknowledgement is requested for each
marker sent. If ¢ receives acknowledgements from the
nodes at the other end for each marker sent, then it is
clear that the states of all of the outgoing links of ¢
have been recorded correctly (by the neighbors of g¢).
If every node in the network receives acknowledgements
for every marker sent, then it is clear that the recording
phase of the current incremental snapshot is complete
as the state of every link in U is recorded correctly.
Termination of the current snapshot is detected using
snap_completed messages as shown subsequently.

Description of the protocol

We integrate the snapshot protocol of [2] with our
incremental snapshot protocol and present a unified
solution. Each processor ¢ has six local variables -
VERSION (the version number of the current
snapshot), U,, the list of neighbors to which messages
have been sent since the last snapshot was taken,
P_STATE, the saved processor states of the (local)
processor, STATE(c) for each incoming channel ¢ (this
is used to record the state of the channel ¢),
LINK_STATES (completed channel states that belon
to the current snapshot), and LOC_SNAP(i), the ¢!
global state as viewed by ¢. Initially, U, is set to the
list of neighbors of the node (since tﬁe underlying
computation may have started before the snapshot pro-
tocol began), VERSION is initialized to O,
CHANNEL(c) is set to ¢ for all ¢ and LINK_STATES
is set to ¢ (procedure initialize in Figure 5.1).

/* executed by g before obtaining first snapshot */
procedure tnilialize;
begin

VERSION « 0;

LINK_STATES « ¢;

U, «+ list of outgoing links;

for each incoming channel ¢ do

STATE(c) «— ¢

end;

Figure 5.1

The protocol uses four types of control messages -
init_snap, snap_completed, marker and ack messages.
Init_snap messages are sent (with the current version
number) on the tree links to inform all of the proces-
sors that a new snapshot is to be obtained. Thus, the
processors start executing their respective local algo-
rithms of the protocol. A snap_completed message is
sent by a processor ¢ to its parent when all of the des-
cendants of ¢ (including ¢) have recorded their proces-
sor states and the states of all of the channels in U
that are incident on the descendants of ¢ have been
recorded. Markers are sent (with the current version

57

number (value of VERSION) of the sender) to flush the
messages of the underlying computation that are in
transit so that the recipient of the marker will correctly
record the state of the channel, and acks are sent for
each marker so that the sender of the marker knows if
the states of all of its 'used’ outgoing links have been
recorded. Consider the sample network in Figure 3.2.
Assume that the previous snapshot is as shown in Fig-
ure 3.4.

37
1
L2
2 4) 20
35
B~
3
25
Figure 5.2

Now, if processor 2 sends a message (of the underlying
computation) with a value 10 to processor 1 and a
similar message to processor 3, then the system state is
as shown in Figure 5.2. In this case, U contains only
two channels (2,1) and (2,3), and hence only two

markers need to be sent. If the algorithm of [2] is used,
then the number of markers sent is 12 (two markers on
each link). However, note that it is unnecessary to
send markers on all of the links. Thus, the node 1
sends an init_snap message to nodes 2, 3 and 4. On
receipt of such a message, processor 2 sends two mark-
ers, one to processor 1 and one to processor 3. Nodes
1, 3 and 4 do not send any markers as they have no
link in U incident on them. When a marker is received
by processor 1, it records the state of the channel (2,1)
as the message with value 10 and sends an ack to pro-
cessor 2. Similarly, processor 3 records the state of the
channel (3,1) when a marker is received and then it
sends an ack to processor 2. When processor 2 receives
an ack from 1 and 3, the current snapshot can be col-
lected to form a global snapshot. Our protocol uses
only 7 messages (2 markers, 2 acks and 3 init_snap)
messages while the protocol of [3] uses 12 messages (12
markers). As shown subsequently, we can further
reduce the number of messages to 5.

Init_snap and marker messages are sent with the
current version number (value of VERSION) to avoid
the problem of inconsistency that is created when a
marker sent by the next invocation of the snapshot is
received by a node before it receives the init_snap mes-
sage from its parent. Thus, when ¢ receives acks for
each marker sent, it is obvious that all of the messages
sent by ¢ have been recorded (either as part of the pro-
cessor state of the recipient or as part of the incoming
channel of the recipient). We now present the details
of the protocol.

