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Abstract
Sparse localized decomposition is a useful technique to extract meaningful deformation components out of a
training set of mesh data. However, existing methods cannot capture large rotational motion in the given mesh
dataset. In this paper we present a new decomposition technique based on deformation gradients. Given a mesh
dataset, the deformation gradient field is extracted, and decomposed into two groups: rotation field and stretching
field, through polar decomposition. These two groups of deformation information are further processed through the
sparse localized decomposition into the desired components. These sparse localized components can be linearly
combined to form a meaningful deformation gradient field, and can be used to reconstruct the mesh through a
least squares optimization step. Our experiments show that the proposed method addresses the rotation problem
associated with traditional deformation decomposition techniques, making it suitable to handle not only stretched
deformations, but also articulated motions that involve large rotations.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional

Graphics and Realism—Animation

1. Introduction

With the advancement of 3D scanning, performance capture,

and geometric registration techniques, there has been a need

for computing low-dimensional control parameterization of

the captured animation sequences, so that artists can conve-

niently reuse, edit, and create new shapes or animations.

There are mainly two categories of methods to tackle this

problem. The first category is to fit a specific parameterized

model to the data, such as skeletal bone structure with linear

regression, or pre-determined blend-shapes for facial mod-

eling, etc. In this category the parametric model is typically

pre-determined and it is hard to be automatically general-

ized to arbitrary input animation. The second category relies

on dimensional reduction inspired from matrix factorization

ideas, such as Principal Component Analysis (PCA). Note

that the deformation components computed from traditional

dimensional reduction methods like PCA capture the promi-

nent deformation “trends” in the animation sequence, but are

typically of global support and lack interpretable meaning,

which makes it difficult for artist to control the shape and

† Corresponding author

create new animations. Neumann et al. [NVW∗13] proposed

a method to compute sparse localized deformation compo-
nents (SPLOCS). Their computed components are of local

support and sparse (with zero values outside the local sup-

port regions), thus capture the prominent "semantic" defor-

mation, and make it easier for the artists to intuitively recre-

ate new shapes by manipulating these local handles.

Figure 1: An animation of Humanoid walking up the stairs.

There is one fundamental difficulty associated with the

above mentioned dimensional reduction techniques, includ-

ing Neumann et al.’s SPLOCS method [NVW∗13]: they can-

not handle large rotations in their components. This is due to

the fact that they are representing the displacement fields as

a linear combination of components, where each component
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is in essense a pre-determined displacement field. However,

it is well known that only deformations with small rotations

can be approximated using linear combination of compo-

nents, while large rotations cannot (see Appendix A). Fig-

ure 1 shows an example animation of Humanoid walking

up the stairs. In this sequence, there are not only transla-

tions of its body, but also rotations of its limbs. Section 4.4

shows the problematic effects of the components generated

by SPLOCS.

In this paper, we present a new method to compute the

sparse localized decomposition of deformation gradients,

given some example animation meshes. We decompose the

deformation gradients into two groups: rotation and stretch-

ing, via polar decomposition. The rotation matrices are

mapped to its logarithm space and represented in a vector-

form. Together with the vector-form of the stretching matri-

ces, we can perform SPLOCS on these vector fields. The

linear combination of these decomposed components can

be used to reconstruct a deformation gradient field, which

can be further converted to a 3D animated mesh. These

automatically-computed components represent the spatially-

localized, semantically-meaningful, and user-friendly con-

trol handles for artists to easily create new shapes and an-

imations from the "styles" given in the example meshes.

It overcomes the difficulty of rotational artifacts associated

with traditional dimension reduction approaches including

the original SPLOCS, while preserving most of its advan-

tages, such as superb localized control and biomechanically

meaningful decomposition (for some captured real human

datasets).

