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Abstract

The representation of a 3D shape is a key element for capturing the overall structure as well as the local details. In this paper, we
propose to predict a mesh representation of the Medial Axis Transform (called medial mesh) as an intermediate representation with our
IMMAT framework, to reconstruct the 3D shape from a single view image. Because the MAT contains the skeleton topology and local
thickness information, it not only enhances the ability to reconstruct topologically complex shapes but also better preserves the local
details with its thickness control. The framework consists of three modules. The Image2Sphere module predicts the medial spheres
inside the shape surface and the Topology Prediction module predicts the topological relationship (skeleton) between the predicted
spheres. Then the MAT Smoothing module smooths the predicted MAT and fine-tunes the coordinates and radii of the spheres by
graph convolution. The final 3D surface can be reconstructed by converting the predicted MAT to an implicit surface through CSG
operation and then extracting the boundary surface through Marching Cubes. Experimental results show that our method outperforms
the state-of-the-art methods both quantitatively and qualitatively on the reconstruction task.
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1. Introduction

Inferring a 3D shape from a single view image has received
much attention in recent years but is still a very challenging
problem in various tasks of computer vision and computer graph-
ics. With the availability of large-scale 3D shape datasets, such
as ShapeNet [1], deep learning based approaches can generate
3D shapes with representations of volume [2, 3, 4, 5, 6], point
clouds [7, 8], or triangular mesh [9] as the output of neural net-
works.

Geometry and topology are two important features of a 3D
shape and shapes are often visually different from each other due
to the difference in geometry and topology. Point clouds and
voxels only express the geometry and have poor ability to learn
the topology of 3D shapes.

Triangular mesh expresses geometry and topology at the same
time. However, it is difficult to learn surface mesh from a sin-
gle view image by convolutional neural networks. The meth-
ods based on template mesh deformation [9, 10] have achieved
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promising results, but they can only reconstruct shapes of very
limited topologies that are often not complex enough. Eliminat-
ing invalid triangular faces which cause the incorrect topology
can break through the topological constraint of given templates,
but it will destroy the closure of a mesh and cause boundary dis-
tortion.

The skeleton-based method [10] has been proposed to capture
the underlying topological structure of the target object. It is
effective for reconstructing topologically complex shapes. How-
ever, the predicted skeleton points only provide an initial topol-
ogy, which lacks geometric information to directly reconstruct
the surface mesh. To learn better geometric structures, the skele-
ton points need to be transferred into voxels and meshes. This
transfer inherits the disadvantage of mesh deformation, which
may lead to self-intersection of the mesh or even destroy the ini-
tial topology. The whole pipeline does not consider the thickness
of the shape and leads to an uneven surface in the generated mesh
that seriously affects the visual effect.

Inspired by the skeleton-based method, we propose to con-
struct the Medial Axis Transform (MAT) [11] of a 3D shape
from a single view image. Different from skeleton points which
are point clouds on the skeleton, MAT has more outstanding
characteristics:

1) MAT uses medial spheres located on the skeleton with radii
to represent the geometry. The radius is the distance from the
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center of the sphere on the skeleton to the surface of the shape,
which represents the local thickness and can be used for surface
reconstruction.

2) MAT has connection relationships among medial spheres to
represent the topology information of the shape. The connections
represent the skeleton structures and can flexibly reconstruct var-
ious complex shapes. An edge between two spheres expresses
the curve structure, and a face among three spheres expresses the
surface structure.

3) A MAT can directly recover a manifold and watertight trian-
gular mesh by Marching Cubes [12]. Therefore, only the MAT
representation is operated throughout the whole pipeline, with-
out the need to transfer to voxel and mesh representations like
the skeleton-based method [10].

In this paper, we propose IMMAT to predict MAT to directly
learn the medial spheres and skeleton topology of a 3D shape
from a single view image. Different from the Point2Skeleton [13]
which learns a MAT from point clouds (the input and output are
in the same 3D space), our task to solve the gap between 2D
and 3D is more challenging. In our framework, we divide the
MAT prediction into three stages and propose the corresponding
deep network modules. Firstly, the Image2Sphere module pre-
dicts a set of discrete spheres with different radii from a single
view image. Then the Topology Prediction module predicts the
topological relationships between these spheres to construct the
topology of MAT. We further use the MAT Smoothing module
to smooth the spheres of MAT and improve the quality of the
reconstructed surface mesh. Fig. 1 shows an overview and sev-
eral basic shapes from different geometries and topologies. We
will release the code and MAT datasets to the public for further
research. The main contributions of this paper include:

• We introduce MAT as the underlying representation for
shape reconstruction from a single view image and propose
a novel framework for MAT prediction. We have created
a MAT dataset that will be open source and used for deep
learning research.

• We propose the Image2Sphere module, the first learning-
based method for predicting medial spheres from a single
view image, to simultaneously predict the spatial distribu-
tion and volume information of 3D shapes.

