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Abstract

The medial axis transform (MAT), as an intrinsic shape representation, plays an important role in shape
approximation, recognition and retrieval. Q-MAT is a state-of-the-art algorithm driven by quadratic error
minimization to compute a geometrically precise, structurally concise, and compact representation of the
MAT for 3D shapes. In this work we extend the technique to make it more robust, controllable, and name
it Q-MAT+. Combining shape diameter function (SDF) and other mesh information, Q-MAT+ gets a more
complete and accurate initial MAT than Q-MAT, even for extreme thin features, such as wires and sheets.
Q-MAT+ could quickly remove insignificant branches while preserving significant ones to get a simple and
faithful piecewise linear approximation of the MAT. Moreover, it performs the medial axis simplification
with explicit maintenance and the control of Hausdorff error, which is not originally supported in Q-MAT.
We further demonstrate the outstanding efficiency and accuracy of our method compared with other existing
approaches for MAT generation and simplification.
Keywords: Medial Axis, Simplification, Error-Controllable

1. Introduction

The medial axis transform (MAT) is an intrinsic shape representation proposed by Blum (1967). Given a
solid 3D object, the medial axis contains all the centers of the spheres which are called medial spheres inside
the object while touching the boundary at two or more points. The MAT is composed of medial axis and
the associated radius function that stores the distance to the boundary for each point on the medial axis.
Due to its direct access to both the shape interior and the object’s boundary, the MAT has been widely
used in shape analysis, recognition, abstraction, and segmentation. There are already many methods to
approximate the medial axis or the MAT. The most notable one is Amenta et al. (2001) that is based on the
Voronoi diagram of a set of dense sample points on the object’s boundary. To approximate the MAT of a
3D shape more accurately and compactly, medial mesh was introduced by Li et al. (2015); Sun et al. (2016)
as a 2D simplicial complex embedded in 4D, which can also be regarded as a non-manifold triangle mesh
consisting of vertices (medial spheres), line segments (called medial cones) and triangle faces (called medial
slabs). Despite years of research and its potential utility, the wide spread of the application of MAT is still
hindered by its redundancy and instability due to its high sensitivity to the boundary noise and variations.
Even small perturbations to the object’s boundary will bring plenty of unstable and redundant branches
called spikes to the MAT. Q-MAT Li et al. (2015) is an efficient method to solve the above problems. It is
inspired by both the Quadratic Error Metric (QEM) framework Garland (1997) for mesh decimation and
Spherical QEM method Thiery et al. (2013), but is specifically designed for MAT simplification. To be more
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specific, Q-MAT proposes a new quadratic error metric, called slab quadratic error metric, to measure the
deviation from the original MAT, and a new stability ratio to identify the geometric significance of each
edge of a medial mesh. The piecewise linear interpolation, instead of ordinary union, of the adjacent medial
spheres can achieve both visual and numerical fidelity in approximating the input shape.

However, Q-MAT is still not a perfect solution. It includes two stages: the initialization which generates
the medial mesh for an input shape, and the simplification which continuously decimates the medial mesh
by an iterative edge-collapse strategy. For the former, it uses the original Voronoi vertices as medial vertices
by the method Amenta et al. (2001) without “poles” filtering. Like many other existing approaches, this
method is also difficult to approximate the media axis in the extremely flat or thin places of the object and
then cause the MAT partially deleted. This problem is significant since without a complete initialized MAT,
the following simplification process will undoubtedly exacerbate this inaccuracy and lead to a poor-quality
MAT. Secondly, although Q-MAT introduces the stability ratio to distinguish the medial edges related to
spikes at the early stage of simplification, it is still not feature-sensitive to preserve some geometrically
insignificant (e.g. small Hausdorff error) but semantically important features, such as the tubular structure
of many shapes. Thirdly, when an edge is collapsed in the simplifying operation, Q-MAT places a new
medial sphere at either the place minimizing the quadratic function or the midpoint of the edge. Neither
solution takes account of the situation that the new sphere is possible to be positioned outside the model,
which violates the definition of the medial axis. Finally, as noted by Yan et al. (2016), Q-MAT lacks a
general geometric metric (e.g. Hausdorff error) to help users control the simplification, which cannot be
achieved by either the stability ratio or the slab quadratic error metric. The Hausdorff distance between the
original shape and reconstructed shape by its medial mesh is an ideal choice, but evaluating the Hausdorff
distance is a costly operation that will undermine the efficiency advantage of QEM framework.

Therefore, based on Q-MAT, we present Q-MAT+, which solves the above problems to make the com-
putation more robust, feature-sensitive, and make the resulting MAT error-bounded. Different from other
MAT generation methods requiring excessive number of samples to capture thin features while producing
more redundant medial vertices, Q-MAT+ uses an automatic adaptive strategy to decide an appropriate
amount of sampling points, and combines shape diameter function (SDF) Shapira et al. (2007) of surfaces
and inscribed spheres to compute a structurally-complete medial mesh in the initialization. For the preven-
tion of erroneous cases and the preservation of significant details, the edge-collapse strategy in Q-MAT is
adjusted correspondingly. Furthermore, Q-MAT+ performs a local error update scheme to efficiently evalu-
ate the one-sided Hausdorff distance so as to control the simplification process under a predefined threshold.
In summary, we claim the following contributions:

• An adaptive MAT generation method to obtain the structurally-complete initial MAT even for a shape
containing extremely thin features.

