
Procedia Computer Science 32 (2014) 1–17

Procedia
Computer
Science

Anisotropic Surface Meshing with Conformal Embedding

Zichun Zhong*a, Liang Shuai*a, Miao Jinb, Xiaohu Guo†a

aDepartment of Computer Science, University of Texas at Dallas, USA
bCenter for Advanced Computer Studies, University of Louisiana at Lafayette, USA

Abstract
This paper introduces a parameterization-based approach for anisotropic surface meshing. Given an input surface equipped with an
arbitrary Riemannian metric, this method generates a metric-adapted mesh with user-specified number of vertices. In the proposed
method, the edge length of the input surface is directly adjusted according to the given Riemannian metric at first. Then the
adjusted surface is conformally embedded into a parametric 2D domain and a weighted Centroidal Voronoi Tessellation and its
dual Delaunay triangulation are computed on the parametric domain. Finally the generated Delaunay triangulation can be mapped
from the parametric domain to the original space, and the triangulation exhibits the desired anisotropic property. We compute the
high-quality remeshing results for surfaces with different types of topologies and compare our method with several state-of-the-art
approaches in anisotropic surface meshing by using the standard measurement criteria.

c© 2014 Published by Elsevier Ltd.

Keywords: Anisotropic Surface Meshing, Anisotropic Centroidal Voronoi Tessellation, Conformal Embedding

1. Introduction

Nowadays, anisotropic meshes are important for improving the accuracy of the numerical simulations as well as
better approximating the shapes [1, 2]. The anisotropic meshes are designed as elongated mesh elements with desired
orientations and aspect ratios as user specified. These types of meshes are used in movies, animations, computer-
aided design (CAD), computer-aided manufacturing (CAM), architecture design, and scientific visualization, etc.
They can provide more accurate approximations for the surface of the original object than the correspondent isotropic
counterpart, in regions where the magnitudes of two principal curvatures are different. To accurately simulate the
behavior of the physical phenomena, such as the flow of water, air across the earth, the deformation and wrinkles of
clothes, the anisotropic meshes are preferred. In this paper, our goal is to generate the anisotropic triangle mesh with
stretching ratios and directions conforming to the user-specified metric tensor field.

One typical way to generate the anisotropic triangular mesh is to compute Anisotropic Centroidal Voronoi Tessel-
lation (ACVT) [3, 4] and its dual mesh. This method needs to compute an Anisotropic Voronoi Diagram (AVD) in
the ambient 3D space and its intersection of a surface, with sites constrained on the surface. This technique may lead
to disconnected Voronoi cells without the topology control, if two regions are very close in 3D space but are far away
along the surface. Especially with large anisotropic stretching ratios, the computed constrained ACVT on surface
tends to be incorrect. It is natural to use the geodesic distance to compute the constrained ACVT, but the computation
of the geodesic distance is difficult to be accurate and efficient.

1*Joint first authors: the first two authors contributed equally to this work.
2†Corresponding author.
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To overcome the above limitations, we propose a new method for anisotropic meshing of surfaces endowed with
Riemannian metrics. Theoretically, the best way for anisotropic mesh generation is to compute a perfect isometric em-
bedding of the Riemannian surface into a high-dimensional Euclidean space [5], where the metric becomes uniformly
identity, and then directly compute Centroidal Voronoi Tessellation (CVT) on it. However, it is very challenging to
find such a high-dimensional isometric embedding – so far we have not seen any method available to compute it. So
we take an alternative approach: instead of isometrically embedding the Riemannian surface into a high-dimensional
space, we “conformally” embed the surface into a 2D parametric domain, followed by a weighted CVT computation
on such 2D parametric domain. Such conformal embedding is achieved by: (1) adjusting only the edge length of the
input surface according to the given Riemannian metric, without explicitly computing the vertex coordinates (i.e. its
embedding); (2) conformally deforming the edge length so that the surface can be embedded into a 2D parametric
domain. Here the conformal embedding tries to preserve the angle of the input surface triangles, thus it preserves
the local aspect-ratios of the input metric. Then we rely on the computation of weighted CVT on this 2D parametric
domain with a density function applied to compensate for the introduced area distortion of surface parameterization.

An advantage of this method is its efficiency since the CVT computation is performed on a 2D parametric domain,
as compared to the traditional approach of computing ACVT and its intersection with the surface in 3D space [3, 4].
Finally the dual triangulation of computed CVT is mapped back to the original domain and an anisotropic meshing
result is gained. In Sec. 5 we show the comparison with existing approaches in anisotropic surface meshing by using
the standard measurement criteria.

2. Backgrounds and Related Works

2.1. Anisotropic Metric
Anisotropy defines the distortion of the distances and angles. Consider the domain Ω ⊂ Rm, and a given point

x ∈ Ω with endowed metric M(x). The anisotropic squared length of a vector a at x can be measured by the dot
product between a and itself, using the metric M(x) as follows:

||a||2M(x) = 〈a, a〉M(x) = aT M(x)a. (1)

The metric matrix M(x) is a symmetric positive-definite (SPD) m × m matrix, which can be decomposed with
Singular Value Decomposition (SVD) into:

M(x) = R(x)T S(x)2R(x), (2)

where the diagonal matrix S(x)2 contains its ordered eigenvalues, and the orthonormal matrix R(x) contains its eigen-
vectors. If we denote Q(x) = S(x)R(x), by combining Eqs. (1) and (2), we can understand the anisotropic squared
length of vector a as the “isotropic” squared length of its transformed vector b = Q(x)a, as:

||b||2I = bT b = aT M(x)a = ||a||2M(x), (3)

where I is the identity matrix. This means the vector a is rotated by R(x) and then scaled by S(x), before measuring
its Euclidean length.