• We propose a deep learning based method to predict the
topology relationships of 3D spheres and achieve high-
quality reconstruction results with the generated MAT.

2. Related Work

Mesh-based deformation methods learn the vertices’ positions
and deform an initial mesh (e.g., an ellipsoid) to achieve similar-
ity in the overall shape [14, 15]. But it is not capable of gener-
ating shapes of arbitrary topology from a genus-0 mesh. Defor-
mation from a similar template mesh [16] further enhances sim-
ilarity in overall shape and local details. But because it does not
change the topology of the source template, these methods can
only reconstruct surfaces with fixed topology. Topology modifi-
cation method [17] prunes the redundant edges/faces of the trian-
gle mesh, enabling the evolution of topology and improving the
local details. However, the rough pruning operations could po-
tentially destroy the watertight property of the generated mesh.
PSG [8] generates point clouds from a single view image.

The skeleton-based method [10] splits the shape reconstruc-
tion task into three stages. First, some meso-skeleton points are
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Figure 1: Our proposed approach can generate a closed watertight surface mesh
from a single view RGB image, by precisely predicting the geometry (medial
spheres) and complex topology (edges and faces) with a MAT representation. At
the bottom box, we show some examples of reconstructed meshes in different ge-
ometries and typologies of MAT, which reflects our ability to generate complex
shapes. The first row shows six different typologies of four spheres with corre-
sponding geometries (sphere centers and radii) in the second row. The following
two rows indicate the impact of changing geometries by updating the locations
of sphere centers or sizes of radii. The meshes at each column have the same
topology but different geometries.

predicted and converted into a volumetric representation. After
refinement, a base mesh similar to the target is extracted. Fi-
nally, a mesh deformation network is used to produce geometric
details.

In addition to explicit representations, implicit representations
have become popular in recent studies. Occupancy Network [18]
learns a continuous occupancy function as the representation of a
3D shape with neural networks. DeepSDF [19], DISN [20] pre-
dict signed distance functions of 3D points near the 3D surface.
SIFs [21] represents a 3D shape by combining a set of shape el-
ements (structured implicit functions). The element is a scaled
axis-aligned anisotropic 3D Gaussian, and the whole 3D shape
is represented as the sum of these shape elements. DSIFs [22]
provides local geometry details by adding deep neural networks
as deep implicit functions (DIFs). LDIF [23] performs well on
local shape details of 3D reconstruction.

There are some recent works on exploiting MAT [24] as an
underlying representation for shape analysis. MAT-Net [25] val-
idates the performance of MAT representation in the 3D shape
classification task. P2MAT-NET [26] learns the pattern of sparse
point clouds and transforms them into spheres and then recon-
structs the connectivity of spheres with a post-processing manner
to approximate MAT. Point2Skeleton [13] proposes an unsuper-
vised method to learn the MAT representation from point clouds,
which can be used for shape reconstruction or segmentation of
point clouds.

3. The Method

The overall goal of this work is to reconstruct a surface O from
an image I of a single object by predicting MAT of the shape
from I.
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Figure 2: The overall pipeline of the Image2Sphere module.

We follow the definition of MAT in Q-MAT [27]. The MAT
M of a 3D shape is composed of spheres S, edges E, and faces
F, as shown in Fig. 1. We define M = (S,E,F), each sphere s is
denoted as a 4D vector s = (c, r) with the center c and radius r
of the sphere. ei j = {i, j} is the edge defined by linear interpola-
tion of two medial spheres (1 − t)si + ts j, t ∈ [0, 1]. Similarly, a
medial face (also called medial slab), fi jk = {i, j, k}, is a convex
combination of three medial spheres a1si +a2s j +a3sk with ai ≥ 0
and a1 + a2 + a3 = 1. MAT preserves the topology and volume
information of the object and can be represented with any reso-
lution (number of spheres), which balances the complexity and
the fineness of the reconstructed mesh.

Our method consists of three modules: Image2Sphere, Topol-
ogy Prediction, and MAT Smoothing. In Image2Sphere, we learn
the initial spheres from the global feature of an input image,
which achieves certain similarities in appearance. Then we use
local image features to refine the coordinates of the initial spheres
and predict their new radii. In Topology Prediction, two local ad-
jacency matrices are predicted from N refined spheres and their
N × K neighbor spheres. For each sphere si, we first use K-
Nearest Neighbors (K-NN) to query K neighbor spheres, then a
convolutional neural network is trained to obtain local features
from K spheres, and finally the fully connected layers are used
to predict an edge probability matrix MEi and a face probability
matrix MFi. MEi is a 1 × K vector that denotes the probability
of edges between si and its K neighbors. MFi is a 1 × K × K
matrix, with each entry MFi, j,k representing the probability of
face between si and its two neighbors s j and sk. Finally, the
edges and faces with higher probability together with the pre-
dicted spheres from the Image2Sphere form a predicted MAT.
Ideally, the connected spheres should have similar coordinates
and radii distribution. With the predicted spheres and topologies,
the MAT smoothing module finetunes the spheres’ centers and
radii to smooth the surface and curve structures.