• An error-bounded simplification algorithm for MAT with the guarantee of accuracy at different levels
and the protection of important detailed features.

• A complete method to obtain the geometrically correct, semantically complete, and compact MAT
representation directly from an original shape.

The remainder of this article is organized as follows. Related works about MAT computation and
simplification are discussed in Section 2. In Section 3 we briefly describe the medial mesh representation and
Q-MAT as preliminaries, then carefully introduce our improvements from three aspects. The experiments
in Section 4 validate and compare our algorithm with other start-of-the-art methods. Finally the conclusion
and future work are presented in Section 5.

2. Related Works

2.1. MAT Computation Methods

For 2D smooth shapes, it has been proved that the Voronoi vertices of the samples on the shape’s
boundary topologically and geometrically converge to its medial axis Brandt and Algazi (1992). However,
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the same argument does not hold in 3D cases due to the existence of “slivers”, which are flat tetrahedra of
small volume but do not have degenerate faces. The centers of circumscribing spheres (approximated Voronoi
vertices) for such sliver tetrahedra are far away from medial axis. Consequently, for 3D shapes represented
by triangle meshes, the most commonly-used method is to obtain sampling points on the surfaces and filter
the Voronoi diagram of these samples or other derivative structures to get the approximation of medial axis.
The most notably one is Amenta et al. (2001) which proposed the “poles filtering” to get a subset of Voronoi
diagram approximating the medial axis as the sampling density increases. This method can be categorized
into the angle-based filtering methods which also include approaches of Attali and Montanvert (1996); Dey
and Zhao (2004). Generally speaking, these methods compute the angle formed by each medial vertices and
its two closest points on the object’s surface, then remove the medial vertex if the associated angle is less
than a user-specified threshold. Although these methods have some advantages in retaining local features,
they are usually difficult to preserve the topology of the input shape.

SAT Miklos et al. (2010) is a scale-based medial axis transform method which not only produces MAT in
a numerically robust manner but also efficiently prunes spikes. It first scales all medial spheres by a factor
s > 1, then removes those ones contained in other medial spheres. Not until all medial spheres are scaled
by the factor 1/s is the final approximation result obtained. Since narrow gaps or small holes may disturb
the scaling step, SAT has the same defect as the angle-based filtering methods. It can not control the level
of simplification except for setting the value of scale.

λ-medial axis methods belong to another category using the circumradius of the closest points of a medial
vertex as a filtering criterion. Typical algorithms like Pizer et al. (2003); Chazal and Lieutier (2005) discard
a medial vertex if the circumradius is smaller than a given threshold λ. However, the result may lose some
features, which are needed to be reserved.

Voxel-based methods, completely different from the above methods, require the shape to be represented
by a union of voxels and select a subset sharing similar properties as medial axis, for example, being thin,
centered and preserving the topology and components of shape Saha et al. (2016); Sobiecki et al. (2014). If
the shape is not in voxel representation, it should be converted by voxelization first. These methods guided
by non-Euclidean distance metrics like Manhattan distance Palgyi and Kuba (1999); Tsao and Fu (1981) or
chamfer distance Pudney (1998) result in less accurate MAT than those that compute in Euclidean distance
field Hesselink and Roerdink (2008); Rumpf and Telea (2002) or use more global shape information Jalba
et al. (2016). The state-of-the-art method of this category is Voxel Core Yan et al. (2018), which is based
on an observation that the interior Voronoi of the boundary vertices can faithfully approximate the medial
axis of a voxel shape. Even so, there is a common disadvantage of these methods – the finer the voxel
resolution is, the higher the computational cost required. Moreover, it is inevitable to increase resolution
when pursuing geometric accuracy. Based on the essential difference from these voxel-based methods, all
previously-discussed methods can be grouped together into the category of sampling-based methods.

2.2. MAT Simplification Methods

The progressive MAT (PMAT) method Faraj et al. (2013), improving the SAT, simplifies the transfor-
mation by collapsing the edges. For each edge connecting two medial spheres, the method calculates the
ratio value of the distance between two centers to the difference between two radii of the two medial spheres.
Using this ratio as the collapsing cost, it can simplify the MAT in an orderly and reasonable way. However,
PMAT does not optimize the position of the new medial sphere after merging an edge in the simplification
process, just simply choosing the center of the relatively large sphere.

An alternative method based on the idea of error-control is Hausdorff Error-based Method (HEM) Sun
et al. (2016). When merging edges, HEM computes the one-sided Hausdorff distance from the original surface
to the boundary of the shape reconstructed from the simplified medial mesh to control the approximation
error. Although Hausdorff distance is a faithful measure of the approximation error, precisely computing
the Hausdorff distance is prohibitively slow. After computing the error estimation for two endpoints of an
edge, the one with smaller Hausdorff distance is selected as the new medial vertex. So similar to PMAT, it
is still hard to obtain a superior medial sphere.

