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h i g h l i g h t s

• We study how the superimposed mesh structure would influence the Finite Element Method (FEM)-based image registration process.
• We propose a mesh generation algorithm based on how the mesh will influence the registration process, using the discrete Centroidal Voronoi

Tessellation idea.
• We present a parallel algorithm to compute and update the mesh structure efficiently during image registration.
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a b s t r a c t

Finite element method (FEM) is commonly used for deformable image registration. However, there is no
existing literature studying how the superimposedmesh structurewould influence the image registration
process. We study this problem in this paper, and propose a dynamic meshing strategy to generate mesh
structure for image registration. To construct such a dynamic mesh during image registration, three steps
are performed. Firstly, a density field that measures the importance of a pixel/voxel’s displacement to the
registration process is computed. Secondly, an efficient contraction–optimization scheme is applied to
compute a discrete Centroidal Voronoi Tessellation of the density field. Thirdly, the final mesh structure
is constructed by its dual triangulation, with some post-processing to preserve the image boundary. In
each iteration of the deformable image registration, the mesh structure is efficiently updated with GPU-
based parallel implementation. We conduct experiments of the new dynamic mesh-guided registration
framework on both synthetic and real medical images, and compare our results with the other state-of-
the-art FEM-based image registration methods.

© 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Finite element method (FEM) is a widely used technique to
solve deformable image registration problems in the computer
graphics, computer vision andmedical imaging community. By in-
troducing a superimposedmesh structure in the image domain, the
speed and accuracy of image registration significantly depends on
the mesh structure.

The traditional meshing methods usually target at generating
a high quality mesh whose boundary resembles the surface of the
biological object in one image [1]. Usually when the node number
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is fixed, the requirement of better surfaces approximation always
implies a deterioration of mesh quality. There are a lot of algo-
rithms [2–8] proposed to strive for the trade-off between these two
conflicting factors.

We believe meshing for deformable image registration should
focus on the registration process instead of one image (source or
target image). Since the registration process is a dynamic pro-
cess, the mesh structure should be updated accordingly. Three
steps are performed in our algorithm for the dynamic mesh gen-
eration. Firstly, a density field that measures the importance of a
pixel/voxel’s displacement to the registration process is computed.
Secondly, an efficient contraction–optimization scheme is applied
to compute a discrete Centroidal Voronoi Tessellation (CVT) of the
density field. Thirdly, the final mesh structure is constructed by its
dual triangulation, with some post-processing to preserve the im-
age boundary.

Themain contribution of our work includes two aspects: on the
one hand, we propose a mesh generation algorithm based on how
themeshwill influence the registration process; on the other hand,
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we present a parallel algorithm to compute and update the mesh
structure efficiently.

2. Related work

2.1. FEM-based deformable image registration

Deformable image registration is a challenging research prob-
lem in the fields of image processing and medical imaging. As de-
scribed in the book ofModersitzki [9], given the source image S and
the target image T, the goal of registration is to establish the trans-
formation W that optimizes an objective function, which includes
two terms: one is the image matching criteria (image similarity)
D(T, S ◦W), and the other is the weighted regularity of the trans-
formation R(W):

D(T, S ◦W)+ βR(W), (1)

where β is the weight to balance the image matching criteria and
regularity.

The transformation W is a mapping function that relates the
source and target images together. Usually, it can be considered as
a backward mapping, i.e. for every position x in the target domain,
it is mapped to the corresponding location in the source image S
through a displacement vector u(x):

W(x) = x+ u(x). (2)

In thisway, the deformed source image S◦W is aligned in the target
domain. The term ‘‘deformable’’ in this paper is used to denote that
the transformationW is non-rigid and spatially varying.

Many deformable image registration algorithms have been pro-
posed in the past two decades.We refer the readers to amore com-
plete survey by Aristeidis et al. [10]. In general, the deformable
image registration algorithms mainly have three components:
(1) a deformation model, (2) an image matching criteria, and
(3) an optimization method.

The deformation model captures the nature of the transforma-
tionW to be recovered, and it plays two important roles in the reg-
istration problem. Firstly, for image registration problem, there is
no unique transformationW to align the deformed source image S◦
Wwith the target image T. The deformationmodel determines the
regularity term R(W) that penalizes unwanted transformations.
Thus, alongwith the proposed imagematching criteriaD(T, S◦W),
the image registration problem is converted to an optimization
problem to obtain a physically-plausible solution. Secondly, the de-
formationmodel specifies the solution space of the transformation
W. Usually Finite Element Method (FEM) is exploited [11–15] to
achieve a balance between the efficiency of the optimization and
the richness of the deformation model’s description. By introduc-
ing a superimposed mesh structure on the image, FEM-based reg-
istration specifies the displacement vectors on themesh nodes and
the displacement field u(x) over the image domain is interpolated
by the shape function [16], usually predefined by mesh elements.
Therefore, FEM restricts the solution space of the image registra-
tion problemwithmuch fewer degrees of freedom and ensures the
smoothness of the transformationW by interpolation.