3.1. Image2Sphere
The Image2Sphere module is proposed to predict a precise dis-

tribution of spheres from the input color image. Note that the
sphere centers are located on the skeleton, not on the surface.
It includes two sub-networks: generating initial spheres using
global image features and generating refined spheres using lo-
cal image features, as shown in Fig. 2. We firstly use ResNet18

to encode the image into a global feature vector, then decode it
into centers of spheres with multi-layer perceptrons (MLPs). To
get more accurate sphere predictions, a small displacement is ap-
plied to the centers. This displacement is decoded using MLPs
by concatenating the global image features and the centers. For
radius prediction, the global image features are also decoded into
an N×1 vector that contains the radius of each sphere. As a result
of this stage, initial spheres, including the initial centers and the
initial radii, are predicted and can be used to reconstruct a simple
shape. We firstly use ResNet18 to encode the image into a global
feature vector, then decode it into a set of spheres. The centers
and radii of spheres are decoder by two multi-layer perceptrons
(MLPs) respectively. However, the initial spheres might not be
able to capture the fine details of the shape. For example, as
shown in the top part of Fig. 2, the predicted initial spheres could
not fit well at the back of the chair. Therefore, local features
extracted from the input image are introduced to optimize the
predicted spheres. Similar to Pixel2Mesh [14], we use camera
parameters of the image to project the centers of initial spheres
onto the 2D image and extract the corresponding pixel features
from the image feature maps. Then we combine pixel features
with centers of initial spheres as the input of a graph convolution
network (GCN) [28, 29, 30, 31] to refine these centers. The pixel
features together with the refined centers are then used to com-
pute the new radii. Since there are no connections between the
predicted centers up till now, the graph of GCN is represented as
an identity matrix.

In the sphere prediction, Chamfer Distance (CD) and Earth
Mover’s Distance (EMD) are introduced to constrain the sphere
centers [14], and Radius (R) loss is used for learning the radii of
spheres. CD loss is employed to measure the mismatch between
the predicted centers Cp and the target centers Ct of the ground
truth spheres. EMD loss measures the mismatch between the dis-
tributions of sphere centers in the ground truth and the predicted
domain. Similar to CD loss, R loss is proposed under the as-
sumption that spheres that are close to each other are more likely
to have similar radii, that is,

Lr =
∑
p∈Cp

(rp − rp′ )2 +
∑
q∈Ct

(rq − rq′ )2, (1)

where rp is the radius of the medial sphere with center p. p′
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Figure 3: The overall pipeline of the Topology Prediction module.

denotes p’s closest center of target spheres, and its radius is rp′ .
Accordingly, q′ is the closest predicted center of q.

In the first stage, we consider all of the three losses, i.e.,

Linit = λ1Lcd + λ2Lemd + λ3Lr. (2)

Considering the performance and time consumption of recon-
struction, we predict a sparse set of 256 spheres for our MAT
representation. Ideally, the spheres should lie on the medial
curve and sheets and any outliers of the sparse spheres will cause
bumpy and unsmooth structures in the reconstructed mesh after
topology prediction. To reduce the outliers, we also predict a
dense set of 2048 sphere centers to represent the finely sampled
medial curves and sheets, without using the radii.

In general, this module predicts multi-resolution sphere sets.
Sparse medial spheres are used to guide the topology prediction,
while dense centers will provide richer information for better
topology prediction. We will introduce how the dense set is used
for refining the topology in the Topology Prediction module.

3.2. Topology Prediction
The topology of a medial mesh is represented by a two-

dimensional edge adjacency matrix and a three-dimensional face
adjacency matrix. Each element of the adjacency matrices is
either 1 or 0 indicating whether there is an edge between two
spheres or a face among three spheres. Under this context,
edge/face prediction can be regarded as a binary classification
task.

However, the full adjacency matrices are sparse, resulting in
an unbalanced distribution of 0 and 1, which makes it impossible
to achieve a meaningful binary classification.

The topology is related to the euclidean distance of medial
spheres, i.e., spheres that are close to each other are more likely
to be connected. Therefore, for edge prediction, we only predict
the probabilities of medial edges for each sphere and its K nearest
neighbors, alleviating the imbalance of the classification labels.
For face prediction, we predict the probability of a medial face
for each sphere when the other two spheres of the face belong to
its K nearest neighbors.