For the experiments given in this paper (Sec. 4), users start from designing a smooth scaling field S(x) and a
rotation field R(x) that is smooth in regions other than some singularities, and then compose them to Q(x) = S(x)R(x)
and M(x) = Q(x)T Q(x), which is similar to the way of Du et al. [3]. The metrics are defined on the tangent spaces of
the surface. Suppose s1 and s2 are the two diagonal items in S(x) corresponding to the two eigenvectors in the tangent
space, and s1 ≤ s2. Then we can define the stretching ratio as s2

s1
[6]. For the anisotropic meshing on 3D surfaces, we

use the following metric tensor:

M = [vmin, vmax,n]diag(s1
2, s2

2, 0)[vmin, vmax,n]T , (4)

where vmin and vmax are the directions of the principal curvatures, n is the unit surface normal. s1 and s2 are two user-
specified stretching factors along principal directions. To ensure smoothness of the input metric field, as suggested by
Alliez et al. [7], we apply Laplacian smoothing to both the stretching ratios and directions.
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2.2. Universal Covering Space and Its Mappings
Let Σ be a surface embedded in R3. Let g be the Riemannian metric of Σ induced from its Euclidean metric in

R3. Suppose u : Σ → R is a scalar function defined on Σ. Then ḡ = e2ug is also a Riemannian metric on Σ. Angles
measured by g are equal to those measured by ḡ. Therefore, we say ḡ is conformal to the original metric.

According to the Uniformization Theorem [8], any surface admits a Riemannian metric of a constant Gaussian
curvature, which is conformal to the original one. Such metric is called the uniformization metric. Specifically,
surfaces with positive Euler characteristics (i.e., χ > 0) exist spherical uniformization metric with +1 Gaussian
curvature everywhere. Surfaces with zero Euler characteristics (i.e., χ = 0) exist Euclidean uniformization metric
with 0 Gaussian curvature everywhere. Surfaces with negative Euler characteristics (i.e., χ < 0) exist hyperbolic
uniformization metric with −1 Gaussian curvature everywhere.

Figure 1: The universal covering space of a closed surface can be isometrically embedded into one of the three
canonical domains: sphere, plane, or hyperbolic space with its uniformization metric. Here, we show the embedding
of one domain based on the uniformization metric. χ is the Euler characteristic number of the surface.

A universal covering space of a surface, explained in an intuitive and informal way, is a simply connected periodic
tessellation of the surface domain. Locally, the mapping between the surface and its universal covering space is one-
to-one and continuous. Based on the uniformization metric, the universal covering space of a closed surface can be
isometrically embedded into one of the three canonical domains: the spherical domain S2 for genus zero surfaces
with positive Euler numbers, the planar domain E2 for genus one surfaces with zero Euler number, and the hyperbolic
space H2 for high genus surfaces with negative Euler numbers (see Fig. 1).

In particular, our work appears to be mainly an extension of the techniques in [9, 10] to the anisotropic setting.
Additionally, the use of conformal parameterization for anisotropic remeshing has been mentioned in [11], but it takes
topological disk as input that means any given surface has to be cut into topological disks. This is a big limitation for
parameterization process. Meanwhile, in this reference, no specific details are given to tell the reader how to solve the
anisotropic meshing by using conformal mapping. Instead of using CVT optimization method, their proposed method
cannot obtain an optimal meshing result, and there is no quality evaluation for the anisotropic meshing case.

2.3. Anisotropic Centroidal Voronoi Tessellation
Given a set of sites X = {xi|i = 0...n − 1} to sample the surface domain Ω, Centroidal Voronoi Tessellation (CVT)

is a special type of Voronoi Diagram such that each site xi coincides exactly with the centroid of its Voronoi cell.
CVT can generate regular hexagonal Voronoi cells [12], and its dual graph is a Delaunay triangulation of X with
well-shaped isotropic triangles. There are two main methods to compute CVT: one is the Lloyd relaxation [13], and
the other is a quasi-Newton energy optimization solver [14].
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In surface meshing, it is possible to use a geodesic Voronoi Diagram over the surface [15] to generalize this
definition. In order to simplify the computations, some researchers compute the Restricted Voronoi Diagram (RVD)
or Restricted Delaunay Triangulation (RDT) [16], instead of the geodesic Voronoi Diagram. In [17], a Restricted
Centroidal Voronoi Tessellation is provided, which requires all the sites to be constrained on the surface. Using the 3D
Euclidean distance as an approximation, Yan et al. [18] computed the CVT in 3D space and then intersected it with the
surface. However, this approach is not efficient. When computing CVT on a surface in 3D space, during optimization
the sites need to be projected and constrained on the input surface and the gradients are computed approximately in
the tangent plane in each iteration. An alternative approach is to compute the CVT in the 2D parametric domain of
the surface [19, 9, 10].