2.2. Mesh generation for deformable image registration

Generally speaking, the previous mesh generation algorithms
for deformable image registration mainly concern two aspects:
fidelity and quality. Fidelity measures the accuracy of the mesh
boundary in capturing the anatomical structure, e.g., ameshhaving
its boundary conforming to the surface of underlying biological ob-
ject is considered a goodmesh. Qualitymeasures the shape ofmesh
elements, such as the minimum angle in triangular elements in 2D
case [17] or minimum dihedral angle of the tetrahedral elements
in 3D case [1].

Mesh generation methods can be mainly divided into two cat-
egories: surface meshing and volumetric meshing. For surface
meshing methods, they usually recover an explicit representa-
tion of the object surface, or construct an implicit function to
describe the object surface from the source image [2], and then
use the Marching Cubes algorithm to extract the iso-surface from
the image [18]. As for the volumetric meshing methods, there
are some recent literature about generating high-quality meshes,
such as regular tilings and adaptive elements by using the oc-
tree method [3,4]. Delaunay refinement method [19,6] is an incre-
mental mesh construction approach, which has been successfully
applied to many practical applications. There are also several
works [5–7] discussing about producing the volumetric mesh
while preserving the object boundary and surfaces.

In this paper, we are going to show that fidelity may not be
an important factor for mesh generation in deformable image
registration. Instead, a mesh guided by the potential deformation
vector field will be more important in providing sufficient degrees
of freedom to drive the deformation.

2.3. Centroidal Voronoi Tessellation

To generate high-quality meshes, Centroidal Voronoi Tessella-
tion (CVT) [20] is an effective tool that has beenwidely used. Given
a set of sites X = {xi|i = 0 . . . n− 1} to sample the domain Ω , CVT
is a special type of Voronoi Diagram, where each site xi coincides
exactly with the centroid of its Voronoi cell. There are two main
approaches to compute CVT: one is the Lloyd relaxation [21], and
the other is a quasi-Newton energy optimization solver [22].

For surface meshing, Peyre et al. [23] used a geodesic Voronoi
Diagram over the surface to generalize CVT. However, the com-
putations of geodesic Voronoi Diagram are very complicated, so
Edelsbrunner and his co-authors computed the Restricted Voronoi
Diagram (RVD) or Restricted Delaunay Triangulation (RDT) [24],
instead of the geodesic Voronoi Diagram. A Restricted Centroidal
Voronoi Tessellation is provided in [25], which requires all the sites
to be constrained on the surface. Yan et al. [17] computed the CVT
in 3D space via the 3D Euclidean distance as an approximation,
and then intersected it with the surface. An alternative approach
is to compute the CVT in the 2D parametric domain of the surface
[26–28].

For volumemeshing, Du andWang [29] discussed an algorithm
for tetrahedralmeshing basedonCVT in a 3Ddomain. Yan et al. [30]
presented an efficient algorithm to compute the clipped Voronoi
diagram with respect to a 3D volume and then generate its dual
mesh. Alliez et al. [31] proposed a variational isotropic tetrahedral
meshing method which minimizes an Optimal Delaunay Triangu-
lation (ODT) energy.

This paper uses a discrete CVT approach [32–34] to generate
dynamic mesh in each iteration of deformable image registration.
Since the image domain is typically discretized into pixels (2D) or
voxels (3D), the discrete Voronoi diagram can be computed by clas-
sifying the pixels/voxels into clusters, according to their distances
w.r.t. the sites. An ‘‘energy increase rule’’ is proposed in this paper
to efficiently swap pixels between neighboring clusters, in order to
optimize the discrete CVT energy.

2.4. Other related works

This paper mainly studies the problem of distributing degrees
of freedom during image registration. Our dynamic meshing
method is different from the topological control techniques [35] for
viscoelastic fluid simulation, the content-aware framework [36]
for image wrapping, or the coupled simulation method [37] for
interactive simulation of the surgical needle.
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Fig. 1. Flow chart of the proposed deformable image registration framework based
on dynamic meshing.

3. Image registration framework

Fig. 1 illustrates a flow chart of the proposed deformable image
registration framework based on dynamic meshing.

In this section, we present the general settings of the image reg-
istration algorithm in our implementation. Wemade two assump-
tions of the input images: first, thewhole image region is the region
of interest to solve the displacement vector field. Secondly, the two
images should contain the same objects and the deformation is
small enough w.r.t. the image size. Since we only focus on how the
superimposed mesh structure influences the registration process,
for the ease of presentation, we fix all other registration compo-
nents, such as: the imagematching criteria D , transformation reg-
ularity R, and optimization method. It should be noted that the
proposed concepts and methods in the following sections can be
extended to other regularizers and anydifferentiable imagematch-
ing criteria (i.e. the image matching criteria is C1 continuous).