Compared with the above two methods, Q-MAT Li et al. (2015) proposes a new edge-collapse cost
which can be quickly updated, and can effectively optimize the placement of new medial spheres. It adopts
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quadratic error metric (QEM) Garland (1997) framework for edge collapse and proposes two novel metrics:
the slab quadratic error (SQE) and stability ratio. For each medial sphere of the simplified medial mesh,
SQE measures its “distance” to the incident slab of the initial medial mesh, and the stability ratio predicts
how likely a medial edge is a spike. When merging an edge, the collapsing cost is defined as the sum of terms
combining SQE and stability ratio of two end medial spheres. After getting an initial medial mesh, all the
edges are queued based on their collapsing costs, then the edge with minimum cost is popped and collapsed
to generate a new medial sphere. New edges are pushed into the queue according to their computed costs.
The preservation of boundary and topology is also considered in the simplification. Due to the efficiency
and superiority of Q-MAT, Lan et al. (2017) uses it to extract and simplify the MAT as the basis of their
volume-preserving shape deformation algorithm, and Yang et al. (2018) extends this framework to get the
Deformable MAT (DMAT) for animated mesh approximation.

Yan et al. (2016) introduced a popular global significance measurement named Erosion Thickness (ET)
over the medial axis of 3D shapes, which is extended nicely from 2D. It extracts a curve subset guided
by ET from the initial medial axis according to the observation that the curve skeleton in fact reveals the
branching structure of the root, which plant biologists usually use to explain the root system architecture.
In comparison, the ET method can create a greater variety of skeletons than Q-MAT due to its independent
control of the 2D and 1D components. Guided by the local measurement only, Q-MAT is hard to interpret
the pruning process. In this paper, we improve over Q-MAT by locally updating the one-sided Hausdorff
error and distinguishing tubular shape feature to control the quality of MAT simplification.

3. Approach

3.1. Preliminaries

As preliminaries, we first briefly introduce the 3D medial mesh representation and review Q-MAT with
its important formulas.

Figure 1: Interpolation of medial spheres Li et al. (2015).
(a) Medial cone: the enveloping primitive of a medial
edge. (b) Medial slab: the enveloping primitive of a me-
dial face.

Figure 2: Description of SQE function Li et al. (2015).
The sphere m = (c>, r)> (in red) and two outward unit
normal vectors n1, n2 of the bounding planes tangent to
m define a slab. The SQE function measures the distance
from a variable sphere mx = (c>x , rx)> (in blue) to the
slab.

3.1.1. Medial Mesh Representation

We follow the medial mesh representation proposed by Li et al. (2015); Sun et al. (2016) for better
volume representation and MAT approximation. A medial mesh Ms for a 3D shape S is a 2D simplicial
complex which is embedded in R4 to approximate the shape’s MAT. A medial mesh is composed of vertices,
edges, and triangle faces. Each vertex mi in Ms is called a medial vertex and represents a medial sphere,
denoted as a 4D point m = (c>, r)>, where c ∈ R3 is the position of the vertex and r is its associated
radius. The edge of the medial mesh is called the medial edge and given by eij = {mi,mj}, represented by
(1−t)mi+tmj , t ∈ [0, 1], a convex interpolation of its incident two endpoints mi and mj . Likewise, a triangle
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face of the mesh is called a medial face and denoted as fijk = {mi,mj ,mk}, represented by the convex
combination of three medial spheres, a1mi+a2mj +a3mk, with ai(i = 1, 2, 3) ≥ 0 and a1+a2+a3 = 1. Each
discrete component mentioned above corresponds to a volume primitive: a medial vertex being a medial
sphere, a medial edge being a medial cone which comprises two spherical caps connected by a truncated
cone, and a medial face being a medial slab which is the convex hull of three medial spheres as shown in
Figure 1. After piecewise linear interpolation, the 3D shape represented by the enveloping volume of the
medial mesh is more accurately and compactly than merely using the union of medial spheres.

3.1.2. Q-MAT

Q-MAT is an efficient method to obtain a structurally simple, compact and accurate linear approximation
of MAT by edge contraction. The simplification process is guided by the collapse cost which combines two
novel metrics: the slab quadratic error (SQE), and the stability ratio. We will briefly introduce the definitions
of these functions.

Figure 2 shows an intuitive description of SQE. Suppose for a common sphere is m = (c>, r)> (in red),
an extended slab s is defined as its two tangent planes and denoted by s = {m,n1,n2}, where n1 and n2

are the outward unit normal vectors of the planes, as shown in Figure 2. Let us denote n1 = (n>1 , 1)> and
n2 = (n>2 , 1)>. For the variable sphere mx = (c>x , rx)> (in blue), Q-MAT defines the SQEs(mx), that is
slab quadratic error measuring the squared distance from sphere mx to the slab s:

SQEs(mx) = m>x ·A ·mx + b> ·mx + c, (1)

where

A = n1 · n>1 + n2 · n>2 ,
b = −2A ·m,

c = m> ·A ·m.