2. Related Work

2.1. Skeletal and Facial Animation Fitting

Given some example animation meshes, researchers have

been looking into the problem of fitting some hierarchical

skeletal models [MG03], based on linear blend skinning or

its extensions [LCF00] [KJP02]. Weber et al. [WSLG07]

presented a skeletal animation system that can both pre-

serve the local details of the original shape (e.g. wrinkles)

and also capture the characteristic shape (e.g. muscle bulge)

given some examples of animated meshes. The arbitrarily

given animated meshes can be also automatically converted

to a skeletal model, with corresponding motion parame-

ters and skinning weights, as shown in de Aguiar et al.’s

method [dATTS08]. It was later extended to capture body

shape variations [HTRS10]. In addition, methods based on

other examples [KM04] [HZY∗11] were proposed by re-

searchers as well.

Another type of methods is to fit unorganized (non-

hierarchical and un-ordered) collections of bone transfor-

mations and their weights to the given animation mesh

sequence [JT05]. The bone transformation can be either

rigid [LD12] or flexible [KSO10]. The difference between

this type of methods with the sparse localized decomposi-

tion [NVW∗13] is that their sparsity is pre-fixed, e.g. to be

4 bones per vertex, instead of determined from the given

dataset.

For facial animation, researchers have proposed methods

to interactively posing 3D facial expressions, based on pri-

ors from a large set of expression data [LCXS10]. Li et

al. [LWP10] proposed an automatic approach to customize

the blendshape model for fitting the given example poses of

character dataset. Tena et al. [TlTM11] presented a linear

facial modeling approach using region-based collections of

PCA sub-models, which are independently trained in each

region but share boundaries. A hybrid method based on

WPSD [RLN06] was proposed by Bickel et al. [BLB∗08] for

real-time animation of highly-detailed facial expressions. It

allowed both large-scale deformations and fine-scale wrin-

kles to be edited intuitively.

2.2. Dimension Reduction and Sparse Decomposition

Dimension reduction, such as Principal Component

Analysis (PCA) or Independent Component Analysis

(ICA) [HKO01], has been applied to the field of Computer

Graphics and Animation, for learning a low-dimensional

sapce from example poses, shapes, or motions. It allows

the artists to easily control the model through the reduced

space, and has been used for synthesizing new motions out

of examples [LWH∗12], and physically-based animation

of virtual characters [TR12]. For shape deformations,

appropriate deformation subspaces can be learned from a set

of example shapes, and new deformations can be generated

on-the-fly by manipulating a few control points. Feng

et al. [FKY08] proposed a kernel Canonical Correlation

Analysis (CCA) with Poisson-based technique for such

deformation control. For animating the geometry of human

body, Anguelov et al. [ASK∗05] proposed to learn a pose

deformation model and a body shape variation model,

separately, through linear regression from the training set.

Hasler et al. [HSS∗10] combined the descriptions of human

body pose and shape into a unified statistical model.

The dimensional reduction techniques mentioned above

typically produce the deformation components that are of

global support, i.e. each component will have non-zero val-

ues for all vertices (or triangles). This makes it difficult

for artists to intuitively design a new shape or pose since

each component is not spatially localized. Some alterna-

tives, such as Sparce PCA [ZHT06, Mac09] introduces L1

norm into the formulation as a sparsity regularization, but are

mainly used for medical imaging applications. Neumann et

al. [NVW∗13] proposed a sparse localized decomposition of

deformation components, which shows better performance

than ICA in terms of localized control. However, a limita-

tion is that they cannot handle large rotations in the anima-

tion sequences. In this paper we propose an extension of it

based on deformation gradients to address this problem.
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It is only in recent years that sparse modeling was in-

troduced into the field of computer graphics. Pokrass et

al. [PBB∗13] used sparse coding to compute the intrin-

sic non-rigid correspondence between two shapes. Wang et

al. [WYL∗14] presented an L1-analysis compressed sensing

approach for denoising meshes while recovering their sharp

features, based on the observation that sharp features are typ-

ically sparse in geometry.