We develop a multi-resolution sum of squared differences
(MSSD) as image matching criteria. The main difference between
MSSD and the traditional sum of squared differences (SSD) crite-
ria is that MSSD uses an underlying multi-resolution scheme. Fur-
thermore, in the traditional multi-resolution scheme, images are
represented by pyramids. Image registration follows a multi-level
approach: firstly, coarser levels are served to register the image and
the result is considered as the initial guess of the finer levels. In
order to avoid the inconsistency of the stopping conditions of dif-
ferent levels (i.e. we optimize different objective functions in dif-
ferent levels), we sum the objective function in each pyramid level
and register all image pyramids simultaneously:

D(T, S ◦W) =


i


x∈Ti

(Ti(x)− Si(W(x)))2, (3)

where i is the pyramid level, Ti and Si are the target image pyramid
and source image pyramid at the ith level, respectively.

In the above statement, we have demonstrated the objective
function of our proposed image registration method. Now we will
discuss how to compute the optimal transformation W in the fol-
lowing of this section.
Weuse the linear elastic potential [38] tomodel the transforma-
tion regularizer. For this particular choice, the Navier–Lame equa-
tion [9] characterizes the force equilibrium between the stress of
the elastic body and external force as:

(λ+ µ)∇(div u)+ µ1u = f, (4)

where λ and µ are Young’s modulus and shear modulus of the
elastic body, respectively. u is the vector of displacements at image
pixels/voxels.∇(div u) is the gradient of the divergence of u.1u is
the Laplacian operator of u. f is the external force derived from the
first-order derivative of the image matching criteria, in our case,
i.e.:

f(x) =


i

2(Ti(x)− Si(W(x)))∇Si(W(x)). (5)

Following the general discretization approach with linear ele-
ments [16], a global equation describing the force equilibrium of
mesh nodes can be written in a matrix form as:

K̂û = f̂, (6)

where K̂ is the stiffness matrix, û is the displacement vector at
mesh nodes, and f̂ is the force vector at mesh nodes.

Note that we fix the boundary nodes of the mesh, i.e., we con-
strain the displacements of image boundary as zero throughout the
registration process. In this way, the stiffness matrix K̂ is guaran-
teed to be full-rank. We adopt the fixed-point iteration [9] to solve
the nodes’ displacement vectors û(k) at iteration k. GivenW(k)(x) as
the transformation at the kth step, the mesh structure is dynam-
ically updated (as described in Section 4), leading to an updated
stiffness matrix K̂(k). The force vector f̂(k) is reassembled using the
nodes at the current transformation, and the nodes’ displacement
vector û(k+1) is solved by:

K̂(k)û(k+1)
= f̂(k). (7)

For updating the transformation W(k+1) iteratively, we first in-
terpolate the displacement fieldu(k+1) over the imagedomain from
the displacements on nodes û(k+1). According to [39]: for a smooth
vector field, the Jacobian matrix of its exponential map is positive
definite everywhere. Thus to get a diffeomorphic spatial transfor-
mation, instead of treating u(k+1) as an additive deformation, its
exponential map exp(u(k+1)) is computed by the diffeomorphic up-
dating rule [39], the transformationW(k+1) is then updated through
composition:

W(k+1)
= W(k)

◦ exp(u(k+1)). (8)

Note that this diffeomorphic updating rule will guarantee that the
resulting transformationW(k+1) is a diffeomorphism, i.e., therewill
be no flip-overs in the mapping.

4. Dynamic mesh generation algorithm

In general, the superimposed mesh plays a dual role in the im-
age registration process. On the one hand, the discretization of the
Navier–Lame equation (Eq. (4)) based on the mesh should guide
the solution towards the physically meaningful solution that we
are interested in. On the other hand, the registration processwill be
smooth by interpolating the displacement vector from the values
solved onmesh nodes, even if the real deformation is complicated.

Targeting at producing high fidelity meshes, meshing algo-
rithms usually try to resemble the surface of the biological ob-
ject. However, they usually ignore the fact that deformation does
not always happen on the surface, so that sampling much denser
nodes on the surface of object is wasteful and inefficient. Mean-
while, large deformation can also occur inside the object. Thus, we
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(a) Density field generation. (b) Initial tessellation by contraction.

(c) Tessellation optimization. (d) Initial meshing.

(e) Dynamic meshing.

Fig. 2. The partial results in each step of the proposed dynamic meshing for 2D deformable image registration.
propose the idea behind our algorithm: mesh generation should
depend on the registration process, instead of only resembling the
object in one static image (either the source or target image). Since
the image registration is a dynamic process, themeshing should be
dynamic throughout the registration as well.