(2)

When an edge eij = (mi,mj) is collapsed, the optimal new sphere mg becomes associated with all the slabs
of two medial spheres mi and mj . It can be computed by minimizing the quadratic function:

Ee
mi,mj

(mx) = m>x ·Amg
·mx + b>mg

·mx + cmg
, (3)

which is equal to the sum of SQE of mg with all associated slabs slabs(mg) = slabs(mi) ∪ slabs(mj).
The hyperbolic distance between two medial spheres is defined as:

dh(mi,mj) = max{0, ‖ci − cj‖ − |ri − rj |}. (4)

Then another important metric of this edge, stability ratio, is defined as the ratio of this hyperbolic distance
to the edge length:

Γij =
dh(mi,mj)

‖ci − cj‖
, (5)

where Γij represents the stability of this edge, or how likely it is not a spike. In particular, when Γij is 0 for
two independent spheres mi and mj , the smaller sphere is contained inside the larger one, then the edge is
a pure spike; when Γij is 1, the radii are equal and the edge is completely stable and geometric significant.
Finally the collapse cost for this edge is defined as:

cij = (Ee
mi,mj

(mg) + k) ∗ Γ2
ij , (6)

where k is positive constant. Q-MAT follows the QEM framework to queue all edges in the medial mesh
according to their cost values cij , and iteratively collapses the edge with minimum cost to generate a new
medial sphere until the mesh is simplified to the specified number of medial vertices.
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Figure 3: Comparing our method with a typical Voronoi-based method, the Power Crust (PC) Amenta et al. (2001) on an
extremely thin sheet, Cat’s ear. “#VS” is the number of sampling points in the input shape. (a) The color-coded distribution
of SDF information for the whole Cat model (All the models in our experiments are scaled so that the diagonal length of their
bounding boxes are equal to 1). The red parts are thicker, while the blue parts are thinner. (b) Initial MAT by PC from the
original sampling points. (c) Initial MAT by PC from ten times of uniformly sampled points. (d) Initial MAT by Q-MAT+
from our adaptive sampling points.

3.2. Adaptive Initialization

Our method, named Q-MAT+, starts from computing an initial medial mesh for an input 3D shape.
Note that for a typical thin feature, such as the Cat’s ear in Figure 3(a), the original PC algorithm would
produce a poor result without providing more sampling points, as shown in Figure 3(b). However, even if
ten times of uniformly sampled points are given, it still generates a defective MAT with holes as shown in
Figure3(c). Hence we propose a novel adaptive generation method, which needs only a little more sampling
points and uses the centers of inscribed spheres to approximate medial vertices to obtain a more complete
MAT even in extremely thin parts like Figure 3(d). It has two main steps: sampling and selecting those
Voronoi vertices meeting our requirements from the Delaunay Triangulation of sampling points.

Firstly, instead of sampling uniformly on the whole surface, we found that uniformly sampling per
triangle facet can get better results while reducing redundancy. To estimate the thickness of each facet, we
use the shape diameter function (SDF) Shapira et al. (2007). For a closed manifold surface, SDF is a scalar
function measuring the neighborhood diameter at each point and able to capture the object’s volumetric
shape locally. Q-MAT+ increases sampling points on those facets with large area or in thin patches by
adding a slight local smoothing of sampling density:

n(fi) = max{0,

 Ai

min
fj∈N(fi)

Aj

− 1}+ nf ∗ TF (fi), (7)

where n(fi) is the increased number of sampling points of facet fi, Ai is the area of fi, N(fi) is the set of
neighbour facets sharing vertices with fi, and nf is the average number of samples per facet located in thin
patch. Choosing a large nf offers more sampling points and a tighter approximation of surface, however,
bringing more spikes and higher redundancy. In our experiments, we found nf = 1 is enough to give a good
trade-off between correctness and efficiency. TF (fi) is an indicator function that determines whether the
facet should be sampled with more points because of its thinness and can be expressed as:

TF (fi) =

{
0 if SDF (fi) > θ

1 if SDF (fi) ≤ θ,
(8)

where θ is an SDF threshold which is set as half of the average SDF value in our experiments. Certainly,
θ is an important parameter affecting the behavior of the generation algorithm. We test many models to
observe the influence of θ and choose a default setting. Figure 4 shows the approximation error influenced by
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θ of three input models with extremely thin parts (Cat, Airplane and Fish) and two common input models
(Bear and Dolphin). It is obvious that increasing the sampling according to the thickness can improve the
results of initial medial mesh generation. We can see θ = 0.5 ∗ average SDF is sufficient for most extreme
cases, because choosing a larger value would cause unnecessary redundancy. Users could also adjust this
parameter according to their own needs. We first randomly generate n(fi) samples on the triangle fi, then
perform a Lloyd relaxation process onto a Bounded Voronoi Diagram (BVD) Tournois et al. (2010). We
find that five iterations are usually enough to obtain a quasi-uniform sampling on facets.

Figure 4: Influence of the SDF threshold θ. Its values
are based on the average SDF values of respective mod-
els. When θ becomes bigger, the approximation error is
smaller. At the same time, more redundancy will appear.
It is obvious that 0.5 can make a better balance than
others.