Whenever a message that belongs to the

underlying computation is sent by ¢ on a link ¢, the
sender adds ¢ to U, the list of channels on which mes-
sages of the underlying computation have been sent by
g (procedure send_und in Figure 5.3). This is recorded
so that markers will be sent only on those channels
that may have messages in transit.

/* executed when ¢ sends a primary message to r */

procedure send_und(q:origin; r:destination; c:channel;
m:message);
begi

n

U, « U, U{ch

send m to ¢ on the channel c;
end;

Figure 5.3

Any time after procedure iniiialize is executed,
whenever a message that belongs to the underlying
computation is received on a channel, the message is
stored as a possible part of the channel state and pro-
cedure receive_und is executed (Figure 5.4).

When a marker is received on a channel, it is clear that
those messages that have been received after ¢ recorded
its most recent processor state but before the marker
was received belong to the current snapshot. Hence,
those message are saved in LINK_STATES. Also, an
ack message is sent on ¢ to inform the processor at the

/* executed when a primary message is received */

procedure recetve_und(q:origin; r:destination; c:channel;
m:message);
begi

n
if RECORD(c)=true then
STATE(c) «+— STATE(c) U {m};
/* add m to state of ¢ */
d pass m to the underlying computation
end;

Figure 5.4

end of ¢ that the state of ¢ had been fully recorded
(procedure receive_marker in Figure 5.5).

To initiate the (incremental) snapshot protocol,
the central processor p sends an intl_snap message to
itself. In response to this message, p completes the
previous snapshot (with number VERSION) and stores
the previously saved processor state and the set of link
states (stored in the local variable LINK_STATES) in
the local variable LOC_SNAP(VERSION). Since a new
snapshot is needed, it saves its processor state, incre-
ments the value of VERSION, starts recording mes-
sages received on all of its incoming links (sets the state
of each link to null and sets RECORD to true so that
procedure receive_und will record the messages of the
underlying computation), and sends an init_snap

58

/* executed when q receives a markerfrom a neighbor */

procedure receive_marker(r:origin; q:destination;
c:channel; m:message);
begin
if VERSION < VERSION in marker then
begin
é* a marker of next invocation is received
efore the intt_snap message *
send a init_snap(VERSION+1) to itself;
receive_initiate;
/* execute procedure receive_initiate */
STATE(c) «+ ¢

end;
LINK_STATES « LINK_STATES U {STATE(c)};
RECORD(c) « false;
/* stop recording messages received on ¢ */
send an ackon ¢ as a reply
end;

Figure 5.5

/* executed when q receives a init_snap message
from its parent */

procedure recetve_initiate(q:destination; r:parent;
c:channel; m:message);
begin
if VERSION < VERSION in init_snap message
then begin
LOC_SNAP(VERSION) <« P_STATE(q) U
LINK_STATES;
/* the previous snapshot is over */
LINK_STATES « ¢;
P_STATE(q) + {current processor state};
/* for the current snapshot */
VERSION «— VERSION + 1;
for each incoming channel ¢ do begin
STATE(c) « ¢;
RECORD(c) +— true;
/* record messages received on ¢ */
end;
send an init_snap message to each child;
for each ¢ € U, do send a marker
on ¢ and wait for an ack message;
U, — ¢
wait for a snap_completed message
from each child;
if ¢ is the central processor then
present snapshot is complete
else
send a snap_completed message
to the parent;
end
else
discard the inif_snap message
/* already received a marker with this
4 version & called procedure receive_marker */
end;

Figure 5.6

message to all of its children. After this, the node p
sets U, and LINK_STATES to ¢. It also sends a
marker on each link in U, and waits for an ack for
each marker sent. When a snap_completed message is
received from each child, and an ack is received for
each marker sent, it is clear that all of the states have
been recorded, and the current snapshot has been
correctly recorded. These steps are given in procedure
receive_initiate (Figure 5.8).