4.1. Scheme

Given a source image S and a target image T, in this section, we
illustrate the dynamic mesh generation approach for deformable
image registration. Fig. 2 shows the partial results in each step of
the proposed algorithm.
(1) Density field generation (Fig. 2(a)): a density field is computed to

quantify the importance of each pixel/voxel in the current step
of deformable registration. This is introduced in Section 4.2.

(2) Initial tessellation by contraction (Fig. 2(b)): an efficient contrac-
tion–optimization scheme is utilized to compute the initial tes-
sellation based on the computed density field. The details are
provided in Section 4.4.

(3) Tessellation optimization (Fig. 2(c)): we optimize the tessella-
tion by minimizing the objective function given in Section 4.2.
Details of the optimization are introduced in Section 4.5.

(4) Initial meshing (Fig. 2(d)): an initial mesh can be computed ac-
cording to the optimized tessellation (Section 4.6).

(5) Dynamicmeshing (Fig. 2(e)): in each iteration of the deformable
image registration, we use the intermediate transformationW′
to recalculate the density field with the warped source image
S ◦W′. The tessellation and the mesh will be updated accord-
ing to the new density field. More details are discussed in Sec-
tion 4.7.
4.2. Density field generation

Since the goal of image registration is to find a physical plausible
transformationW that optimizes thematching criteriaD(T, S◦W),
the first-order derivative of the image matching criteria in Eq. (5),
which is a force vector field f(x) for each pixel/voxel, is closely re-
lated to the registration process: for each pixel/voxel x, the direc-
tion of f(x) points to the largest energy decreasing direction, and
its L2 norm denotes to the rate of the energy decrement.

We quantify the L2 norm of f(x) on each pixel/voxel as its im-
portance for the registration process, in the sense of minimizing the
matching criteria in Eq. (3). Thus, we define the density field for reg-
istration process as:

d(x) = ∥f(x)∥2 + α, (9)

where α is a constant base value for the importance of the regis-
tration. From Fig. 2(d), we can obviously see that more degrees of
freedom are desired at higher density regions.

4.3. Objective function for CVT-based meshing

The density field is used to drive the computation of discrete
CVT for generating a density-guidedmesh [20]. Let Ω be a discrete
domain represented by image pixels/voxels, given a density field
d(x) defined on the domain Ω with positions of the pixels/voxels
x, our goal is to find the optimal tessellation {Ci}

n
i=1 (a tessellation

is a number of clusters and Ci is the cluster i, with n being the num-
ber of clusters) and its corresponding optimal sites {zi}ni=1 (zi is
the site corresponding to cluster i), by minimizing the following
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energy function:

Etess({Ci}
n
i=1, {zi}

n
i=1) =

n
i=1

Ei(Ci, zi)

=

n
i=1


x∈Ci

d(x)∥x− zi∥2, (10)

where Ei(Ci, zi) is the clustering energy of cluster i with site zi.
Etess({Ci}

n
i=1, {zi}

n
i=1) is the total energy of the tessellation. The tes-

sellation satisfies Ci ∩ Cj = ∅ for i ≠ j, and ∪i Ci = Ω .
For each cluster Ci, we define its massmi and its centroid ri by:

mi =

x∈Ci

d(x), (11)

ri =


x∈Ci

xd(x)
x∈Ci

d(x)
. (12)

We point out the following two observations: first, Ei(Ci, zi) is
optimizedwhen the site zi coincideswith the centroid ri. Secondly,
the energy change of Ei(Ci, zi) due to themisalignment of the site zi
and the centroid ri can be efficiently computed by a multiplication
of the cluster mass mi and the squared distance of the misaligned
vector ∥(ri − zi)∥2, instead of summing over the energy on each
individual pixel/voxel. We denote the second observation as the
energy increase rule. As shown in Sections 4.4 and 4.5, this energy
increase rule facilitates our optimization of Eq. (10). The remainder
of the section is a simple proof of the two observations.

Consider the energy for cluster Ci:

Ei(Ci, zi) =

x∈Ci

d(x)∥(x− ri)∥2 +

x∈Ci

d(x)∥(ri − zi)∥2

+ 2

x∈Ci

d(x) ⟨x− ri, ri − zi⟩. (13)

Note that the third part of the above energy is essentially zero:
x∈Ci

d(x) ⟨x− ri, ri − zi⟩ =

x∈Ci

⟨d(x)(x− ri), ri − zi⟩

= 0. (14)
Thus the clustering energy Ei(Ci, zi) consists of two parts: the first
part is the compression energy A(Ci), which measures the sum
of weighted squared distances from the centroid ri to individual
pixel/voxel x:

A(Ci) =

x∈Ci

d(x)∥(x− ri)∥2. (15)

The second part is the misalignment energy B(mi, ri, zi), which
measures the energy increased due to the misalignment of the site
zi and the centroid ri:
B(mi, ri, zi) =


x∈Ci

d(x)∥(ri − zi)∥2

= mi∥(ri − zi)∥2. (16)
Themisalignment energy achieves its minimum 0, if and only if

the site zi is located at the centroid ri. Anymisalignment will result
in the energy increase by amultiplication of the clustermassmi and
the squared distance of the misaligned vector ∥(ri − zi)∥2.