Figure 5: A 2D illustration for the defect of using cir-
cumcenter in thin parts. For a simplex with three sample
points (red) lying in the thin parts (grey), their circum-
center (blue) is outside the model and the circumsphere
(blue) is much larger than this part. Without very dense
sampling, a better choice is the inscribed circle (green) in
this case.

After obtaining enough sampling points, we use 3D Constrained Delaunay Triangulation and delete the
outside tetrahedrons. That is, for each simplex of the Delaunay triangulation, which is a tetrahedron in
3D, if the center of its circumscribe sphere is inside the model, it is selected as a medial vertex since such
approximation is precise enough in normal parts Amenta et al. (2001). Otherwise, we consider another case
that the SDF values of all four vertices in this simplex are below θ. Considering an extreme case where the
four points are almost co-planar but non-degenerate, their circumcenter is no longer in conformity with the
requirements, resulting in the absence of a medial vertex here (see the 2D example in Figure 5). That is why
there are holes in Figure 3(c). Hence for such tetrahedron, if the center of its inscribed sphere is inside the
model, we take this center as medial vertex and the shortest distance from the center to the original surface
as radius to form a medial sphere. This is a fast approximation method based on the assumption that
the selected centers of inscribed spheres contain the correct medial vertices and the rest would be pruned
off as spikes by Q-MAT+, which can be validated by the simplified medial mesh in our experiments. The
procedure of selection is shown as Algorithm 1.

Finally, the connectivity among selected vertices is inherited from the simplices in triangulation to form a
2D non-manifold mesh. In this way, we get the initial medial mesh, which is noisy, dense, but geometrically
complete to represent the medial axis of the input 3D shape.

3.3. Local Update of Hausdorff Distance

Q-MAT progressively performs edge contraction governed by the collapse cost to efficiently simplify the
medial mesh. Although it can control the simplification by specifying the number of simplified medial vertices
or the sum of collapse cost, neither of them is a general geometric metric to measure the approximation
error-bound. While it is natural to think of taking the Hausdorff distance between the input shape and the
shape reconstructed by simplified medial mesh as the measurement, the costly computation makes this idea
impractical.

Note that HEM Sun et al. (2016) has argued that the one-sided Hausdorff distance from the boundary
surface of the original shape to the boundary surface of reconstruction shape could provide a good approx-
imation to the true Hausdorff distance if the medial mesh well approximates the original object. However,
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Algorithm 1 Filtering Simplices in Delaunay Triangulation

Require: Simplex x, Input shape S
1: p = Circumcenter(x)
2: if InsideModel(p,S) then
3: select p as medial vertex
4: r = Circumcenter(x).radius
5: else
6: q = Inscribedcenter(x)
7: if ThinPart(x) and InsideModel (q,S) then
8: select q as medial vertex
9: r = ShortestDist(q,S)

10: end if
11: end if

the one-sided Hausdorff distance computation is still time-consuming. In order to evaluate the one-sided
Hausdorff distance in each edge-collapse operation to control the simplification under a user-specified thresh-
old while maintaining the efficiency of Q-MAT, we use a rapid yet sufficiently accurate approximation of
the distance. It is inspired by the surface remeshing method of Hu et al. (2017) by a local update scheme
of the shortest links from medial vertices to surface in combination with previous careful surface sampling.

Suppose that Ms is the medial mesh for 3D shape S, R(Ms) is the reconstructed shape through piecewise
linear interpolation from Ms to approximate S. The one-sided Hausdorff distance from the boundary surface
of the input S to the boundary surface of the approximation shape can be denoted as:

dH(S,R(Ms)) = max
p∈S

d(p,R(Ms)), (9)

with d(p,R(Ms)) being the minimal distance of a sample point p in the input surface to the reconstructed
surface:

d(p,R(Ms)) = min
q∈Ms

d(p,R(q)), (10)

where R(q) is the set of volume primitives associated with medial vertex q.
We observe that each edge-collapse operation usually results in a greater Hausdorff distance and only

changes a local region in the input surface in terms of its shortest distance to the enveloping volume
represented by medial mesh. Hence it is possible to take a local update scheme to rapidly compute the
one-sided Hausdorff distance as long as we decompose the input surface and medial mesh correctly. To be
more specific, Q-MAT+ maintains a set of boundary points which we call responsible region for each medial
vertex. This relationship starts with the four surface sampling points of the simplex and the corresponding
medial vertex when generating the initial medial mesh (The center of the inscribed sphere of each simplex
is a medial vertex, and it is responsible to the found nearest boundary points). This can be expressed as

Res(q) = {p|p ∈ S, d(p,R(q)) = d(p,R(Ms))}. (11)

In other words, Res(q) contains the closest boundary points on the input shape for q. When an edge is
collapsed, the merged sphere inherits the responsible regions from the two medial spheres connected by this
edge. Figure 6 shows a simple example.