CVT was further generalized to the anisotropic version by Du et al. [3] using the following definition of anisotropic
Voronoi cell VorA:

VorA(xi) = {y|dy(xi, y) ≤ dy(x j, y),∀ j},

where:
dx(y, z) =

√
(z − y)T M(x)(z − y),

(5)

where the sites xi, x j, and points x, y, z are all in the domain Ω. An anisotropic Voronoi Diagram with the given
Riemannian metric needs to be constructed in each Lloyd iteration, which is a time-consuming operation. To make
the computation much faster, Valette et al. [20] proposed a discrete approximation of ACVT by clustering the vertices
of a dense pre-triangulation of the domain, at the expense of degraded mesh quality.

Lévy and Bonneel [21] extended the computation of CVT to a 6D space in order to achieve a curvature-adaptation.
The main idea of their method is to transform the anisotropic meshing on a 3D surface to an isotropic one embedded
in 6D space, which can be efficiently computed by CVT with Voronoi Parallel Linear Enumeration.

So far, there is no prior research work, which gave detailed elaboration about using parameterization-based method
to compute ACVT and its dual mesh on surfaces. In this paper, we provide such an anisotropic surface meshing
method, which avoids the construction of AVD on the surface in the intermediate iterations of energy optimization,
and it is more efficient since the computation is performed in a 2D parametric domain. Thus, our method demonstrates
better performance than previous ACVT methods as shown in Sec. 5.1.

2.4. Refinement-Based Anisotropic Delaunay Triangulation

Refinement-based anisotropic Delaunay triangulation is the anisotropic version of point insertion in Delaunay
triangulation, and has been applied to many practical applications [22, 23, 24]. Cheng et al. [25, 26, 27] applied
Delaunay refinement to anisotropic surface meshing. Boissonnat et al. [28, 29] introduced a Delaunay refinement
framework, which makes the star around each vertex xi to be consisting of the triangles that are exactly Delaunay
for the metric associated with xi. In order to “stitch” the stars of neighboring vertices, refinement algorithms add
new vertices gradually to achieve the final anisotropic meshes. Note that the CVT/ACVT-based approaches are very
different from the Delaunay refinement, as they optimize both the location and connectivity of vertices on the surface
globally.

2.5. Particle-Based Anisotropic Meshing

Another way to compute anisotropic meshing is the particle-based approaches. Bossen and Heckbert [30] defined
the distance function with the metric tensor to simulate the repulsion and attraction forces between particles. Shimada
et al. [31, 32, 33] used a bounded cubic function of the distance to physically-based model the inter-bubble forces,
and further extended it to anisotropic meshing by converting spherical bubbles to ellipsoidal ones. Both Bossen
et al. and Shimada et al.’s works require dynamic population control schemes, that is to adaptively insert or delete
particles/bubbles in certain regions. Thus if the initialization of the number of particles does not have a good estimation
to fill the domain, it will take a long time to converge. To overcome this problem, Zhong et al. [6] introduced a particle-
based anisotropic meshing approach by formulating the inter-particle energy optimization in a higher dimensional
“embedding space” [5]. Such energy optimization strategy shows very fast convergence speed, without any need for
the explicit control of particle population. But in their final step of mesh generation (i.e. to connect the particles
to form an anisotropic mesh), they still need to compute the Restricted Anisotropic Voronoi Diagram on the surface
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in 3D space, which requires a fine tessellation of the input surface and is less robust and efficient, given some high
stretching ratios of the input metric. The comparison with our approach is shown in Sec. 5.2.

3. Algorithm

3.1. Scheme

In this section, we illustrate the computational scheme of the proposed anisotropic surface meshing method based
on conformal embedding. Fig. 2 shows the partial results of each step of our algorithm, taking the Cyclide surface as
an example.

Figure 2: The partial results in each step of our anisotropic meshing with conformal embedding scheme for the Cyclide
surface.

(1) Specifying Anisotropic Metric of Input Mesh (Fig. 2 (a)): users specify a smooth metric field for the input mesh
surface, as discussed in Sec. 2.1.

(2) Adjusting Edge Length according to Input Metric (Fig. 2 (b)): given the input metric, the edge length of the
input surface mesh can be adjusted, so that its Euclidean length equals the desired anisotropic length as shown
in Eq. (3). The details are provided in Sec. 3.2.
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(3) Conformal Embedding of the Mesh with Adjusted Edge Length (Fig. 2 (c)): approximation of the angle-
preserving parameterization can be computed by conformally adjusting the edge length, e.g. the discrete surface
Ricci flow algorithm [34], so that the whole input mesh can be embedded in a 2D parametric domain. Details
are introduced in Sec. 3.3.

(4) Centroidal Voronoi Tessellation on 2D Parametric Domain (Fig. 2 (d)): a weighted CVT can be computed in
this conformally embedded 2D parametric domain, with a density function to compensate for the introduced
area distortion during surface parameterization (Sec. 3.4).

(5) Anisotropic Mesh Generation (Fig. 2 (e)): finally, the anisotropic surface mesh is computed by simply mapping
the dual mesh of the CVT from the 2D parametric domain to the original surface (Sec. 3.5).