The core idea is to split the global topology into N local
topologies, one for each sphere as illustrated as the red sphere in
Fig. 3. It is observed that features extracted from sparse spheres
are not enough to predict the precise topology. Therefore, the

dense centers predicted in the Image2Sphere stage together with
the sparse spheres are used to leverage the neighborhoods at mul-
tiple scales for achieving both detail capture and prediction ro-
bustness. As shown in Fig. 3, two local features extracted from
two distinct resolutions (sparse as 256 and dense as 2048 in our
experiment) are concatenated to predict the probability of edges
and faces. Edges and faces with probability larger than a user-
defined threshold ε where 0 ≤ ε ≤ 1 are selected to construct the
topology of the shape.

The loss function of the topology prediction module is the sum
of the cross-entropy loss of two binary classifiers,

Ltp = −
∑

e∈ME

ye log(p(e)) −
∑

f∈MF

yf log(p(f)), (3)

where ME and MF are probability matrices of edges and faces,
respectively. ye and yf are the label value (0 or 1) of edge or
face and p(·) is the corresponding softmax probability. In this
way, three types of medial primitives can be predicted: medial
spheres, medial edges, and medial faces.

3.3. MAT Smoothing
After topology prediction, the MAT of the object is obtained

and is sufficient to reconstruct its surface mesh. However, such
mesh may have an uneven surface second column in Fig. 8) due
to the inconsistent distribution of coordinates and radii between
connected spheres. Our MAT smoothing module is designed to
solve this problem with two stages: smoothing and refinement.
Following Eq. (4), for a sphere s, we compute the centroid of
all its connected spheres C(s), with |C(·)| being the number of
connected spheres. We use a specified smoothing weight t ∈
[0, 1] to balance the performance of smoothness. The smoothing
operation is quite related to [32, 33]. The smaller t is, a stronger
smoothing effect is achieved:

ssmooth = t · s +
(1 − t)
|C(s)|

∑
s′∈C(s)

s′. (4)

Even though the smoothing operation makes a better visual
effect with a smoother surface, it can also shrink the shape by
its nature. To maintain the distribution of the coordinates and
radii of the medial spheres after smoothing, we train a MAT re-
finement network that has a similar network structure with the
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Figure 4: Qualitative results on mesh reconstruction. (a) AtlasNet; (b) Pixel2Mesh; (c) TMNet; (d) SkeletonBridge; (e) DISN; (f) OccNet; (g) BSP-Net; (h) Ours;
(i) Ground Truth. For the models with holes which are difficult to reconstruct, our method can predict much better results.

previously mentioned sphere refinement network in Sec. 3.1, but
with three differences: 1) The input is the smoothed spheres, not
their initial centers. 2) The output is the displacements of the
coordinates and radii instead of new spheres. 3) The topologi-
cal relationship is used to support the graph convolution network
here, while in the sphere refinement network of Sec. 3.1 there is
no connection between spheres.

3.4. Surface Reconstruction From Medial Mesh
The enveloping surface of each medial primitive can be con-

structed from the union of simpler objects. Since a medial edge
is a linear interpolation of two end spheres, its volume is a union
of one cone and two spheres. Similarly, the volume of a medial
face is a union of three spheres, three cones, and one triangular
prism. These characteristics inspire us to use Constructive Solid
Geometry (CSG) [34] for surface reconstruction from a medial
mesh. We use the VDB data structure [35, 36], a compact vol-
umetric data structure, to achieve high-quality CSG operation of
medial primitives. After converting existing medial primitives to
implicit level sets, the VDB data structure can perform nearly
real-time union operations on these level sets. Finally, the result-
ing volume is converted to a triangle mesh through the Marching
Cubes algorithm [37].

4. Experiments

Dataset
We evaluate our approach on ShapeNet [1] dataset. To the best
of our knowledge, computing medial axis transform often needs
roughly uniformly distributed, manifold, and closed triangular
mesh. But in ShapeNet, lots of meshes are non-manifold or have
other problems. Consequently, Q-MAT[27] can not compute me-
dial axis transform of all the shapes in ShapeNet. We finally gen-
erated MATs of 47.5% of the full set and named the generated
dataset as ShapeNet-MAT. The dataset includes 17,507 samples
in 13 categories and the samples are randomly split into two sub-
sets, 80% of samples are used for training and the remaining for
testing. Each sample has 24 images with different views pro-
vided by [2]. For a fair comparison, all compared methods are

re-trained on the same samples.

Implementation details
All networks are trained separately. The Image2Sphere predicts
256 sparse spheres and 2048 dense centers. We use a learning
rate of 1e−4 for the sphere prediction of Image2Sphere. In the
first N1 training epochs, the sub-network using the global feature
is trained and then fix their parameters. In the next N2 epochs,
the sub-network using local features is trained.

In the Topology Prediction network, we select 8 neighbors
from sparse spheres and 64 neighbors from dense centers for
each sphere in the sparse set. We train the Topology Prediction
module using a learning rate of 1e−3. The smoothing weight t is
0.5. The networks are trained individually for each category. We
use OpenVDB [36] for implementation of surface reconstruc-
tion from MAT. For IoU computation, the resolution of voxel is
32 × 32 × 32. Before triangle mesh generation, we predict topol-
ogy again and fill the surface holes [13].