4.4. Initial tessellation by contraction

Inspired by the surface simplification idea [40], we utilize a con-
traction operation to partition the pixels/voxels into n clusters,
where n is a user specified number of the mesh nodes. The ini-
tial tessellation that conforms to the density distribution d(x) is
achieved by successively applying the contraction operation.
At first, each pixel/voxel can be treated as a cluster, which may
form pairs with its direct neighboring clusters. When a pair of
clusters is contracted to a new cluster, a contraction cost is as-
sociated with this contraction operation. For a contraction oper-
ation (Ci, Cj)→ Ck, the contraction cost is defined as: Ek(Ck, rk)−
Ei(Ci, ri) − Ej(Cj, rj). All possible contraction operations, with the
corresponding costs as the key factor, are inserted into a contrac-
tion heap, which records all the possible contractions in current
tessellation.

Then, the total number of clusters is reduced to n by iteratively
performing the least-cost contraction in the heap. Each time after
the least-cost pair is selected, only a local update is needed tomain-
tain the validity of the contraction heap: the remaining pairs of
the two contracted clusters in the heap are deleted, and the poten-
tial contractions between the new cluster and its direct neighbors
are inserted. This step is iteratively performed until the number of
clusters is reduced to n.

The most time-consuming part in this step is the computation
of the contraction cost. As shown in the Appendix, this cost can be
calculated efficiently by using the energy increase rule asmentioned
in Section 4.3. In our implementation, to speed up the contraction
process in 3D applications where there are huge number of voxels,
each block of voxels is treated as a cluster at the beginning.

4.5. Tessellation optimization

There is no surprise that the initial tessellation by greedily con-
tracting the least-cost pair of clusters cannot minimize the objec-
tive function in Eq. (10). A pixel/voxel cannot freely decide which
cluster it should reside in among the final n clusters. Each time a
cluster pair is contracted, the pixels/voxels in the two clusters are
bound to reside in the same cluster. Thus we relax the binding be-
tween pixels/voxels and clusters in the tessellation optimization.

Tessellation {Ci}
n
i=1 is updated according to the testing of the

boundary pixels/voxels of each cluster. Here a boundary pixel/
voxel of Ci is the one that has at least a neighboring pixel/voxel
which does not belong to Ci. For a boundary pixel/voxel x ∈ Ci,
we denote the set of clusters that the neighboring pixels/voxels of
x reside in as Bx. We need to test whether changing its cluster-
ing to Cj ∈ Bx will decrease the energy in Eq. (10) or not. Actu-
ally, this energy change is a local operation, which only involves
two clusters. To be more precise, as shown in the Appendix, the
energy change can be efficiently computed by the energy increase
rule asmentioned in Section 4.3. If the energy change is less than 0,
it means the pixel/voxel swap can decrease the energy of the ob-
jective function so as to optimize the tessellation. Otherwise, the
current tessellation is best suitable for the tested pixel/voxel, and
there is no further operation needed. If there ismore than one clus-
ter in Bx that can optimize the tessellation, we choose the one that
can lead to the largest decrease of energy.

We propose a parallel algorithm for tessellation optimization in
Algorithm 1. During each iteration, first we assign all the possible
swaps for the boundary pixels/voxels in parallel by performing the
swap testing. Note that the swap-testing operation for boundary
pixels/voxels can be performed parallelly in each iteration. Then,
we change the cluster ID for these pixels/voxels and update their
mass and corresponding centroids for all clusters.

When there is no swap that can optimize the tessellation, the
objective function in Eq. (10) reaches its local minimum. The cor-
responding tessellation is the locally-optimized CVT that conforms
to the density field d(x).

4.6. Initial meshing

With the optimized tessellation computed in the previous step,
we can place mesh nodes at the position of sites and connect mesh
nodes using the adjacency information of the tessellation. The only
challenge here is that the mesh does not cover the whole region
of interest, particularly at the region of clusters on the boundary
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Table 1
Computational statistics of 2D and 3D image registration experiments by our proposed dynamic meshing method.

Experiments Data resolution #
Iter.