Now we define C as a set of all medial vertices adjacent to this collapsed edge including the medial
vertices at the endpoints and others adjacent to these two vertices, so the C is the vertices not affected by
this edge. Then the input shape S can be decomposed to S = SC ∪ SC as the responsible regions of C and
C respectively. During the simplification, we have

dH(S,Ms) ≤ max{dH(SC , C), dH(SC , C)}, (12)

to locally but efficiently approximate the one-sided Hausdorff distance because the dH(SC , C) is unchanged
indeed. Consequently Q-MAT+ could rapidly evaluate the ones-sided Hausdorff distance to control the

8



simplification, by stopping the edge contraction when the resulting dH(S,Ms) is above a threshold, while still
adopting the QEM framework for efficient maintenance of the quadratic error terms and error minimization.

SM
jm

ije

S

im

S

kmSM

S

S

(a) Before edge is collapsed toij ke m (b) After edge is collapsed toij ke m

Figure 6: Inheritance of responsible regions during an edge-collapse operation. Each medial vertex in medial mesh (orange)
has its responsible samples in the surface (blue). The change of sample color symbolizes the change of corresponding medial
vertex and the dotted line represents the responsibility relationship.

3.4. Feature Sensitive Simplification

At the later stage of simplification, the medial edges corresponding to some geometrically insignificant
(e.g. small Hausdorff error) but semantically important tubular structures (e.g. human fingers or octopus
tentacles) would be collapsed for its collapse cost is relatively smaller than the other parts of the medial mesh.
However, it is difficult to distinguish and protect these medial edges accurately. At the same time, users
may prefer different features (plate-likeness or tubular shape parts) to be preserved in MAT simplifications.
In this work, Q-MAT+ utilizes the maintained responsible relationship and just adds a mark for medial
edges and medial vertices to solve the above problems.

The medial edges without adjacent faces are usually associated with the tubular structure but it is
not true for all of them. In order to identify those medial edges associated with thin features, choosing a
reference criterion is critical. In this work, we use the SDF values of medial vertices’ responsible regions.
Q-MAT+ distinguishes the medial edges that need to be protected by estimating whether the SDF values
of its responsible regions are all below θ and without adjacent faces. The results are shown in Figure 7. As
shown in Figure 7(c), the medial edges related to the head of Octopus are not selected as the target ones,
since the SDF value of the associated responsible region is relatively large. The selected medial edges are
marked as non-collapsible, and the medial vertices at endpoints are marked as non-merged, which means
their spheres always serve as the new medial spheres when the other connected edges are collapsed. In this
way, these significant medial edges could be preserved. It is worth mentioning that this strategy works at a
later stage of simplification to prevent spikes from mistakenly being protected. When users intend to retain
the tubular shape parts at any time of simplification, Q-MAT+ triggers the feature-preservation strategy
by marking the selected medial edges as non-collapsible to achieve the goal. In this way, Q-MAT+ is able
to create a greater variety of MAT representation than before.

In addition, we make Q-MAT+ more robust with additional boundary constraints. Note that for a
medial edge eij = mi,mj to be collapsed, if A in Equation 3 is invertible, Q-MAT computes the optimal
sphere, otherwise it selects the sphere with the minimum Ee

mi,mj
(mx) from the three spheres: mi, mj , and

(mi + mj)/2. There exists a possible error that the new medial sphere and its connected edges could be
outside the model. To avoid this situation, Q-MAT+ modifies the selection of new medial spheres. That is, if
A is not invertible or the computed optimal sphere has the above error (for simplicity, we just check whether
the position of the new sphere and the midpoint of its connected edge is inside the model), Q-MAT+ chooses
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Figure 7: Feature recognition in Q-MAT+. #v is the number of medial vertices and ε is the approximation error. Models have
been simplified to allow for more intuitive comparisons between medial edges. Red lines represent the medial edges associated
with important tubular features and they would be protected in the following simplification.

the candidate out of mi, mj , and (mi + mj)/2 by: (1) minimizing Ee
mi,mj

(mx); and (2) guaranteeing the
correctness mentioned above. If none of the four spheres meets both requirements, the edges are marked as
non-collapsible.

It can be expected that when all medial edges are marked as non-collapsible, the medial mesh will not
be further simplified.

4. Experimental Results

In this section we will show the computation and simplification results of Q-MAT+ for validation and
comparisons with other methods. Q-MAT+ is implemented in C++ and the program runs on a Windows
7 workstation with an Intel i5 CPU @3.20GHz and 16 GB memory. All the processed models have been
scaled to make the diagonal lengths of their bounding boxes equal to 1.

4.1. Computation of Initial MAT

Firstly we will show the initial MAT produced by our improved Voronoi-based method. We use the CGAL
package “Delaunay Triangulation 3” to get the Delaunay Triangulation of the sample points and take its
dual to get the Voronoi diagram. Besides, the package “Triangulated Surface Mesh Segmentation” provides
a rapid calculation of SDF. Finally the CGAL package “Skin Mesh Generation” performs the conversion
from a set of individual medial spheres into a triangle mesh representation of the MAT. To estimate the
approximation accuracy of initial MAT, we use the one-sided Hausdorff distance from the input surface to
the reconstructed surface, denoted as ε. Definition of ε is mentioned in the Section 3.3. The reconstructed
model is the combination of all rendered primitives including medial spheres, medial cones, and medial slabs,
so the ε can be computed by choosing the shortest distance from a point in the boundary surface of the
input shape to all primitives with the greatest value.