2.3. Deformation Gradients for Mesh Animation

Deformation gradient is a fundamental concept in contin-

uum mechanics for studying the deformation of solids. Sum-

ner and Popović [SP04] extended it to triangle meshes and

applied it for handling deformation transfer from one an-

imation sequence to a target shape. Later on Sumner et

al. [SZGP05] applied deformation gradients to compute

meaningful mesh deformations from given example meshes.

Der et al. [DSP06] extended the usage of deformation gradi-

ent, and proposed to learn a reduced deformable model from

a given set of example shapes, based on their near-rigid de-

formations [JT05]. The idea of our paper is similar to Sum-

mer et al. and Der et al.’s works [SZGP05] [DSP06] in the

sense that we use the blending of feature vectors computed

from deformation gradients. The main difference is that we

automatically compute a sparse localized decomposition of

these feature vectors from example meshes, so that each in-

dividual component of feature vectors will have a spatially-

localized meaning, making it easier for the artists to control

and design new shapes and animations.

3. The Method

In our method, we use deformation gradients to represent

deformations of the mesh sequence and decompose them to

produce the deformation components that are sparse and lo-

calized. In the following parts, basic concepts of deformation

gradient are introduced in Section 3.1 firstly; representation

of deformation gradients in our algorithms is described in

Section 3.2; we show the decomposition method based on

SPLOCS [NVW∗13] in Section 3.3 and give the final algo-

rithms in Section 3.4.

3.1. Deformation Gradient

Suppose a solidM is deformed toM′. Every point x ∈M
is mapped to its image x′ = f(x) ∈ M′. The deformation

gradient is defined as the second-order tensor J = ∂f
∂x , so that

the infinitesimal vectors before and after deformation can be

related by: dx′ = Jdx.

Sumner and Popović [SP04] extended the usage of de-

formation gradients to triangle meshes. For a triangle T =
{v0,v1,v2} and its deformed version T ′ = {v′0,v

′
1,v

′
2}, we

can represent their edge vectors using these two 3×2 matri-

ces:

V = [v1−v0,v2−v0], (1)

V′ = [v′1−v′0,v
′
2−v′0]. (2)

They are related by the deformation gradient J:

V′ = JV. (3)

With QR decomposition of V matrix:

V = Q
[R

0
]
= [Q2Q1 ]

[R
0
]
= Q2R, (4)

where R is a 2×2 upper-triangular matrix, and Q is a 3×3

orthogonal matrix. Q2 and Q1 are the 3× 2 and 3× 1 sub-

matrices of Q, respectively. Then the deformation gradient J
with minimum norm [Sum05] is given by:

J = V′R−1Q�
2 . (5)

To reconstruct a mesh from a given field of deformation

gradients J j defined on each triangle j, we can try to mini-

mize the following energy:

E = ∑
j
||V′

jR
−1
j Q�

2, j−J j||2F , (6)

where || · ||F is the Frobenius norm of a matrix, V′
j, R j, and

Q2, j are the corresponding V′, R, and Q2 matrices for the

reconstructed triangle j, respectively. Since the deformation

gradient is translation-invariant, the solution of the above en-

ergy minimization is only unique up to a translation. We can

fix a vertex, e.g. by setting v′0 = v0 to remove such ambi-

guity. Then the above energy minimization is simply a least

squares problem and can be solved by a linear system.

3.2. Decomposition of Deformation Gradients

The deformation gradient J can be decomposed as a combi-

nation of rotation and stretching through polar decomposi-

tion [SD92]:

J = UP, (7)

where U is a 3×3 rotation matrix, and P is a 3×3 symmet-

ric matrix representing the stretching along three orthogonal

directions.

Rotation: The rotation matrix U ∈ SO(3) can be mapped to

its counterpart Ũ ∈ so(3) via the logarithm map:

Ũ = logU = u1e1 +u2e2 +u3e3, (8)

where:

e1 =

⎡
⎣

0 1 0

−1 0 0

0 0 0

⎤
⎦ ,e2 =

⎡
⎣

0 0 1

0 0 0

−1 0 0

⎤
⎦ ,e3 =

⎡
⎣

0 0 0

0 0 1

0 −1 0

⎤
⎦ ,

(9)

and u1,u2,u3 ∈ R. If we denote the vector:

u = [u1,u2,u3]
�, (10)
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Figure 2: The algorithmic framework to decompose the sparse localized components of deformation gradients.

then its direction u/||u|| corresponds to the axis of rotation

and its magnitude ||u|| is the rotation angle. Thus if u =�0,

then the corresponding rotation matrix U = I (3×3 identity

matrix), meaning there is no rotation.