#
Nodes

Total
time (s)

Regist.
time (s)

Initial tessell.
time (s)

Dynamic meshing time

Tessell.
optimization (s)

Mesh
construction (s)

Bary. computation
(s)

Circle to leaf 1024× 256 160 100 17.05 6.04 1.67 8.99 0.35 0.72
Circle to epsilon 512× 512 400 100 28.06 11.60 1.59 12.68 0.82 1.37
3D Lung Respiration 256× 256× 132 100 3000 114.53 30.35 1.73a 73.28 4.06 5.02

Note: # Iter.: number of iterations in registration. Regist. time: registration time. Bary. computation: voxel’s barycentric coordinate computation. Registration time and
dynamic meshing time include all iterations’ time during the registration.

a In order to speed up the contraction process, at the beginning, we treat each block of voxels (including 4× 4× 4 voxels), instead of each voxel, as a cluster.
Algorithm 1 Tessellation optimization algorithm
1: repeat
2: for each cluster Ci in parallel do
3: for each pixel/voxel x ∈ Ci in parallel do
4: initialize the best suited cluster ID cbest = i;
5: initialize the decreased energy dbest = 0;
6: collect the set of clusters Bx that all neighboring

pixels/voxels of x reside;
7: for each Cj ∈ Bx and Cj ≠ Ci do
8: calculate the energy decrease dj by swapping x

from Ci to Cj
9: if dj < dbest then

10: dbest ← dj
11: cbest ← j
12: end if
13: end for
14: if cbest ≠ i then
15: x should be swapped to cluster cbest
16: end if
17: end for
18: end for
19: for each cluster Ci in parallel do
20: update the massmi and centroid ri
21: end for
22: until the change of Eq. (10) is less than ϵ

and corners of the image. This is because the sites always will be
set at the positions of the centroids. This problem can be handled
through a post-processing by using Constrained Delaunay trian-
gulation (CDT). For the clusters on the boundary and corners of
the image, we treat the mesh nodes differently: (1) for the sites
of the boundary clusters, we set it as the centers of all boundary
pixels/voxels (for instance: it is the middle point of an edge or a
face); (2) for the corner clusters, usually each cluster only contains
one corner of the image, the node is set exactly at the corner. Since
the nodes have been moved, the connectivity defined by the adja-
cency of the original tessellation may not be a valid triangulation
anymore.We constrain the edges between the inner clusters using
the adjacency information of the tessellation, while the edges as-
sociatedwith the nodes of the boundary or corners are re-triangled
by CDT to maintain the ‘‘Delaunay-like’’ property.

4.7. Dynamic meshing

During the image registration process, with the update of the
transformation W(k) at each iteration of the registration, the im-
portance field ∥g(x)∥2 characterizing the importance of each pixel/
voxel to minimize the matching criteria, changes in each step. So
does the corresponding mesh.

During the registration process, we apply the iterative op-
timization algorithm to update the meshing. In each iteration
with the current transformation W′, the density field can be re-
computed by the warped source image S ◦W′. We compute a new
tessellation with the updated density field. The tessellation opti-
mization can start from the CVT result of its earlier iteration. Fi-
nally, we can obtain the newdynamicmesh generated by CDT from
the new optimized tessellation.

In order to apply the generated dynamic mesh in image reg-
istration, an additional step that computes the barycentric coor-
dinate of each pixel/voxel is needed. We followed the parallel
approach as [41] in our implementation.

5. Experiments and results

We adopt a hybrid implementation on both CPU and GPU. The
initial tessellation step by contracting least-cost cluster pairs suc-
cessively is implemented on CPU using C++, while the registration
and the remainder of the dynamicmeshing steps are implemented
on GPU using CUDA 5.0.

For the hardware platform, the experiments are run on a desk-
top computer with Intel(R) Core i7-4770 CPUwith 3.40 GHz, 32 GB
DDR3 RAM, and NVIDIA GeForce GTX 660 GPU with 2 GB GDDR5
video memory.

5.1. Parameters and configuration

In this subsection, we introduce the parameters that we choose
in our experiments.

In the registration setting, for theMSSD imagematching criteria
in Eq. (3), we set the pyramid level as 3 in all the experiments. Since
the weight β balances the image matching criteria and the regu-
larity of the transformation, and its value depends on the domain
size, the number of mesh nodes, and the variation of the image in-
tensity, we use an additional step to determine howmuch penalty
should be employed, instead of using an absolute value. In the first
iteration of registration, when the transformation W(1) is at hand,
the imagematching criteria term D(T, S◦W(1)) and the regularity
term R(W(1)) are computed, and β is set to normalize the energy
ratio βR(W(1))

D(T,S◦W(1))
as 0.02, then it is fixed for the rest of the iterations.

In our dynamic meshing implementation, we first calculate the
average value of the importance ∥f(x)∥2. The constant base value
α is set as 0.1 times the average value. For the parameter ϵ in Al-
gorithm 1 during tessellation optimization, we set it as 0 to get the
exact local minimum of Eq. (10). Note that the computation time
and the accuracy of this step can be balanced by the value of ϵ,
e.g., setting ϵ = 0.0001 instead would accelerate the tessellation
optimization step by allowing tessellation inaccuracy.