3.2. Adjusting Edge Length

To compute the anisotropic meshing on surfaces equipped with Riemannian metric, we can utilize the concept
of a higher dimensional “embedding space” [5] where the metric is uniform identity, and then compute CVT in this
space. However, it is very challenging to find such a high-dimensional isometric embedding explicitly. In contrast,
it has been widely studied in the surface parameterization literature, to “conformally” embed the given Riemannian
surfaces into 2D spaces. Thus we can take an alternative approach – conformally embed the surface equipped with
anisotropic metric into a 2D domain, and then compute a weighted CVT on it. This is in spirit similar to Rong et al.’s
approach [9, 10], but they are only handling isotropic meshing of surfaces, while we generalize it to anisotropic cases.

In order to compute the conformal embedding of the surface equipped with anisotropic metric into a 2D domain,
we need to know the edge length of the input surface under the given metric.

For each triangle 4ABC with vertex positions xA, xB, and xC , we average the metrics of three vertices Q(4ABC) =
Q(xA)+Q(xB)+Q(xC )

3 to approximate the metric for the triangle 4ABC . Then the edge lengths of each triangle can be
deformed according to its own Q(4ABC), but the neighboring triangles may not be able to give consistent edge lengths
– their shared edge may have different lengths due to the differences of Qs(4ABC) across neighboring triangles. We
compute the average of these two lengths, and use it as the final deformed edge length. Now, the neighboring triangles
are consistent on the shared edge.

However, in some cases, the deformed edge lengths may result in an invalid triangle, i.e. the sum of two edge
lengths is less than the third edge length. Here we provide two solutions for this degenerate case: (1) edge flipping,
and (2) subdivision.

We modify the Delaunay criterion to remove potential invalid triangles. Suppose 4ABD and 4BCD are two adjacent
triangles (Fig. 3), Delaunay retriangulation flips the edge to maximize the minimum angle. Equivalently, if ∠DAB +

∠BCD > 180◦ and ∠DAB + ∠BCD (before flipping) > ∠ABC + ∠CDA (after flipping) hold, then we flip edge BD
to edge AC. Here we use the averaged metric Qavg =

Q(xA)+Q(xB)+Q(xC )+Q(xD)
4 , where A, B, C, and D are four vertices

being checked [30]. Qavg is used to compute the lengths of edges formed by these four vertices, and the angles are
computed from the law of cosines.

Figure 3: Edge flip.

After edge flipping, if there is still any invalid triangle, we can subdivide the longest edge into two, i.e. add a
vertex at the middle of the longest edge, so that we can divide two adjacent triangles (sharing the same edge) into
four smaller triangles. The metric of the new added vertex is the average of the corresponding two vertices’ metrics.
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Through this strategy, the subdivided triangles can be better to smoothly catch the variation of the adjusting edge
length, so that it helps to remove the original invalid triangles.

One example (Fig. 4) shows the input triangular mesh before and after edge-flips, and it demonstrates that the
edge flipping operation is required to help to remove all invalid triangle (originally 5,286 out of 207,368) and increase
the minimal angle to 6.35◦. This is because the original mesh connectivity cannot be well compatible with the
input metric, so that we have to change some local triangular connectivity. This operation guarantees the following
conformal embedding computation feasible.

Figure 4: Edge flipping example of Dolphin image input mesh. Originally there are 5,286 invalid triangles; after edge
flipping, there is no invalid triangle.

It should be noted that we can remove all of the invalid triangles by using the edge flipping and subdivision
strategies, only if the metric is smooth enough.

As we know, the curvature computations on the piecewise-linear input mesh are always noisy, so an additional
stage for smoothing over the preliminary resulting metric field is often most needed. Otherwise, these noisy curvature
values will lead to large jumps of metrics between neighboring vertices, and it is highly possible to have illegal edge
lengths (i.e. invalid triangles). We provide one example (Fig. 5) to illustrate the necessity of having an enough
smoothed metric.

3.3. Conformal Embedding

We use edge length to approximate the Riemannian metric of a given discrete surface. We then compute the
adjusted edge length as explained in Sec. 3.2. For a closed genus g = 0 surface, we apply spherical harmonic
method [35] to compute its spherical uniformization metric and embed its universal covering space in a unit sphere.
For a closed genus g = 1 surface, we apply discrete surface Euclidean Ricci flow [34] to compute its Euclidean
uniformization metric and embed its universal covering space to a plane. For a closed genus g > 1 surface, we apply
discrete surface hyperbolic Ricci flow [34] to compute its hyperbolic uniformization metric and embed its universal
covering space to a hyperbolic space. For a topological disk surface, we can apply different tools to conformally
map it to a planar domain [36, 34]. The metric in the embedded domain is angle-preserved with the specified surface
anisotropic metric. Locally, there is only scaling. It is denoted as conformal factor.