The behavior of the other processors is similar to
that of the central processor. Thus, they all execute
procedure initiate before beginning to execute any other
procedure of the snapshot protocol. When they send a
message that belongs to the underlying computation,
procedure send will be executed, and for each message
received, one of the procedures recetve_und,
receive_inttiate or receive_marker will be executed
depending on the type of the message received. When a
marker with VERSION higher than that of a node is
received, or a inil_snap message is received, a node
infers that its part of the previous snapshot is com-
plete. Thus, each node can locally determine when its
part of the snapshot procedure is complete.

When a node receives a marker with VERSION
higher than the value of the local variable VERSION,
it sends an init_snap(VERSION+1) message to itself
(as per procedure recewe_marker in Figure 5.5). Thus,
p need not send an init_snap message to its child r if
(p,r) € U,. Instead, it sends a marker on (p,r). Simi-
larly, each interior node ¢ in the spanning tree sends a
marker on (g,s) to its child s instead of an init_snap

message if (¢,5) € U,;. For the sample network in Fig-
ure 5.2, only five messages are sent - two markers, two
acks, and one tnit_snap message.

We prove the correctness of the protocol before
analyzing the communication complexity.

CORRECTNESS

To prove the correctness of the protocol, we show
that every message in transit is recorded by the receiver
of the message and then show that every message
recorded by the protocol indeed belongs to the current
snapshot.

Theorem 5.1: Every message in transit that belongs
to the current snapshot is recorded by the recipient as
part of the current snapshot.

Proof: This theorem can be proved by contradiction.
Assume that there exists one message m that is not
recorded. Let (g,p) be the link on which the message
m was sent. Clearly, (¢,p) € U,, and this fact is
known to ¢. Thus, the node ¢ sends a marker on
(g,p) after ¢ sends m and waits for an acknowledge-
ment from p. If m is not recorded by p, then the only
possibility is that the marker is received before m be
the node p, a contradiction, as we assumed that the
links obey the first-in-first-out order for messages.00

Theorem 5.2: Every message recorded by the proces-
sors as part of the current snapshot belongs to the

59

current snapshot.

Proof: Consider a link (g,p) such that (¢,p) € U,.
When ¢ receives an init_snap message, it sends a
marker on (g,p) and waits for an acknowledgement
from p (so that ¢ knows that the state of (¢,p) is
correctly recorded by p) before ¢ completes its part of
the incremental snapshot protocol. If (g,p) does not
belong to U, then no message has been sent by ¢, and
hence the state of (g,p) is . In either case, the state
of all of the links incident of the nodes are completely
and correctly recorded. Thus, the proof of this
theorem follows.O

The next two theorems are easy to prove.
Theorem 5.3: The processor states are consistent.0

Theorem 5.4: The snapshot constructed by the incre-
mental snapshot protocol is consistent and correct.0

COMPLEXITY ANALYSIS

We now analyze the total number of control mes-
sages used by the protocol for obtaining one snapshot.
For each invocation of the snapshot protocol, we count
the number of additional messages. Since there are
[VH tree links in the network, and since one initiate
message is sent downward on each tree link and one
snap_completed message is sent upward on each tree
link, the total number of snitiate and snap_completed
messages is 2([V}1). Also, exactly one marker and one

ack message is sent on each link in U, and hence the
total number of messages generated by our protocol is
O(WHU)D. Thus, the following theorem can be proved
using the above argument.

Theorem 5.5: The message complexity of the incre-
mental snapshot protocol is O(.0

Theorem 5.8: The message complexity of (the prob-
lem of) recording the incremental snapshots locally is
(VU for each invocation.

Proof: The proof of this theorem follows from
Theorem 5.5 and the lower bounds presented in section
4.0

For many applications the states of the processors
and the channel states can be combined into one mes-
sage. For example, for discarding obsolete information,
the nodes compute the min function [10]. In such
applications, LOC_SNAP(VERSION) can be
represented by one message (or a constant number of
messages in general) for any invocation by combining
all of the information into one value (for example, the
function min can be computed using the local processor
state and the states of the incoming links and the
resulting value is used). Also, the links of the spanning
tree are used so that the state of the children and the
local states are combined to obtain one message. Since
the number of links in a spanning tree is [V}1, the dis-
semination phase uses O(R/I) messages. For taking a
log of the system, note that the local components of
the snapshot need not be sent to the coordinator as the

system will start from the last snapshot that was suc-
cessfully recorded in case of failure(s). Thus, our algo-
rithm is message-optimal for the global state dissemi-
nation phase also.