4.1. Comparisons with State-of-the-Arts
In this section, qualitative and quantitative comparisons with

several state-of-the-art methods for mesh reconstruction, includ-
ing AtlasNet [15], Pixel2Mesh [14], TMNet [17], Skeleton-
Bridge [10], DISN [20], OccNet [38], BSP-Net [39] are con-
ducted to demonstrate the effectiveness of our MAT-based re-
construction. All methods are trained/tested on the same sam-
ples and use their corresponding supervision data representation.
In our method, the supervision data is MAT spheres, edges and
faces. For AtlasNet, Pixel2Mesh, TMNet, triangular meshes are
used for supervision. SkeletonBridge uses three representations:
skeleton points, voxel, and triangular mesh. BSP-Net, DISN, and
OccNet also use their corresponding supervisory data. In local
image feature capture, ground truth camera parameters are used
for all methods.

Qualitative results
The qualitative results are shown in Fig. 4. The results show
that mesh deformation based methods, i.e., AtlasNet [15],
Pixel2Mesh [14], and TMNet [17] can only reconstruct mesh
with a similar overall shape but fail to reconstruct topologically
complex shapes. Although TMNet eliminates incorrect faces, it
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CD ↓ plane bench chair rifle table lamp boat couch car display phone speaker cabinet mean
AtlasNet 1.32 4.54 5.50 3.65 5.99 14.22 2.66 3.85 1.42 3.51 1.21 10.29 2.81 4.69
P2M 2.78 6.17 6.40 4.75 4.44 10.28 5.47 4.62 2.02 5.28 1.85 18.56 9.74 6.34
TMNet 2.09 5.56 4.06 2.65 3.68 10.32 4.97 4.21 1.70 6.16 1.05 13.01 2.62 4.78
Skeleton 1.44 4.14 3.81 2.33 3.50 8.22 3.19 4.03 2.91 4.16 1.96 12.21 3.76 4.28
DISN 2.08 5.88 5.56 2.81 5.34 13.89 2.47 2.98 1.30 5.25 1.29 16.26 4.18 5.33
OccNet 1.48 5.35 4.36 2.47 5.14 9.51 4.23 5.22 1.91 6.85 0.96 16.58 5.71 5.37
BSP-Net 1.41 4.79 4.59 2.91 4.75 10.74 4.72 4.85 1.69 6.48 1.36 14.93 4.33 5.20
Ours 1.24 3.66 3.25 1.61 3.23 6.47 2.95 3.45 1.36 4.25 0.93 11.56 4.12 3.70
IoU ↑ plane bench chair rifle table lamp boat couch car display phone speaker cabinet mean
AtlasNet 0.546 0.429 0.388 0.443 0.458 0.326 0.440 0.405 0.558 0.445 0.652 0.290 0.467 0.450
P2M 0.302 0.417 0.398 0.524 0.482 0.354 0.435 0.408 0.545 0.416 0.610 0.252 0.279 0.417
TMNet 0.493 0.360 0.405 0.492 0.495 0.358 0.411 0.437 0.555 0.439 0.667 0.270 0.455 0.449
Skeleton 0.504 0.448 0.400 0.533 0.489 0.377 0.450 0.411 0.445 0.443 0.605 0.279 0.394 0.444
DISN 0.501 0.435 0.379 0.524 0.533 0.305 0.461 0.444 0.581 0.423 0.655 0.259 0.391 0.453
OccNet 0.591 0.477 0.434 0.521 0.541 0.303 0.454 0.431 0.524 0.417 0.671 0.254 0.379 0.461
BSP-Net 0.555 0.469 0.394 0.485 0.475 0.315 0.393 0.392 0.550 0.412 0.597 0.246 0.389 0.436
Ours 0.558 0.511 0.446 0.612 0.510 0.387 0.434 0.415 0.540 0.448 0.675 0.257 0.388 0.475
EMD ↓ plane bench chair rifle table lamp boat couch car display phone speaker cabinet mean
AtlasNet 2.38 3.41 4.18 3.37 3.93 5.69 2.89 3.00 2.14 2.88 2.01 4.20 2.91 3.31
P2M 2.99 4.11 4.74 4.19 3.35 5.91 4.41 3.26 2.63 3.66 2.20 6.68 5.39 4.12
TMNet 2.75 3.50 4.03 3.39 3.15 5.98 3.50 2.62 2.18 2.99 1.49 4.14 2.36 3.24
Skeleton 2.52 4.12 3.79 3.95 3.32 6.23 3.67 3.15 3.55 3.21 2.59 5.42 3.73 3.79
DISN 2.75 3.13 3.61 3.21 2.98 6.46 2.56 2.43 2.11 3.02 1.71 4.41 2.95 3.18
OccNet 2.03 2.97 3.18 3.01 2.90 5.01 3.27 2.91 2.30 3.09 1.52 4.70 3.24 3.09
BSP-Net 2.21 3.27 3.91 3.53 3.04 6.30 3.81 3.16 2.83 3.11 1.96 4.88 3.08 3.46
Ours 2.13 2.80 3.05 2.53 2.79 4.93 2.88 2.55 2.13 2.76 1.56 4.28 2.96 2.87
F-score ↑ plane bench chair rifle table lamp boat couch car display phone speaker cabinet mean
AtlasNet 94.07 77.61 72.03 82.29 78.78 60.15 84.11 78.63 92.29 83.86 93.96 60.13 78.52 79.73
P2M 86.85 73.55 64.02 80.12 83.24 66.05 73.61 72.55 86.95 74.31 88.02 48.83 53.44 73.20
TMNet 91.64 72.81 78.90 86.05 87.23 67.71 71.58 80.35 90.99 77.48 95.05 55.56 82.29 79.82
Skeleton 93.29 79.57 78.62 89.22 83.73 68.79 80.43 77.89 79.84 79.82 87.43 57.07 73.06 79.14
DISN 92.26 79.44 73.46 87.65 82.39 68.81 86.44 82.43 93.13 79.98 93.29 53.74 71.88 80.38
OccNet 93.69 83.09 80.47 88.45 82.91 68.54 80.29 75.96 88.82 75.43 95.78 53.28 66.53 79.48
BSP-Net 91.78 80.29 77.10 84.35 84.22 68.09 80.22 76.33 91.10 76.99 93.59 51.60 73.70 79.18
Ours 94.96 84.42 83.70 92.40 87.33 74.32 83.20 79.97 92.41 81.81 96.12 56.18 72.95 83.06