3.4. Weighted Centroidal Voronoi Tessellation

Instead of computing ACVT, our meshing generation method is achieved by computing the weighted CVT on the
embedding (parametric) domains (i.e. spherical plane S2, Euclidean plane E2 and hyperbolic plane H2 corresponding
to different topologies of input surfaces). The density function used to compute weighted CVT is defined as the
square of the conformal factor, which measures the scaling of the local area of a conformal embedding. Specifically,
the conformal factor is defined as the ratio of incident triangle area sums on each vertex v of the surface in the original
domain with adjusted edge length and in the embedding domain as in Eq. (6). The area of a triangle 4ABC with
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Figure 5: One example (Kitten surface model) illustrates the necessity of having an enough smoothed metric. The left
one shows after 5 times Laplacian smoothing with 2-ring neighbors, there are 16,405 invalid triangles. The right one
shows after 50 times Laplacian smoothing with 10-ring neighbors, there is no invalid triangle any more.

adjusted edge lengths a, b and c is computed by Heron’s formula as in Eq. (7). The conformal factor is interpolated
linearly within triangles when served for computing the weighted CVT.

c f (v) =

∑
4ad justed(v)∑
4embedded(v)

. (6)

4ABC =
1
4

√
(a + b + c)(b + c − a)(c + a − b)(a + b − c). (7)

As elaborated in Rong et al.’s work [10], setting the density function to c f (v)2 will let the dual mesh of the
weighted CVT satisfy a constant sizing field on the adjusted-edge-length surface, which means the sites are uniformly
distributed on it. When mapping back the sites from the embedding domain to the original surface, their distribution
exhibits the desired anisotropic property due to the adjusting edge length process as explained in Sec. 3.2.

The weighted CVT is computed with the Lloyd’s algorithm [13]. Starting with arbitrary initial sites, the algorithm
computes the Voronoi Diagram for these sites and updates their positions with the centroids of the Voronoi cells
iteratively. Finally, the optimization is guaranteed to be converged for the weighted CVT on S2, E2, or H2, as proved
in Du et al. [37] and Rong et al. [10].

For different topologies of the surfaces, we compute different types of Voronoi Diagrams w.r.t. their embedding
domains. Closed genus-0 surfaces can be embedded on the spherical plane S2, and the spherical Voronoi Diagram is
computed with the STRIPACK algorithm [38].

Closed genus-1 surface can be embedded on the Euclidean plane E2 periodically. To compute periodic 2D Voronoi
Diagram, we make neighbor site copies around a chosen embedding mesh patch and compute the 2D non-periodic
Voronoi Diagram with CGAL [39], as suggested in [10]. A topological disk surface can also be embedded on the
Euclidean plane E2, without showing periodicity. So we just simply compute the 2D non-periodic Voronoi Diagram
and project boundary sites (whose cells intersect with the disk boundary) to the disk boundary to preserve the original
surface boundary.

Closed high-genus (genus >1) surfaces can be embedded on the hyperbolic plane H2 periodically. It is proved by
Nielsen et al. [40] that the 2D hyperbolic Voronoi Diagram on Klein disk is equivalent to a certain power diagram [41]
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on the Euclidean plane. We use this conclusion and compute the corresponding power diagram with CGAL. The
neighbor site copies are still needed to deal with the periodicity as suggested in [10]. Since the number of neighbor
patches is much larger in high-genus surfaces (16g2−8g neighbor patches for a genus-g surface), we use the technique
in [42] to reduce the unnecessary site copies.

The centroid (or center of mass) of a region with a given density function on the Euclidean plane E2 is well defined
in mathematics. This definition has been extended to the spherical plane S2 and the hyperbolic plane H2 with the
concept of model centroid [43] as suggested in [10]. With these definitions, we can compute the centroids of Voronoi
cells numerically on different embedding domains after computing the Voronoi Diagram in each Lloyd iteration, by
setting the density function as the square of conformal factor as explained at the beginning of this subsection.

3.5. Anisotropic Mesh Generation

After we compute the weighted CVT, the final mesh is generated as the dual of the Voronoi Diagram in the
parametric domain. Using the barycentric coordinates of each output vertex, we can map the dual mesh from the
parametric domain onto the original surface, and generate the final anisotropic meshing results.

3.6. Evaluation Criteria for Mesh Quality

According to the quality measurements of isotropic triangular mesh suggested by Frey and Borouchaki [44], we
use the following criteria for isotropic case: The quality of a triangle is measured by G = 2

√
3 S

ph , where S is the
triangle area, p is its half-perimeter, and h is the length of its longest edge.

(1) Gmin is the minimal quality of all triangles;
(2) Gavg is the average quality of all triangles;
(3) θmin is the smallest angle of the minimal angles of all triangles;
(4) θavg is the average angle of the minimal angles of all triangles;
(5) %<30◦ is the percentage of triangles with their minimal angles smaller than 30◦;
(6) The angle histogram is also provided to show the distribution of angles for all triangles.

To measure the quality of anisotropic surface meshes, for each triangle 4ABC we use its approximated metric
Q(4ABC) =

Q(xA)+Q(xB)+Q(xC )
3 to affine-transform the triangle 4ABC , and then use the above isotropic mesh quality

criteria (i.e. Gmin,Gavg, θmin, θavg,%<30◦ , and angle histogram) to check how similar it is as compared to a regular
triangle in the transformed space.

4. Experiments

We implement the algorithms using both Microsoft Visual C++ 2010 and Matlab R2013a. For the hardware
platform, the experiments are implemented on a desktop computer with Intel(R) Xeon E5620 CPU with 2.40GHz,
and 20G DDR3 RAM.

