
Topology-Change-Aware Volumetric Fusion for
Dynamic Scene Reconstruction
—Supplementary Material—

Chao Li and Xiaohu Guo

Department of Computer Science,
The University of Texas at Dallas
{Chao.Li2, xguo}@utdallas.edu

This supplementary file consists of:

– Details of optimization method
– Details of data structure design towards real-time performance

1 Details of Optimization Method

For the ease of discussion, we provide all notations of the math symbols of this
paper in Table 1.

Alternating optimization: solve three groups of unknowns by fixing the other
two groups and solve one group.
Step 1 [Fix {R>i } and {lij}, solve {ti}] Set

∂Etotal(ti)

∂ti
= 0 (1)

Solve A>WAx = −A>Wb with Preconditioned Conjugate Gradient (PCG),
where x is the stacked vector of all ti and W is the diagonal matrix of term
weights.

A =

· · ·
· · · αi(R

>ny)> · · · αj(R
>ny)> · · ·

· · ·
· · · αiR · · · αjR · · ·

· · ·
· · · lijI · · · −lijI · · ·

· · ·

(2)

b =

...
n>y (T (x)− y)

...
T (f)− y

...
lij(Ri − I)(gi − gj)

...

(3)

2 C. Li and X. Guo

Table 1. Definitions of the math symbols used in this paper.

Cn:color image of the nth frame Vn:TSDF grid updated from the nth frame

Dn:depth image of the nth frame Gn:EDG grid updated from the nth frame

eij :edge of EDG connecting the ith and jth nodes lij :line process parameter between the ith and jth nodes

{cV}:the cells of TSDF volume {cG}:the cells of EDG

{gV}:the grid-points (voxels) of TSDF volume {gG}:the nodes of EDG

{R, t}:global rotation and translation from the canonical to current frame

{Ri, ti}:local rotation and displacement of the ith node from the canonical to current frame

Mn:surface mesh defined in the canonical space and reconstructed from the images of first n frames

Mn:surface mesh of Mn being warped to the space of the nth frame

Step 2 [Fix {ti} and {lij}, solve {R>i }] For each R>i , it is a least square

rigid estimation, which has closed form solution. Therefore, all {R>i } could be
solved in parallel.

First, compute the cross-covariance matrix A for all gi corresponding terms:

A = XLY > (4)

X =

 · · ·
gi − gj

· · ·

 (5)

L =

. . .

lij
. . .

 (6)

Y =

 · · ·
[gi + ti − (gj + tj)]

>

· · ·

 (7)

Secondly, by solving the Singular Value Decomposition (SVD) of matrix A,
the optimal value of ∆R∗i is:

∆R∗i = V

1
1
det(V U>)

U>, (8)

where
A = UΣV >, (9)

Step 3 [Fix {R>i } and {ti}, solve {lij}] By setting

∂Ereg(lij)

∂lij
= 0 (10)

, we have

lij = (
µ

µ+ ‖Ri(gi − gj)− [gi + ti − (gj + tj)]‖2
)2 (11)

.
Initialization: R>i ← I, ti ← t′i(optimal ti solved from previous frame), lij ←
1.0

Supplementary Material 3

2 Details of Data Structure Design Towards Real-Time
Performance

There are several requirements to meet when re-designing the data structure of
our topological-change-aware fusion framework towards real-time performance.

1. Efficient cell duplicate and merge operation.
2. Fast EDG/volume cell to node/voxel mapping and reverse mapping when

duplicate cell exists.

For the second requirement, in details, fast vertex/voxel to EDG cell mapping
and EDG cell to node mapping is required to compute the deformation of each
vertex/voxel by trilinear interpolation based on the estimated deformation field.
Fast volume cell to voxel mapping is required to do marching cubes to extract
surface mesh.

2.1 Embedded Deformation Graph (EDG)

To meet all these requirement, for EDG, we add a node bucket as an intermediate
level shown in Figure 1. This node bucket has a fixed size which is the max
number of node copies we allow in our system. All EDG node buckets are stored
in a flat vector. Given a 1D index i of EDG node, if the pointer to a node bucket
in this indexed entry is null, it means this node is inactive. If the pointer is not
null, it means at least one copy of this node is active. The index of a node copy
could be computed as 8 ∗ i+ offset. The following is the c++ code for our new
data structure:

Listing 1.1. C++ code using listings

1 Struct Node {
2 // l o c a l t r a n s l a t i o n
3 Vector3 f t r a n s l a t e ;
4 // l o c a l r o t a t i o n
5 Matr ix3f r o t a t e ;
6 Node∗ ne ighbors ;
7 // index1d : 1D index o f the node ;
8 // b u c k e t o f f s e t : o f f s e t o f in NodeBucket .
9 Int2 index { index1d , b u c k e t o f f s e t }

10 // o f f s e t s o f 8 nodes shar ing the same
11 // c e l l with t h i s node as the
12 // l e f t −f ront−bottom one
13 array<int ,8> c e l l o f f s e t s ;
14 // Real or v i r t u a l node
15 bool r ea lOrV i r tua l ;
16 bool activeOrNot ;
17 // s e q u e n t i a l id in the graph
18 // only used f o r d u p l i c a t e and merge
19 i n t parentID ;
20 } ;
21 St ruct NodeBucket {

4 C. Li and X. Guo

22 Node∗ nodeCopies [8] ;
23 } ;
24 vector<NodeBucket ∗> DeformGraph ;

In this way, each cell just needs to maintain the left-front-bottom node, by
visiting “cell offsets” and mathematically computing the “index1d” of all 8 nodes
based on regular grid, we could get the mapping from the cell to all its contained
nodes. The combination of “index1d” and “cell offset” indicates the location of
a node in the data structure.

After initialization, when there is no duplicate cell, each NodeBucket only
contains one node copy when this node is active.

Fig. 1. Illustration of re-designed EDG data structure for topological changes.

Figure 2 and Figure 3 shows the steps to duplicate and merge EDG cells.
Several strategies are used to improve the performance. First, we only consider
cells containing cutting edges, which is a small portion of the entire set of active
EDG nodes. In this step, new vector of NodeBucket will be created which only
contains nodes from cutting cells. Secondly, in the cell duplicate step, we create
node copies according to the number of connected components in each cutting
node cell in EDG. Shown in Figure 3 “Cell Duplicate”, the light blue node is
duplicate into 4 nodes: one real node (Orange) and one virtual node (Purple)
from the top cell; one real node (Green) and one virtual node (Red) from the
bottom cell. Their parentIDs will be recorded, which are the offsets of the nodes
that they inherit from. In the case shown in Figure 3, because there is already
one node copy existing in the original EDG NodeBucket vector, the offset of
new node copies starting from 1. (Orange) node and (purple) node are all real
nodes and inherit from node 0, so their parentID is 0. (Green) node and (red)
node are all virtual nodes and inherit from node 0, but they will not be merged
to the parent node 0, so their parentID is 3, which is the offset of the (Green)
node. Thirdly, in the cell merging step, we could just use UnionFind to merge all
node copies of each NodeBucket individually based on their parentIDs (shown
in Figure 3 “Cell Merging”).

Supplementary Material 5

Fig. 2. Steps to duplicate EDG cells and merge them.

Fig. 3. Illustration of steps to duplicate EDG cells and merge them by our re-designed
data structure.

2.2 TSDF Volume

We use a similar way to represent our new TSDF volume data structure. The
following is the c++ code for our new data structure:

Listing 1.2. C++ code using listings

1 Struct Voxel {
2 f l o a t depth ;
3 f l o a t weight ;
4 Vector3 i RGB; // i f needed
5 Vector3 f warped pos ;
6 Int4 index { voxe l index1d , v o x e l b u c k e t o f f s e t ,
7 node index1d , n o d e b u c k e t o f f s e t } ;
8 array<int ,8> v o x e l o f f s e t s ;
9 bool r ea lOrV i r tua l ;

10 // s e q u e n t i a l id in the graph
11 // only used f o r d u p l i c a t e and merge
12 i n t parentID ;
13 } ;
14 St ruct VoxelBucket {
15 Voxel∗ voxe lCopies [8] ;
16 } ;

6 C. Li and X. Guo

17 vector<VoxelBucket ∗> TSDFVolume ;

When we doing cell duplicate and merging, the belonged EDG cell of each
voxel could be recorded. When we doing marching cubes based mesh extrac-
tion, fast vertex/voxel to EDG cell mapping could be passed from voxel to ver-
tex by recording the id of the left-front-bottom node in belonged EDG cell in
“Voxel.index.node index1d” and “Voxel.index.node bucket offset”. Fast volume
cell to voxel mapping is maintained in as similar way as the EDG cell to node
mapping by using the property “Voxel.voxel offsets”.