Table 1 gives the computational statistics of the 2D and 3D
image registration experiments by our proposed dynamicmeshing
method. It is clear that our method has high speed both in the
registration and dynamic meshing steps.

Table 2 gives the time performance with different number of
nodes on the registration of 3D Lung Respiration with 100 itera-
tions.

5.2. 2D image registration

Our first 2D experiment illustrates the main feature of our dy-
namicmeshing framework.We use a circle with radius of 60 pixels
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Fig. 3. The circle to ‘‘leaf’’ shape registration using dynamic mesh generation framework.
as source image, and the target image is a ‘‘leaf’’ shape, whose right
half is the same semi-circle while the left half is a semi-ellipsewith
a semi-major axis of 600 pixels. We assign 100 nodes for the Circle
to ‘‘Leaf’’ Shape registration experiment. In Fig. 3,we can clearly see
that denser nodes are placed at the regions where local deforma-
tion is expected. In iteration 1, the right semi-circle only has the
base value of the importance of the registration since the source
image and the target image perfectly match at that region. As the
registration goes on, once the boundary of the deformed image gets
misaligned a little bit due to the interpolation from the displace-
ment vector solved frommesh nodes, the density of the node in the
misaligned region increases correspondingly. Thusmoredegrees of
freedom will be generated automatically to ‘‘drive’’ the boundary
aligned. At the end of the registration, the nodes are distributed
evenly at the boundary of the deformed circle.

In order to evaluate the usefulness of our proposed dynamic
meshingmethod, we conduct a ‘‘Circle to Epsilon’’ experiment and
compare our result with two widely used meshes: regular mesh
and high fidelity mesh as shown in Fig. 5(a) and (b). Regular mesh
is widely used in spline-base free form of deformations (FFDS)
[42,43], while high fidelity mesh is the desired mesh in the tra-
ditional image registration algorithms [1,8], which can well cap-
ture the boundary of the object structure. However, both these two
kinds of meshes are static.

The source image is set as a circle with radius of 120 pixels,
while the target image is an epsilon shape. The challenge here is
we set the entrance into the epsilon shape to be 5 pixel width. We
use 100 nodes in all the three kinds of meshes. The regular mesh is
generated by the 10 × 10 rectangular grid, while the high fidelity
mesh is generated using the popular open source of the meshing
software CGAL [44]. CGAL produces a mesh using the Delaunay re-
finement method. As it clearly shows in Figs. 4 and 5, regular mesh
and high-fidelity mesh are trapped in the narrow entrance due
to the limited degrees of freedom. However, our dynamic mesh-
ing approach is able to adjust its nodes to ‘‘fit’’ the extreme shape.
Fig. 4(d) shows our final result of transformation is physically plau-
sible.

5.3. 3D image registration

To illustrate the efficiency and usability of our method, we
applied our dynamic meshing framework to 3D Lung Respiration
volume data, which is a set of torso images acquired from a digital
phantom, XCAT [45].

We compare our method with variational image meshing
(VIM) [8], which preserves the boundary of the volume data. There
are 3150 nodes used in their mesh, while 3000 nodes were used
in ours. The noticeable difference is that our mesh is much denser
at the bottom of the lung, which requires more degrees of free-
dom for the local deformation. Fig. 6 shows our dynamic meshing
strategy can facilitate the registration process and lead to a good
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Fig. 4. Circle to Epsilon dynamic meshing. (a) Initial mesh of iteration 1. (b) Dy-
namicmesh of iteration 254. (c) Dynamicmesh of iteration 400. (d) Transformation
of the dynamic meshing method at iteration 400.

Fig. 5. Circle to Epsilon using static meshes. (a) Initial regular mesh. (b) Initial
fidelitymesh. (c) Final registration result of the regularmeshingmethod at iteration
400. (d) Final registration result of the fidelity meshing method at iteration 400.
(e) Final transformation of the regular meshing method at iteration 400. (f) Final
transformation of the fidelity meshing method at iteration 400.
Fig. 6. 3D Lung Respiration. (a) Initial density field. (b) Registration result of
iteration 1. (c) Dynamic mesh of iteration 1. (d) Density field of iteration 100.
(e) Registration result of iteration 100. (f) Dynamic mesh of iteration 100.

Fig. 7. Energy curves of the dynamic meshing method and the VIM mesh method.

registration result. Because it is difficult to visualize the difference
between our dynamic mesh and VIM mesh in 3D case, we use the
energy curves to compare. Fig. 7 shows the energy curves of the
dynamic meshing method and the VIM mesh method and we can
see that our proposed dynamicmeshingmethod has faster conver-
gence speed.