Theorem 5.7: For a large number of applications,
there exists a message-optimal protocol for obtaining
incremental snapshots.0

6. CONCLUSIONS

In this paper, we first presented a problem that
arises often in distributed systems, namely, obtaining
incremental snapshots. This problem has immediate
applications in database systems, debugging distributed
programs, monitoring events, checkpointing, etc. For
all of the applications, several snapshots are to be
taken. An obvious solution is to run the algorithm of
Chandy and Lamport {2]. However, this approach gen-
erates a large number of overhead messages. We first
presented worst case lower bounds on the number of
messages used by any protocol that solves the incre-
mental snapshot problem and presented a protocol that
is message-efficient. For all of the applications men-
tioned, our protocol is message-optimal. Because of its
simplicity, our protocol can be used readily, and since
it uses the minimum number of additional messages,
the throughput of the distributed system is not
adversely affected.

It is assumed that the communication channels
transmit messages in the first-in-first-out manner. This
assumption is valid in many distributed systems as the

lower level protocols of the computer network ensure
this using sequence number, etc (14]. Even if messages
are sent out of order on channels, the messages of the
underlying computation can be piggy backed with the
value of VERSION, and the total number of messages
sent between successive snapshots can be recorded by
the sender of the messages can be sent to the recipient.
With this information, it is easy to see that our proto-
col can be modified to operate correctly.

There are several possible directions in which
future research can continue. For example, fault-
tolerant incremental snapshots is an interesting and
important problem that arises in faulty networks.
Faulty networks are considered in [9, 11] in the context
of obtaining obtaining complete snapshots. It is
interesting to develop incremental snapshot protocols
resilient failures.

References

1. Chandy, KM., Private communications.

Chandy, K.M. and Lamport, L., ‘Distributed
snapshots: Determining global states of distributed
systems,”” ACM Transactions on Computer Sys-
tems 3(1), pp. 63-75 (1985).

3. Cohen, S. and Lehmann, D., “Dynamic systems
and their distributed termination,” Symposium on
Principles of Distributed Computing, pp. 29-33
(1982).

4. QGallager, R. G., Humblet, P.A., and Spira, P.M.,

10.

11.

12.

13.

14.

“A distributed algorithm for minimum weight
spanning trees,”” ACM Transactions on Program-
ming Languages and Systems 5(1), pp. 66-77
(1983).

Geihs, K. and Seifert, M., ‘“‘Automated validation
of a co-operation protocol for distributed sys-
tems,” Proceedings of the Sizth International
Conference on Distributed Computing Systems,
pp. 436-443 (1986).

Lai, T.H. and Yang, T.H., “On distributed
snapshots,” Proceedings of the IEEE Infocom 87,
Conference on Computer Communications,
pp. 342-346 (1987).

Miller, B. and Choi, J., “Breakpoints and halting
in distributed programs,” Proceedings of the
Eighth International Conference on Distributed
Computer Systems, pp. 316-323 (1988).

Powell, M. and Presotto, D., “Publishing: a reli-
able broadcast communication mechanism,”
Proceedings of the ninth ACM Symposium on
Operating System Principles, pp. 100-109 (1983).
Ramarao, K.V.S. and Venkatesan, S., “Fault-
tolerant distributed snapshots,” Technical Report,
University of Pittsburgh, Pittsburgh (1987).

Sarin, S.K. and Lynch, N., “Discarding obsolete
information in a replicated database system,”
IEEE Transactions on Software Engineering SE-
13(1), pp. 39-47 (1987).

Shah, A. and Toueg, S., “Distributed snapshots in
spite of failures,” Technical report, Cornell Univer-
sity (1987).

Spezialetti, M., “Global state as a paradigm for

distributed control,”” Ph.D. thests, Unwversity of
Pittsburgh (in preparation).

Spezialetti, M. and Kearns, J.P., “Efficient distri-
buted snapshots,’”” Proceedings of the sizth Interna-

tional Conference on Distributed Computing Sys-
tems, pp. 382-388 (1986).

Tanenbaum, A., Computer networks, Prentice-
Hall, Inc., Engelwood Cliffs (1981).