Table 1: Quantitative results on mesh reconstruction. The Chamfer Distance, IoU, Earth Mover’s Distance, and F-score are used. The best results are boldfaced,
and the second best results are underlined.

is still constrained by the topology of the initial spherical mesh,
as illustrated by the chair and bench cases in the first two rows.
SkeletonBridge [10] directly predicts skeleton points of the 3D
shape, which makes it possible to generate topologically com-
plex shapes. However, the fine details of the object still can-
not be fully captured, such as the chair back and airplane pro-
pellers. Implicit methods [20, 38] are capable to reconstruct
smooth meshes, but there is a gap in thickness between the shape
and the ground truth, as shown in Fig. 7. BSP-Net [39] directly
extracts a polygon mesh via convex decomposition and recovers
sharp geometric details. However, there are many overlapping
faces inside its mesh, and the surface lacks smoothness. Our
method has achieved better performances as demonstrated by the
similar overall shape as well as the exquisite local details. Be-
sides, with the conversion of MAT to VDB implicit surface rep-
resentation, our generated surface meshes are guaranteed to be
manifold and watertight, without any self-intersection.
Quantitative results
We adopt the widely used Chamfer Distance (CD) loss, Earth
Mover’s Distance (EMD) loss, F-score [14], Intersection over
Union (IoU) of the voxels as comparison metrics. After align-
ing the prediction results with ground truth, 10,000 points are
uniformly sampled from each triangle mesh. The metrics are
calculated on the sampled points and the vertices of ground truth
meshes. Since the training and testing samples are less than
the full dataset, all methods have a certain decline in quanti-
tative than using the full dataset, but because all methods use

Input Spheres Ball Pivoting Delaunay KNN Ours Mesh

Figure 5: Qualitative results of topology generation methods by connecting
vertices to form edges and faces.

the same samples, the performance difference between meth-
ods remains. For example, OccNet and DISN are better than
Pixel2Mesh quantitatively. Table 1 shows our approach outper-
forms the state-of-the-art methods in all metrics over most cat-
egories. It is noticed that all of the mesh-based methods take
meshes as supervision information in the training process, which
aims to directly minimize the losses calculated on meshes. Our
method learns the medial spheres and topological relations with-
out using the surface meshes as supervision information, but still
achieves better (or comparable) results on the reconstruction er-
ror of reconstructed meshes.

Topology prediction
Given sparse medial spheres, we compare the topology genera-
tion with alternative methods: Ball pivoting [40], Delaunay tri-
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Figure 6: Test results on real images.

OursDISN OccNet Ground TruthSkeleton

Thick

Thin

Figure 7: Comparison on Shape Diameter Function. The color of the point
indicates its thickness.

angulation (deleting overlong edges using a threshold), and K
Nearest Neighbor (KNN) (connecting the K nearest neighbors of
each sphere and extracting the formed faces). Fig. 5 shows that
the alternative methods cannot generate the complex topology
correctly (especially linear structures). Our Topology Prediction
module predicts the delicate back and legs of the chair.