Stretching: The stretching matrix P is symmetric, and can

be represented as:

P =

⎡
⎣

a d e
d b f
e f c

⎤
⎦ , (11)

where a,b,c,d,e, f ∈ R. We denote the set of all 3×3 sym-

metric matrices as S(3), and define the mapping g : S(3)→
R

6 as:

g(P) = [a,b,c,d,e, f ]�. (12)

We denote the vector:

p = g(P− I) = [a−1,b−1,c−1,d,e, f ]�. (13)

When p = �0, the corresponding stretching matrix P = I,

meaning there is no stretching.

The vector representations u and p have the same im-

portant characteristic: the smaller their magnitudes ||u|| and

||p|| are, the smaller are the corresponding rotation and

stretching, respectively, and vice versa. This property is not

seen in either the rotation matrices U (since they are always

orthogonal and have unit determinants) or the deformation

gradients J. Thus in the following sparse localized decom-

position algorithm, we use their vector representations u and

p to perform the decomposition.

3.3. Sparse Localized Decomposition

Neumann et al. [NVW∗13] proposed a sparse and local-

ized deformation decomposition for mesh sequences using

a sparse matrix decomposition method. In this paper, we

adopt their method to perform our decomposition of defor-

mation gradients. To make the paper self-contained, in this

sub-section we introduce the basic idea of their decomposi-

tion method, along with our improvement inside. More de-

tailed derivations can be found in their paper [NVW∗13].

Suppose we are given a mesh animation with F frames

(over time) and N triangles in each mesh, with consistent

mesh connectivity over frames. We select the first frame as a

reference frame, and compute the deformation gradients of

all other frames w.r.t. this reference frame, and obtain their

u and p vector representations.

We define a unified vector q as:

q = [u�,p�]�. (14)

The matrix that we are going to decompose contains the vec-

tor representations q of all triangles in all frames:

X =

⎡
⎢⎢⎢⎢⎣

(q(1)
1 )� (q(1)

2 )� . . . (q(1)
N )�

(q(2)
1 )� (q(2)

2 )� . . . (q(2)
N )�

...
...

. . .
...

(q(F)
1 )� (q(F)

2 )� . . . (q(F)
N )�

⎤
⎥⎥⎥⎥⎦
, (15)

where q( j)
i represents the q-vector of triangle i at frame j

(i = 1 . . .N, j = 1 . . .F).

The problem is to factorize X into K components C and

their associated weights W:

X = WC, (16)

where C is a matrix with each row representing a compo-

nent, W is a matrix with each row representing the weights

(corresponding to various components in C) for each frame.

Matrix C has K×N blocks of row vectors c(k)i (i = 1 . . .N,

k = 1 . . .K). The dimension of each row vector c(k)i is 9: 3

for vector u and 6 for vector p.

Neumann et al. [NVW∗13] formulated the matrix factor-

ization problem as a joint regularized minimization problem:

argmin
W,C

||X−WC||2F +Ω(C), (17)

subject to the following constraints:

max(|W:,k|) = 1, ∀k,
or max(W:,k) = 1, W ≥ 0, ∀k,

(18)
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Figure 3: The algorithmic framework to reconstruct a mesh from the linear combination of components.

where W:,k is the k-th column of W, and Ω(C) is a sparsity

regularizer:

Ω(C) =
K

∑
k=1

N

∑
i=1

Λki||c(k)i ||2. (19)

Here || · ||2 denotes the unsquared length of a row vector,

and Λki are the spatially-varying regularization parameters

that are used to enforce local support of the components.