We compare our approximation method with the following state-of-the-art methods which have publicly
available executable programs: two sampling-based methods, the Power Crust (PC) Amenta et al. (2001)
and the SAT Miklos et al. (2010), and a voxel-based method – the Voxel Core (VC) Yan et al. (2018). The
former two are the generation methods used by Q-MAT. Since all these methods have pruning process, we
add our results simplified by Q-MAT+ to the same number of vertices as PC. In addition to the commonly
used evaluation metric ε, we also show our qualitative results to give a visual comparison in Figure 8 and
demonstrate how our approach outperforms the others.
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Figure 8: The comparison of initialization results between our Q-MAT+ and other methods. #v is the number of medial
spheres, and ε is the approximation error. (a) The results by PC. (b) The results by SAT. Q-MAT usually takes the results of
PC or SAT as initial medial mesh. (c) The results by VC. (d) The results by Q-MAT+, and (e) is the simplified medial mesh
by Q-MAT+ in order to compare with the based method PC. (f) The color-coded distribution of SDF information for each
model, red denotes thicker, while blue denotes thinner.
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Model(#VS) PC(s) SAT(s) VC(s) Our method(s)
Airplane(5,631) 3.0 52.5 7.0 3.7

Cat(7,207) 3.2 67.5 50.7 6.5
Fish(6,833) 3.8 92.9 11.7 5.0

Octopus(1,343) 1.3 62.0 17.1 1.8

Table 1: “#VS” is the number of vertices in the input shape. The first column shows model, and the other columns show the
timing used by different methods to generate initial medial mesh. Note that we do not count the time spent on voxelization
for the VC method.

Model(#VM) HEM Q-MAT+ Ratio of time
Glasses(6,663) 39.9s/42 3.8s/27 10.5
Ant(19,664) 100.9s/75 9.7s/66 10.4

Chair(27,257) 287.7s/83 14.1s/61 20.4
Hand(41,247) 429.8s/64 20.6s/59 20.9
Table(42,266) 568.7s/120 20.0s/112 28.4

Table 2: “#VM” is the number of vertices in the initial medial mesh. The second and third columns show the simplification
time and the number of vertices of HEM and Q-MAT+, and the fourth column shows the ratios of simplification time of HEM
over to that of Q-MAT+. All the models are simplified until the approximation error is 0.01.

Comparison with the PC method. For PC, we use the default setting in which the sampling density
constant is set as 0.6 and the parameter deciding whether to propagate the same label (“inside” or “out-
side”) to neighboring poles is set as 0.4. Furthermore, the implementation of PC we used is in the VTK
environment, it runs faster than any other versions. As a relatively early method, PC is widely used for
its strong scalability and efficiency by the use of boundary samples. However, from the other hand, the
reliance on surface sampling points makes it difficult to guarantee the robustness and correctness like the
outliers in the tail of Fish model and ears of Cat model in Figure 8(a). As explained in Section 3.2, the
circumscribing spheres to approximate Voronoi diagram aggravate the loss of details, which can be seen in
tentacles of Octopus model and other thin tubular or sheet structures in other models. On the contrary, our
Q-MAT+ inherits its advantages while maintaining these features completely.

Comparison with the SAT method. For SAT, we set the sampling distance to the default value, which is
0.01, and the scaling parameter to s = 1.1. SAT spends much time in converting the input mesh to a union
of balls and the implementation focuses more on robustness rather than the speed. Hence SAT is always
the most time-consuming one in sampling-based methods, which can be seen in Table 1. Compared with
PC, SAT does not produce so many outliers, but it unfortunately could not guarantee the connections for
thin features of MAT on the shapes unless given vast sample points. As shown in Figure 8(b), the medial
mesh generated by SAT are much more redundant than PC and our Q-MAT+.

Comparison with the VC method. Because the input shape is represented by mesh, we first use
Polymender Ju (2004) to perform the voxelization. We set the depth of octree to 9 so that the volume
has an effective resolution of 512 in each X, Y, Z direction and the size of the model relative to the size of
the bounding box of the volume grid is set to 0.9. Then the VC approximates medial axis from volume with
setting the pruning parameter λ to 0.015 (for octopus which have more extremely thin features we set it to
0.005 to preserve more details) to filter those voxel cores whose radius value is less than λ. In this way, VC
can get a good enough geometric approximation to the medial axis under normal circumstances. However,
quite different from other methods, VC generates the approximation of medial axes from interior voxels of
shape, leading to a certain deletion of the boundary information. In addition, VC produces extremely large
number of medial vertices and edges which makes it inapplicable for the input of our simplified algorithm,
considering that the computation time of Q-MAT is directly proportional to the number of medial edges.
According to the design of VC algorithm, the smaller the λ value, the more the number of medial axis
points retained. However, even when λ is equal to 0.005 such a low value cannot maintain the flat or minute
geometric features. Compared with the Voxel Core, we would like to claim that the importance of topological
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artifacts represented by Euler characteristic is far less than that of capturing complete geometric features
of model.