Testing on real image
We test our model on real images from the Pix3d [41] dataset.
Although our model is only trained on the ShapeNet dataset, it
generalizes well to real-world objects (Fig. 6). Our method has
the ability to reconstruct the hole structure of 3D shapes.

Comparison of Shape Diameter Function (SDF)
We apply Shape Diameter Function (SDF) [42] to measure the
local thickness of reconstructed meshes.

We first compute the SDF value for each face of mesh and
sample M (10K in our experiments) points in total on these faces.
The SDF value η of each point corresponds to the face from
which it is sampled. A larger SDF value indicates thicker vol-
ume below the surface point.

We propose the average thickness error to measure the differ-
ence of the local thickness between the predicted mesh and the
ground truth. To the best of our knowledge, none of the tradi-
tional quantitative metrics could reflect the thickness error of the
local shape. For a point p on the ground truth mesh surface, we
find the nearest point p′ from the predicted mesh surface as its
corresponding point.

The absolute value of difference between the thickness values
of p and p′ is |ηp − ηp′ |. Similar to the R loss, we calculate the

Category Skeleton DISN OccNet Ours
plane 1.811 1.867 1.796 1.607
chair 1.874 1.674 1.619 1.492

firearm 1.638 1.008 1.095 0.985
table 1.618 1.235 1.285 1.226
mean 1.774 1.516 1.503 1.361

Table 2: Quantitative comparison on average thickness error.

thickness error in both directions, i.e.,

ηe =
1

2M
(
∑

p
|ηp − ηp′ | +

∑
q
|ηq − ηq′ |), (5)

where q and q′ are the point on the ground truth mesh and its
nearest point on the predicted mesh, respectively.

The computation of SDF needs closed and manifold mesh with
correct normal information, but it could not be guaranteed that
the predicted meshes of the mesh-based methods we compare
have these attributes. We compare 4,573 samples of which the
SDFs are successfully computed. The qualitative and quantita-
tive results show our results have a closer thickness to the ground
truth than other methods. Table 2 shows the average thickness er-
rors (lower is better) of the reconstructed meshes and the ground
truth.

Our result is closer to the ground truth on thickness than the
compared methods. The visual comparison of SDF in Fig. 7 also
gives the same conclusion.

High genus shape comparison
To show the effectiveness of our method on topologically com-
plex shapes, we compare the results of higher-genus samples on
5 categories (bench, chair, firearm, plane, table), containing a to-
tal of 29,520 samples, with average genera of 11.4 per sample.
As shown in Table 3, our results still perform well.

Method CD IoU
AtlasNet 4.753 0.435
P2M 5.519 0.451
TMNet 3.904 0.436
SkeletonBridge 3.317 0.465
DISN 4.175 0.489
OccNet 3.936 0.496
BSP-Net 4.064 0.459
Ours 2.902 0.515

Table 3: Quantitative comparisons on high-genus samples.

4.2. Ablation Study and Application
Effect of each stage on sphere prediction
The initial spheres decoded from the global image features only
achieve the similarity of the overall shape, so we improve it with
sphere refinement and MAT Smoothing. Table 4 and Fig. 8 show
the effect of each stage quantitatively and visually.

The sphere refinement in Image2Sphere module generates
complex local shape details and the MAT Smoothing module
produces clearer boundaries of the shape and more consistent
radii of neighboring spheres. In the smooth operation, we use
the weight t = 0.5 for Eq. (4). We calculate the ratio of diago-
nal of the bounding box between current spheres and real data,
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Initial Refined Ground TruthSmoothed

Figure 8: Visual comparisons on spheres and reconstructed meshes of all stages.
The two rows are the predicted spheres and the corresponding mesh reconstructed
after topology prediction. Although the spheres learned from global and local fea-
tures can learn the geometric characteristics of the object, there is still a certain
gap with the ground truth. After smoothing and learning by the topological in-
formation, the spheres have been significantly optimized on the curve and plane.

Stage CD (Sphere) R (Sphere) CD (Mesh)
Initial 129.28 226.75 5.06
Refined 124.63 196.87 4.38
Smoothed 124.38 191.64 3.70

Table 4: Quantitative comparisons of the three stages.

and the average value in 13 categories is 0.946. Through the fol-
lowing refinement, this ratio is restored to 0.984, indicating that
MAT Smoothing not only smooths the surface but also keeps the
size of the shape.

Thresholds of topology prediction
In the topology prediction, the probability threshold determines
the edges/faces prediction and thus affects the mesh reconstruc-
tion results. In Fig. 9, we visualize the reconstruction results
of different thresholds and explore the selection strategy. Low
edge/face thresholds (τe/τ f ) result in local redundancy of the
mesh, while high thresholds may lead to incomplete local shape.
We select the balanced thresholds (τe = 0.2, τ f = 0.3) for topol-
ogy prediction.