4.1. 2D Domain Meshing

Fig. 6 shows the meshing result of a 2D square domain [0, 1]2 with 1, 000 samples, given varying metric tensor
M(x, y) = diag{s2

1, s
2
2}, where s1 = 1/(0.031 + x), and s2 = 1/(0.031 + y).

Fig. 7 shows the meshing result of a 2D square equipped with the circular anisotropic tensor field:

M(x) = R(x)T diag(S tretch(x)2, 1)R(x), (8)

with the rotation field R(x) and the stretching field S tretch(x) ∈ [1, 10] shown in Fig. 7. The final mesh has 4, 000
samples.
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Figure 6: Anisotropic meshing with 1,000 samples on a 2D domain with metric M(x, y) = diag{s2
1, s

2
2}, where s1 =

1/(0.031 + x), and s2 = 1/(0.031 + y).

Figure 7: Anisotropic meshing with 4,000 samples on a 2D domain with the circular anisotropic tensor field M(x) =

R(x)T diag(S tretch(x)2, 1)R(x), where S tretch(x) ∈ [1, 10].
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4.2. 2D RGB/Gray-Scale Image-Based Meshing

Our framework can be easily extended to handle the image-based case with RGB or gray-scale colors. Intuitively,
it can be seen that the structure of the mesh conforms closely to the color/intensity patterns of the given image [45].
The mesh is fairly isotropic in the areas of constant or linear color/intensity variation; while near the areas of highly
non-linear color/intensity variation, the triangles are denser and the edges of triangles are well preserved with the
feature edges of the images. This idea is also similar to Cañas and Gortler’s surface remeshing in arbitrary high-
dimensions [46], and Lévy and Bonneel’s 6D CVT work in order to achieve a curvature-adaptation [21].

The basic idea is to use the embedding φ : Ω→ R6 or R4 defined by:

φ(x) = [x, y, z, sr, sg, sb]T or[x, y, z, si]T , (9)

where x = [x, y, z]T , c(x) = [r, g, b]T or [i]T is the RGB colors or gray-scale intensity to Ω, and s ∈ (0,∞) is a
user-defined parameter specifying the desired anisotropy. In our framework we can simply compute the edge length
in this 6D or 4D space and parameterize the original image domain. After CVT computation, the final mesh can be
reconstructed by mapping the dual triangulation of the Voronoi Diagram from the 2D image parametric domain to the
original 2D image domain.

Fig. 8 shows the anisotropic meshing result of a 323 × 323 RGB color Dolphin image with 3, 000 vertices, and
s = 0.1.

Figure 8: The anisotropic meshing with 3,000 output vertices of a 323 × 323 RGB color Dolphin image.

Fig. 9 shows the anisotropic meshing result of a 211×211 gray-scale Computed Tomography (CT) medical image
with 3, 000 vertices, and s = 0.5.

4.3. 3D Surface Meshing

The experiments on the Ellipsoid (genus-0)(Fig. 10), Cyclide, Kitten (genus-1)(Fig. 11, Fig. 12), and the Eight
(genus-2) (Fig. 13) surfaces are computed by curvature-based metric tensor fields. We use the metric of Eq. (4) with
s1 =

√
Kmin and s2 =

√
Kmax, where Kmin and Kmax are the principal curvatures. The Ellipsoid surface in Fig. 10

has the anisotropic stretching ratio s2
s1
∈ [1, 10]. As for the angle preservation, the only practical conformal mapping
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Figure 9: The anisotropic meshing with 3,000 output vertices of a 211 × 211 gray-scale CT image.

Table 1: Statistics of the 2D domains, 2D images, and 3D surfaces with given metrics and their computational
times.

Model Figure Input # Vertex Output # Vertex Stretch Anisotropy #Iteration Para Time CVT Time
2D Varying Metric Domain 6 5, 112 1, 000 [1, 32] NA 100 10s 388.11s
2D Circular Metric Domain 7 25, 717 1, 000 [1, 10] NA 100 34s 848.29s

Dolphin Image 8 104, 329 3, 000 NA 0.1 100 218s 6, 405.80s
CT Medical Image 9 44, 521 3, 000 NA 0.5 100 117s 4, 113.01s
Ellipsoid Surface 10 10, 242 1, 000 [1, 10] NA 100 225s 181.71s
Cyclide Surface 1 11 25, 920 8, 000 [2, 29] NA 200 36s 548.21s
Cyclide Surface 2 15 21, 600 1, 000 [2, 18] NA 100 24s 39.15s

Kitten Surface 12 134, 438 5, 000 [1, 5] NA 100 81s 271.79s
Eight Surface 13 10, 000 1, 000 [1, 5] NA 100 91s 315.59s

Note: Stretch: The user specified stretching ratios s2
s1

in Eq. (4) for 2D domains and 3D surfaces. Anisotropy: The user
specified anisotropy s in Eq. (9) for 2D images. #Iteration: The iteration numbers of Lloyd CVT computation. Para Time:
Time of parameterization computation. CVT Time: Time of CVT computation.

method for genus zero surface is harmonic map. Harmonic map can tolerate much more degenerate triangles than
Ricci flow, but with the price of angle distortion. So that, the mesh quality may be affected somehow. The Cyclide
surface in Fig. 11 has the anisotropic stretching ratio s2

s1
∈ [2, 29]. Fig. 12 shows the anisotropic meshing of a Kitten

surface with anisotropic stretching ratio s2
s1
∈ [1, 5]. Fig. 13 shows the anisotropic meshing of an Eight surface with

anisotropic stretching ratio s2
s1
∈ [1, 5].