Specifically, the non-zero items of the k-th row of C
(which corresponds to component k) are centered around a

set of triangles Jk. This is based on the geodesic distance dki
from each triangle i to Jk, computed in the reference mesh.

Λki is defined to linearly map the range of geodesic distances

[dmin,dmax] to [0,1], while clamping the values to either 0 or

1 when they are out of this range.

To compute the geodesic distance, we represent each tri-

angle using their centroids, and subdivide each triangle into

three sub-triangles by connecting each vertex to the cen-

troid. Thus the triangle-to-triangle geodesic distance be-

comes the centroid-to-centroid geodesic distance in the sub-

divided mesh. Then we can use Crane et al.’s heat flow

method [CWW13] to compute the geodesic distances.

The optimization of Eq. (17) follows the iterations inter-

leaving the three steps: updating the support map of compo-

nents based on geodesic distances; solving for best weights

W while fixing the components C; optimizing for sparse

components C with given fixed W using the Alternating Di-

rection Method of Multipliers (ADMM) [BPC∗10].

3.4. Decomposition and Reconstruction Algorithms

Given an animated mesh sequence and a user-specified num-

ber of output components, the detailed algorithm to compute

our sparse localized components is given in Algorithm 1 and

shown in Figure 2. Note that step 1 and step 9 in the algo-

rithm are modified from SPLOCS while the others are new.

After the components are computed, users can use weights

Algorithm 1: Decomposition of Components

Input: An animation mesh sequence with frame indices

0, . . . ,F
Input: K, the number of output components

Output: The decomposed components C
1 Compute the geodesic distances on the reference mesh;

2 for each frame with index in {1, . . . ,F} do
3 for each triangle in the current frame do
4 Compute the deformation gradient w.r.t. the

same triangle in frame #0, using Eq. (5);

5 Compute polar decomposition, i.e. Eq. (7);

6 Convert rotation to vector form with Eq. (10);

7 Convert stretching to vector form with Eq. (13);

8 Compose the unified vector q with Eq. (14);

9 Run SPLOCS algorithm [NVW∗13] on X, and obtain

the K decomposed components C.

to linearly combine the components and reconstruct a mesh

out of the composed deformation gradients. The detailed al-

gorithm to reconstruct such a mesh is given in Algorithm 2

and shown in Figure 3.

4. Results

The implementation of SPLOCS algorithm was provided by

Neumann et al. [NVW∗13] on their website. The implemen-

tation of the rest of decomposition and reconstruction algo-

rithms are written in Microsoft Visual C++ 2010. The ex-

periments are run on a desktop computer with Intel(R) Xeon

E5645 CPU (2.40GHz) and 34GB DDR3 RAM.

To evaluate our method, experiments are conducted by us-

ing different models (Face, Horse, Arm, Humanoid). Some

results are compared with SPLOCS to show our advantage

in Section 4.2 and Section 4.4. We also show the potential

applications on shape editing and analysis in Section 4.1,

Section 4.2 and Section 4.4. Table 1 gives the statistics of
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Animation Datasets Parameters Decomposition Time (s) - All Frames Reconstruction / frame (s)

Datasets N F K dmin dmax Geod. DG PD LOG SPLOCS / #Iter Total EXP Rec. Total

Face 46,853 384 50 0.1 0.7 8.419 59.163 85.546 245.081 16,812.205/50 17,211.203 0.066 0.135 0.201

Horse 16,843 49 100 0.1 0.5 1.364 2.679 3.701 11.284 2,020.804/100 2,039.867 0.026 0.055 0.081

Arm 10,164 186 100 1 400 0.805 6.158 8.634 25.928 1,059.976/30 1,101.588 0.014 0.032 0.046

Humanoid 15,281 154 100 0.1 0.7 1.221 7.616 10.239 31.896 1,307.590/30 1,358.693 0.020 0.053 0.073

Table 1: Statistics of the datasets, parameters, and running time. "Geod.": computing the geodesic distance on the reference
mesh; "DG": computing deformation gradients for all triangles; "PD": computing the polar decomposition for all deformation
gradients; "LOG": computing the matrix logarithm; "SPLOCS / #Iter": the timing of running SPLOCS algorithm with the
number of iterations; "EXP": computing the matrix exponential; "Rec.": reconstructing the mesh from deformation gradients.
All timing information are shown in seconds.