Dense centers effect in Topology Prediction
As shown in Fig. 10, although using 256 spheres for topology
prediction alone can predict most of the edges and faces cor-
rectly, it may lead to incorrect local predictions, such as redun-
dancy or loss of local connections.

Application on topology-guided segmentation
MAT’s topology is the abstraction of the 3D shape. Although our
task is shape reconstruction, we find that with the guidance of
the predicted topology of MAT, the overall shape can be easily
segmented into multiple parts without labeling and deep learn-
ing. Fig. 12 visualizes the segmentation results on meshes. It
can be seen that the surface structure and curve structure can be
clearly distinguished on the reconstructed mesh. With the help
of the predicted topology, we can decompose the shape into mul-
tiple parts without ground truth labels or prediction. As shown
in Fig. 11, the topology-guided segmentation consists of three
steps:

1) Semantic Split. Intuitively, a sphere on a surface has more
faces than a sphere on a curve. According to the number of faces,

GT

Figure 9: Influence of edge/face probability threshold τe/τ f on mesh reconstruc-
tion.

w/ dense w/o dense edge lost

edge redundant

Figure 10: Reconstruction results with and without dense centers in topology
prediction.

we can split the spheres into two semantics: curve or surface.
The sphere with the number of prediction faces greater than the
threshold K is be seen as on the surface, otherwise on the curve.

2) Parts Clustering. We use DBSCAN (Density-Based Spatial
Clustering of Applications with Noise) to cluster curve spheres
and surface spheres. For the curve spheres, we cluster them based
on 3D spatial coordinates. For surface spheres, we compute the
average normal of the faces those the sphere is located in as its
normal (absolute value) and cluster them by using the coordi-
nates and normals, to distinguish the connected surfaces with
different normals, such as the back and base of a chair.

3) Mesh Correspondence. After splitting the parts of MAT
spheres, we segment the triangle faces by finding their nearest
spheres. Finally, we split the triangular mesh into many parts.

Although our method generates overall shape from a single
view image, the triangular mesh can easily be segmented into
parts based on MAT segmentation. Due to the DBSCAN needs
not specifying the number of cluster centers, the parts number of
the shape is adaptive.
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Figure 11: Topology-guided segmentation on predicted MAT and predicted triangular mesh.

More samples in all stages
o show the effect of each stage, the output results of all stages
are shown in Fig. 13 including sphere prediction, topology pre-
diction, MAT smoothing, and mesh reconstruction.

We also show the thickness information (shape diameter func-
tion) of reconstruction results in different categories, which is
not considered by other methods. It can be seen that our method
can gradually generate fine spheres on a skeleton, and reasonably
predict the topological relationship of the spheres. Finally, con-
struct a complete MAT representation and reconstruct a complex
surface mesh. We also show the local thickness that is affected
by the radius through shape diameter function.

Network architectures
Fig. 14 shows the architecture of initial sphere prediction. The
input image is encoded to a global vector by ResNet18. Then
the global feature vector is input to three sub-networks. Two
networks encode the feature and decode it into initial centers
and radii, and then the feature vector is input to the displace-
ment learning module to learn the displacements for the initial
centers. The displacement learning module follows 3DN [16].
The architecture of sphere refinement network (Fig. 16) follows
Pixel2Mesh. We make the following changes in implementation:
1) The input of deformation is 256 center coordinates. 2) The
input graph is an identity matrix for graph convolution and graph
decoder. 3) The output of the last layer is the refined radii of
256 × 1. 4) The R loss is added to the loss function. In Im-
age2Sphere, the initial sphere prediction uses a batch size of 24,
and the refinement network uses a batch size of 1. The learn-
ing rate is 1e−4. In the topology prediction network (Fig. 15),
we group 8 neighbor spheres from sparse spheres and 64 neigh-
bor centers from dense centers for each sparse sphere. We only
predict the topology of sparse spheres.

5. Conclusion and Future Work

We introduce IMMAT, the first supervised method to learn
MAT from a single view image to reconstruct surface mesh. The
predicted MAT contains both geometry (spheres) and topology
(edges and faces) information, which helps us generate a com-
plex surface mesh that is manifold and watertight. Different from

Figure 12: MAT topology-guided parts segmentation results.

the skeleton points, MAT is a “complete” shape descriptor that
can be directly used to reconstruct the surface.

Compared with the state-of-the-art methods, meshes generated
by IMMAT exhibit superior visual quality and have more accu-
rate local thickness information. All the results show that pre-
dicting the MAT inside the shape to recover surface mesh is wor-
thy of further exploration. It has no topological constraints and
can generate complex shapes. With the help of predicted MAT,
we can easily segment the parts of the reconstructed mesh with-
out any supervision, which other representations may not accom-
plish. There are two research directions worth exploring in the
future: exploring the applications of MAT in non-rigid shape re-
construction from single view images, and self-supervised learn-
ing of MAT by differentiable rendering.
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