Tab. 1 gives the statistics of all experimental examples, including the 2D domains, 2D images, and 3D surfaces
meshed with given metrics.
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Figure 10: The anisotropic meshing with 1,000 output vertices of Ellipsoid surface with the stretching ratio s2
s1
∈

[1, 10]: (a) The CVT on parametric domain. (b) ACVT on surface. (c) Final anisotropic mesh.

5. Comparisons

In this section, we show our comparative analysis and experiments with other anisotropic meshing approaches,
including Du and Wang’s continuous ACVT approach, Valette et al.’s discrete ACVT approach (Sec. 5.1), and Zhong
et al.’s particle-based approach (Sec. 5.2). To compare with other anisotropic triangulation methods, we use the same
number of output vertices, the same initializations, and the same number of optimization iterations.

5.1. Comparison with Other ACVT Methods

We compare the generated surface mesh quality and computational speed between our method and two previ-
ous ACVT methods: Du and Wang’s method with triangle clipping strategy [3] and Valette et al.’s discrete ACVT
method [20].

Our implementation of Du and Wang’s ACVT method is a little bit different from the original one proposed in [3].
They did some discrete approximation by adding sample points to the given triangular mesh, but our implementation
of their method is by clipping the triangles, which is more accurate. The details are as follows: they approximated
the anisotropic Voronoi region discretely. Firstly, some points are sampled from edges on a triangle. By testing the
anisotropic distance from the sampled points to site points, the triangle is then partitioned into sub-regions (referred
from Fig. 4.1 in their paper [3]). Comparatively, in our implementation of their method, firstly we classify each vertex
of the input mesh according to the condition whether its incident triangle needs splitting or not. If a triangle is shared
by two or more sites, we clip the triangle into sub-regions. There are two cases:

Case 1: A triangle is shared by two sites: when two vertices of an edge belong to different sites, there is a point
on the edge with equal distance to these two sites. By representing this point as a linear combination of the two
endpoints of the edge, we can compute the point. The other point on another edge can be found in the same
way. For each triangle, we connect these two points on two edges; then the triangle is splitted into two regions:
a triangle and a quad.
Case 2: A triangle is shared by three sites: we need to find an interior point within the triangle to split the
triangle into three regions. It can be done in the same spirit as in Case 1, with the help of barycentric coordinates.

The clipping operation is exact, since the distances from the clipping point to its closest two/three sites are equal.
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Figure 11: The anisotropic meshing with 8,000 output vertices of Cyclide surface with the stretching ratio s2
s1
∈ [2, 29]:

(a) The CVT on parametric domain. (b) ACVT on surface. (c) Final anisotropic mesh.

The implementation of Valette’s method is the same as the original paper: it is a discrete approximation of ACVT
by clustering the vertices of a dense pre-triangulation of the domain, which makes the computation much faster. For
each triangle, it can be assigned to at most one site and no clipping is needed.

In the following comparison, we run through 100 iterations, and re-mesh 8, 000 vertices on the Cyclide surface
with stretching ratio s2

s1
∈ [2, 29]. The input mesh is 25, 920 vertices and 51, 840 faces.

Fig. 14 and Tab. 2 show the comparison results. On the one hand, our approach provides better mesh quality than
other ACVT methods after 100 iterations optimization. There may be two reasons to explain why the meshing results
of the proposed algorithm are much better in terms of both efficiency and element quality than that of Du and Wang’s
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Table 2: Comparison of meshing quality for the Cyclide surface.

Method Time Gmin Gavg θmin θavg %<30◦

Ours 310.10s∗ 0.3771 0.9068 22.5709◦ 52.4795◦ 0.0187%
Du and Wang’s 9, 749.08s 0.1989 0.8546 7.9089◦ 48.5434◦ 1.7860%
Valette et al.’s 539.90s 0.1421 0.7590 5.0111◦ 39.9945◦ 10.6049%

Note: 310.10s includes both the parameterization computation time: 36s and CVT com-
putation time: 274.10s.

ACVT method: (1) one significant advantage of this method is its efficiency, since the CVT computation is performed
in a 2D parametric domain, as compared to the traditional approach of computing ACVT and its intersection with the
surface in 3D space; (2) when computing ACVT on a surface in 3D space, during optimization the sites need to be
projected and constrained on the input surface and the gradients are computed approximately in the tangent plane in
each iteration. These two factors may affect the convergence speed. Compared with Valette et al.’s ACVT method,
because of its discrete nature, it does not work well for highly anisotropic stretching if the input triangulated mesh are
not fine enough. We can see that in this example, Output#Vertex

Input#Vertex is about 1
3 , so the sampling for Valette et al.’s approach is

not dense enough, and this property leads to the poor results of their method in Tab. 2. On the other hand, our approach
has faster computational speed. From Tab. 2, we can see that our method, which is a continuous CVT approach on 2D
domain, is around 36 times faster than Du and Wang’s continuous ACVT method with clipping strategy, and around
2 times faster than Valette et al.’s discrete ACVT method.