Algorithm 2: Reconstruction of a Shape

Input: The decomposed components C
Input: The weights w1, . . . ,wK associated with

components

Output: The reconstructed triangle mesh

1 for each triangle i in the mesh do
2 q =�0;

3 for each component with index k ∈ {1, . . . ,K} do
4 q = q+wk · c(k)i ;

5 Convert the u-part to rotation matrix U by matrix

exponential;

6 Convert the p-part to stretching matrix P;

7 Get the deformation gradient by J = UP;

8 Reconstruct the mesh from deformation gradients by

minimizing the energy in Eq. (6).

the datasets presented in this paper and the running time

of each individual step. Note that the steps of computing

the geodesic distance (column of "Geod." in Table 1) and

SPLOCS optimization are both implemented in Python by

Neumann et al., which are less efficient in performance. The

other steps are implemented in C++. Thus we can notice that

the SPLOCS optimization is dominating the computational

time throughout the decomposition of components. The re-

construction times shown in the table are for reconstructing

each frame in the datasets.

In the following figures, we use the color-coding from

grey (zero) to blue (max) to show the magnitude of q vec-

tors in each computed component. Please refer to the accom-

panied video for more detailed visual comparison between

SPLOCS and our method.

4.1. Face

Figure 5 shows an example of one component computed

from the Face animation dataset [ZSCS04], which roughly

corresponds to the left eye region. Changing the weight

of this component generates interesting expressions of eye-

openning (w = 3) and eye-closing (w =−3). By combining

Figure 4: Combining three components to produce a new
facial expression.

Figure 5: One component of the Face animation data, mul-
tiplied with different weights (w = 3 and w =−3).

different components of the Face dataset, we can generate

arbitrary interesting facial expressions, as shown in Figure 4.

4.2. Horse

Figure 6: First 12 components computed from Horse ani-
mation sequence with our method.
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Figure 8: Combining different components to produce new shapes of Horse.

Figure 7: Comparison between the corresponding compo-
nents of SPLOCS [NVW∗13] and our method.

Figure 9: More new shapes of Horse by combining different
components.

In Figure 6, we show the first 12 sparse localized compo-

nents computed from Horse animation sequence (horse gal-

loping) with our method. These components demonstrate the

distribution of the localized bases and most have an intuitive

meaning. We compare the corresponding components pro-

duced by SPLOCS and our method. As can be seen from

Figure 7, the components computed by SPLOCS tend to

produce stretching, shrinking, enlarging effects, and cannot

really capture the rotational motion of the horse legs and

head. In contrast, our method can faithfully capture these

rotational motions from the given animation data. Using

the computed sparse localized components, we can combine

them to generate new poses of the horse, as shown in Fig-

ure 8 and Figure 9.

4.3. Arm

The Arm dataset captured by Neumann et al. [NVH∗13] pro-

vides not only the rotation of arm, but also the deformation

of muscles. We select a subset of the captured dataset con-

sisting of two parts: the first part has 79 frames showing the

arm motion without holding any weight at hand; the second

part has 107 frames with the hand holding 14kg weight.

As shown in Figure 10, the first component computed

from our method represents the rotational motion of the

lower arm, while the second component captures the mus-

cle deformation of the upper arm and chest. It can be seen

from the curve of weights corresponding to this second com-

ponent that it captures the muscles’s activation without and

with the hand holding external weights.

4.4. Humanoid

The motion of Humanoid walking up the stairs has both

global translation and joint rotations. If we directly compute

its components with SPLOCS, the components will have

translational artifacts (top row of Figure 11). If we delib-

erately remove translation from the original motion before

computing with SPLOCS, the components still have rota-

tional artifacts (middle row of Figure 11). In contrast, the

components computed from our method do not have these

artifacts (bottom row of Figure 11).