6. Limitation and future work

The major limitation of our work is our mesh construction. As
shown in Eq. (10), the meshing objective function we proposed
only considers the optimal tessellation {Ci}

n
i=1 and the correspond-

ing optimal sites {zi}ni=1. This strategy setsmore degrees of freedom
at regions where local deformation is expected. However, it does
not take mesh element into account. The mesh elements are con-
structed directly by the dual graph and the CDT post-processing
step described in Section 4.6.

The dual triangulation of CVT usually generates well-shaped el-
ements. In our implementation, when the degrees of freedom are
not large enough, we observe bad-shaped elements. Mesh qual-
ity deteriorates when we apply the CDT post-processing to cover
the whole region of interest, i.e. small angles (<15°) in triangu-
lar elements and small dihedral angle (<10°) of tetrahedral ele-
ments. However it should be noted that bad-shaped elements will
not cause flip-over in our solved transformation since the diffeo-
morphic update rule described in Section 3 always guarantees a
diffeomorphic spatial transformation.
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Table 2
Time performance with different number of nodes on the registration of 3D Lung Respiration with 100 iterations.

# Nodes Initial tessell. time (s) Dynamic meshing time
Tessell. optimization (s) Mesh construction (s) Bary. computation (s)

500 1.82 102.63 0.41 8.05
1000 1.80 81.75 1.13 6.37
3000 1.73 73.28 4.06 5.02
5000 1.66 74.11 8.74 4.33

Note: Bary. computation: voxel’s barycentric coordinate computation. Dynamic meshing time includes all iterations’ time during the registration.
Fig. 8. Cluster-pair contraction during the initialization of tessellation. (a) Before
contraction. (b) The contraction cost can be calculated efficiently by the sum of ‘two
misalignment energy terms.

Investigating how the mesh elements can influence the regis-
tration process and integrating the mesh elements into the effi-
cient optimization scheme is an interesting direction for our future
work.
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Appendix

In this appendix, we show how the energy increase rule men-
tioned in Section 4.3 can be utilized to efficiently compute the
cluster-pair contraction and cluster optimization.

A.1. Cluster-pair contraction (Ci, Cj)→ Ck

If we contract a pair of clusters (Ci, Cj) into Ck, the new cluster-
ing energy of Ck with its centroid rk is:
Ek(Ck, rk) = A(Ck)

=


x∈Ck

d(x)∥x− rk∥2

=


x∈Ci

d(x)∥x− rk∥2 +

x∈Cj

d(x)∥x− rk∥2

= A(Ci)+ B(mi, ri, rk)+ A(Cj)+ B(mj, rj, rk). (17)
Therefore, the contraction cost is

A(Ck)− (A(Ci)+ A(Cj)) = B(mi, ri, rk)+ B(mj, rj, rk)

= mi∥(ri − rk)∥2 +mj∥(rj − rk)∥2. (18)
As shown in Fig. 8, the contraction cost can be computed effi-

ciently by keeping track of the mass and centroid of each cluster.
It is simply the sum of two misalignment energy terms. After each
contraction, themass and centroid of the new cluster Ck can be up-
dated by:
mk = mi +mj, (19)

rk =
miri +mjrj
mi +mj

. (20)
Fig. 9. Pixel-swapping during tessellation optimization. (a) Before voxel swap.
(b) The change of energy during swap can be calculated efficiently.

A.2. Cluster optimization, swapping Cl from Ci to Cj

Let us consider swapping a pixel Cl from Ci to Cj. Suppose after
swapping, Ci becomes Ci′ and Cj becomes Cj′ , i.e., Ci = Ci′ ∪ Cl, and
Cj′ = Cj ∪ Cl, as shown in Fig. 9.

From Eq. (17), the clustering energy of Ci and Cj are:

A(Ci) = A(Ci′)+ B(mi′ , ri′ , ri)+ A(Cl)+ B(ml, rl, ri). (21)
A(Cj′) = A(Cj)+ B(mj, rj, rj′)+ A(Cl)+ B(ml, rl, rj′). (22)

The change of the energy after swapping depends only on the
masses and centroids:

A(Ci′)+ A(Cj′)− A(Ci)− A(Cj)

= B(mj, rj, rj′)+ B(ml, rl, rj′)
− B(mi′ , ri′ , ri)− B(ml, rl, ri)
= mj∥rj − rj′∥2 −mi′∥ri − ri′∥2

+ml(∥rl − rj′∥2 − ∥rl − ri∥2). (23)

The swapping is accepted only if the change of energy is less
than zero. The masses and centroids for the corresponding new
clusters can be updated by:

mi′ = mi −ml, (24)
mj′ = mj +ml, (25)

ri′ =
miri −mlrl
mi −ml

, (26)

rj′ =
mjrj +mlrl
mj +ml

. (27)
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