Previous sampling-based methods always need excessive samples to capture thin features, however, our
adaptive sampling and selective integration of the inscribed sphere scheme make Q-MAT+ no longer trapped
in such a dilemma. In essence, Q-MAT+ can capture the most complete details with less points in a relatively
short time.

4.2. Error-bounded Simplification

Figure 9: The comparisons of simplifications controlled by a user-specified number of medial vertices (Q-MAT) with a user-
specified threshold of one-sided Hausdorff distance (Q-MAT+). (a) The initial medial meshes and input surfaces of Chair,
Pig, and Seahorse models. (b) The simplified medial meshes by setting the number of medial vertices #v = 100 and their
reconstructed models by Q-MAT. Q-MAT only provides this way to control simplification, however it is not universal. (c) The
simplified medial meshes by setting the distance threshold to 0.01 and their reconstructed models by Q-MAT+.

In Q-MAT, users could stop the simplification by setting either a threshold of the sum of collapse cost,
or the number of remaining medial vertices. For the former, it is a combination of the local significance
measure (stability ratio) and heuristically defined error metric (SQE) without global geometric error-bound.
For the latter, it cannot be used to control the simplification uniformly. As shown in Figure 9(b), 100 medial
vertices are sufficient to approximate the original model for the Chair model, while for the Pig and Seahorse
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models it causes many details lost and leads to greater errors, even though the former two models have
similar number of initial medial vertices. By contrast, Q-MAT+ rapidly estimates the one-sided Hausdorff
distance after each edge collapse to help users control the simplification with intuitive geometric meaning.
In Figure 9(c), different models have different number of medial vertices, but have the nearly same distance
threshold 0.01. Compared with the state-of-the-art simplification method HEM Sun et al. (2016) which is
directly guided by one-sided Hausdorff error metric, Q-MAT+ uses much less time to simplify medial meshes
near the specified threshold because of the advantages of local update and the efficiency of quadratic error
minimization. Table 2 gives the simplification time of Q-MAT+ and HEM from the initial medial meshes of
various objects to the simplified medial meshes with ε under 0.01. As shown in Table 2, HEM takes at least
10 times as much time as Q-MAT+ for the same error threshold. The superiority of Q-MAT+ will become
more and more obvious with the number of initial medial vertices increasing. By carefully choosing the
position of the merged medial sphere after edge collapse with feature preservation, Q-MAT+ gets similar
concise results with HEM under this threshold. We show more simplification results controlled by different
one-sided Hausdorff distance thresholds and their computation time in supplementary materials.

Figure 10: More comparisons with Q-MAT. (a) The results of Q-MAT. (b) The results of Q-MAT+. For the Man model (first
column) Q-MAT produces a wrong simplification result in which some medial vertices and edges (red) are outside the model.
Q-MAT+ outputs correct results. For the Octopus and Armadillo models (second and third column), Q-MAT cannot protect
some important tubular structures like tentacles and fingers during the simplification. With feature recognition and protection
of important medial edges (red), Q-MAT+ can preserve these structures.

14



In addition to initialization and error-bounded simplification, Q-MAT+ has made other improvements
over Q-MAT. The Woman model in Figure 10(a) shows an error result of Q-MAT when it is simplified
to 1950 vertices. This is caused by the fact that the merged medial sphere computed as the minimizer of
collapse cost function does not consider the boundary constraints. Q-MAT+ considers this situation and
improves it as shown in Figure 10(b). Moreover, at a later stage of simplification, the results of Q-MAT may
lose important details like the tentacles of Octopus and toe fingers of Armadillo model with only 100 medial
vertices in Figure 10(a), while Q-MAT+ is feature sensitive enough to preserve this information, which can
be demonstrated by the red medial edges identified and protected as shown in Figure 10(b).

5. Conclusion and Future Work

We have presented an enhanced version of Q-MAT, called Q-MAT+, which is error-controllable and
feature-sensitive for the simplification of MAT. Compared with PC and SAT which are used to generate
initial medial mesh by Q-MAT, we combine the shape diameter function and other mesh information to
propose an adaptive MAT generation method which can output a structurally complete initial MAT even
for a shape containing extremely thin parts. After mesh conversion, for a dense and redundant initial medial
mesh, Q-MAT+ can efficiently simplify it to get a structurally simple, geometrically accurate, and compact
MAT representation even with a user-specified Hausdorff error threshold, which is more reasonable than a
fixed vertex number. Since Q-MAT+ is feature sensitive, it can preserve significant tubular features during
the simplification.

However, our current Q-MAT+ is still unable to preserve sharp features very well on some 3D shapes,
such as sharp edges and corners of CAD models, since it involves three difficult aspects: 1) automatic
accurate detection of sharp features; 2) the use of spheres (of zero radii) to fit sharp feature; and 3) building
up the relationship between the features and MAT. We will continue to investigate these aspects in our
future work. Applying MAT as an underlying shape descriptor for more applications, such as 3D animation,
object segmentation and classification, is also our future plan.
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