We split the Humanoid animation sequence into two sets

- training set and testing set. We select every one out of ten
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Figure 10: The first two components of the Arm dataset.

frames from the original animation, into the training set. The

remaining 90% of the frames are used as testing set. The

training set is used to compute the components, using either

SPLOCS or our method. We use the components to recon-

struct every frame in the testing set, and compare their recon-

struction errors. Figure 12 shows the visual comparison of

reconstructed results between SPLOCS and our components.

It is easy to notice the rotational artifacts in the frames re-

constructed by SPLOCS components, while our results look

much better without these artifacts.

We quantitatively compare the reconstruction errors using

two metrics: (1) Erms metric (root mean squared error multi-

plied by 1000) used by Kavan et al. [KSO10] and Neumann

et al. [NVW∗13], which characterizes the average geometric

error per vertex coordinate; (2) Spatiotemporal Edge Differ-

ence (STED) metric suggested by Váša and Skala [VS11]

for computing the "perceptual" difference between two an-

imation sequences. Figure 13 shows these comparison re-

sults between SPLOCS and our method. For Erms metric,

our method performs better when the number of components

K is smaller than 20; as K continues to increase, SPLOCS

can give smaller Erms errors. However, when using the "per-

ceptual" STED metric, it shows that SPLOCS gives very

poor results. It is interesting to note that the STED error of

SPLOCS keeps raising with the increase of K. This is be-

cause the more components they use, the more wiggling lo-

cal shapes it will generate (due to the rotational artifacts of

its components), even though its Erms is reduced.

5. Limitation and Future Work

It should be noted that the number of triangles in a mesh is

typically larger than the number of vertices, and the degree

of freedom for each feature vector (i.e. 9) is also larger than

that of the displacement vector (i.e. 3). Thus the SPLOCS

optimization used in our method is several times slower than

its original version [NVW∗13]. We would like to explore

more efficient GPU-based parallel implementation, in order

to make it more accessible for interactively obtaining local

activation bases. On the other hand, the less reconstruction

time per frame shown in Table 1 indicates the probability to

develop iterative applications like pose editing system. By

adopting the technique similar to [SZGP05], we can imple-

ment an Ik-like interactive interface to provide users a more

intuitive and convenient way to control the bases produced

by our method.

As mentioned in Section 4.4, our method is translation-

invariant. However, we cannot handle the models with global

rotation very well, e.g. a horse walking around in circles.

The deformation gradients used in our method cannot iden-

tify the local deformations (e.g. leg-lifting) and the global

deformations (e.g. rotation of the horse) in this case. The

components computed from these models are with artifacts.

As the animation sequences with global rotation are not un-

usual, it is important for us to handle this issue in the future.
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Appendix A: Representing Rotation with Components

Without loss of generality, let us consider a modelM being

rotated by angle θ around axis a. The displacement field is

simply:

d(x) = (R(θ,a)− I)x, (20)

where R(θ,a) is the rotation matrix corresponding to rota-

tion angle θ and axis a, and x is an arbitrary point onM.

From the Rodrigues’ rotation formula:

R(θ,a) = I+ sinθ[a]×+(1− cosθ)[a]2×, (21)

where [a]× is the “cross-product matrix” for a. Thus we can

rewrite the displacement d(x) as:

d(x) = (sinθ[a]×+(1− cosθ)[a]2×)x. (22)

When θ is close to zero, we can expand sinθ and cosθ using

Taylor series and omit O(θ2) terms. Thus it gives us:

d(x)≈ θ[a]×x, θ→ 0. (23)

That is to say, when θ is close to zero, we can use the de-

formation component c(x) = [a]×x with its weight θ to ap-

proximate the displacement: d(x) ≈ θc(x). However, when

θ is large enough, such approximation is no longer accurate.
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