5.2. Comparison with Particle-Based Method
In this subsection, we compare the mesh quality between our method and one latest particle-based anisotropic

surface meshing method: Zhong et al.’s method [6]. In the last step of their mesh generation, it needs to compute the
AVD in 3D space by Du and Wang’s method [3], and then intersect it with the surface. However, this approach may
lead to disconnected Voronoi cells and non-manifold vertices and edges if the topology control strategy [18] is not
considered.

Our alternative parameterization approach can compute the CVT in the 2D parametric domain of the surface,
which does not have this problem even if without topology control.

Fig. 15 compares our method with Zhong et al.’s particle-based anisotropic surface meshing method, which uses
Riemannian distance to compute a 3D AVD, and then finds the intersection between this 3D AVD and the surface.
For the Cyclide surface with the anisotropic stretching ratio s2

s1
∈ [2, 18], the slender parts with the high anisotropic

stretching ratios are very close to each other in 3D space, but they are far away along the surface with Riemannian
distance. So Zhong et al.’s method needs dense input and output vertices to capture the 3D surface shapes. Taking
this Cyclide surface for example, if the numbers of the vertices of the input and output meshes are large enough (such
as Input#Vertex = 129, 600 and Output#Vertex = 8, 000), Zhong et al.’s method with topology control can work
well, as mentioned in [6]. If the numbers of the vertices of the input and output meshes are relative small, which does
not meet Topological Ball Property [16], their methods may have problems. In this experiment, with 21, 600 input
vertices and 1, 000 output vertices, we can see that our method using 2D Euclidean plane CVT has no problem, while
their method without topology control generates some non-manifold vertices and edges (shown in Fig. 15).

6. Discussion of Limitations and Future Work

There are some limitations in our current method. If the input triangular surface mesh is not dense enough to
catch the variation of the input anisotropic metric, it is highly possible to have illegal edge lengths for some triangles.
Without a legal triangulation, we cannot compute the conformal embedding.

Conformal embedding provides a convenient way to embed a given anisotropic metric of a surface onto a 2D
domain explicitly, but conformal parameterization methods are in general sensitive to initial triangulation quality and
prefer equilateral triangulations due to their discrete approximation property. Specifically, discrete surface Ricci flow
uses circle packing to approximate discrete conformal deformation. It is proved in [47] that discrete surface Ricci
flow is a gradient flow of a convex energy so we can apply Newton’s method when computing conformal embedding
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with discrete surface Ricci flow. The Hessian matrix is guaranteed positive if two circles associated with each ending
vertex of an edge are between [0, π2 ]. It is straightforward to find such circle packing for equilateral triangulations,
but if the triangulation of a surface has too many skinny and degenerated triangles, such circle packing will be very
difficult to construct. The induced triangulation from the anisotropic metric of a surface is highly possible to have
many skinny and degenerated triangles, so we have to sacrifice the anisotropic metric by reducing its stretching ratio
along maximal and minimal curvature directions for most of our testing surfaces. This is one biggest limitation
of the proposed method, which cannot compute the input mesh with particularly large anisotropic stretching ratios.
Moreover, there is only one tool - hyperbolic Ricci for high genus surfaces, and it is very sensitive to the triangulation.
So it is the limitation of the conformal embedding method to compute the complicated topology models.

In the future, we would like to explore the possibility to embed the anisotropic metric of a surface in other s-
paces. Meanwhile, to speed up the computation of CVT, we would like to take parallel computing of CVT in locally
embedded charts of the surface.
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[14] Y. Liu, W. Wang, B. Lévy, F. Sun, D. Yan, L. Lu, C. Yang, On centroidal Voronoi tessellation – energy smoothness and fast computation,

ACM Transactions on Graphics 28 (4) (2009) 101:1–101:17.
[15] G. Peyre, L. Cohen, Surface segmentation using geodesic centroidal tesselation, in: Proceedings of the 3D Data Processing, Visualization,

and Transmission, 2nd International Symposium, 3DPVT ’04, 2004, pp. 995–1002.
[16] H. Edelsbrunner, N. R. Shah, Triangulating topological spaces, in: Symposium on Computational Geometry, 1994, pp. 285–292.
[17] Q. Du, M. D. Gunzburger, L. Ju, Constrained centroidal Voronoi tessellations for surfaces, SIAM Journal on Scientific Computing 24 (5)

(2003) 1488–1506.
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Figure 12: The anisotropic meshing with 5,000 output vertices of Kitten surface with stretching ratio s2
s1
∈ [1, 5]: (a)

The CVT on parametric domain. (b) ACVT on surface. (c) Final anisotropic mesh.

Figure 13: The anisotropic meshing with 1,000 output vertices of Eight surface with the stretching ratio s2
s1
∈ [1, 5]:

(a) The CVT on parametric domain. (b) ACVT on surface. (c) Final anisotropic mesh.
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Figure 14: Comparison with other ACVT approaches with 8,000 output vertices.

Figure 15: The comparison of anisotropic meshing with 1,000 output vertices of Cyclide surface with the stretching
ratio s2

s1
∈ [2, 18] by our method and by Zhong et al.’s method (both are without topology control). The zoom-in parts

show the non-manifold vertex and edges existing in their results, while our method does not have.
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