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Abstract

3D deep learning performance depends on ob-
ject representation and local feature extraction. In
this work, we present MAT-Net, a neural network
which captures local and global features from the
Medial Axis Transform (MAT). Different from K-
Nearest-Neighbor method which extracts local fea-
tures by a fixed number of neighbors, our MAT-Net
exploits effective modules Group-MAT and Edge-
Net to process topological structure. Experimental
results illustrate that MAT-Net demonstrates com-
petitive or better performance on 3D shape recog-
nition than state-of-the-art methods, and prove that
MAT representation has excellent capacity in 3D
deep learning, even in the case of low resolution.

1 Introduction
Shape representation and neural network architecture are the
research hotspots of 3D deep learning. Although deep learn-
ing has achieved remarkable results in the field of 2D im-
ages, it is difficult to be applied directly to 3D shapes, due
to the complexity of the spatial and topological relationship
between surface samples. Voxel representation [Wu et al.,
2015] is a regular 3D binary grid, which can be input to a
standard convolution operation. But the memory and compu-
tation costs grow cubically as the resolution increases. Multi-
view-based methods [Su et al., 2015] express 3D objects as
multi-view 2D images, by taking the advantage of pre-trained
2D CNN architectures. However, all views need to be pre-
generated, and it is unclear how to determine the number and
distribution of views to cover the 3D shape while avoiding
self-occlusions. Point cloud is a typical 3D object representa-
tion that can be easily obtained from scanning devices, which
has been exploited in point-based deep learning methods [Qi
et al., 2017a]. But they also ignore the information of topol-
ogy structure in geometric presentation, leading to relatively
low accuracy results in classification tasks.

This situation motivates us to find a 3D shape represen-
tation that has the following properties while avoiding the
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Medial Spheres, Edges and Faces Interpolation Result

Figure 1: The representation of Medial Axis Transform (MAT). The
medial mesh is composed of 256 spheres and their connecting edges
and faces. The right image shows the linear interpolation of the
spheres along medial edges and faces. It can be seen that medial
spheres in airfoil have small radii than those in fuselage, which il-
lustrates that medial spheres encode local volume information for
3D shapes.

above mentioned problems: adapting to typical CNNs, ex-
pressing local and multi-scale information of shape, utiliz-
ing topological structure, and having low computational com-
plexity. A representation is called a complete shape descrip-
tor if it can be used to reconstruct the original shape. Medial
Axis Transform (MAT) [Blum, 1967] is exactly a complete
shape descriptor, and it contains information that jointly de-
scribes geometry, topology, symmetry, and thickness proper-
ties of a shape in a very compact fashion.

Medial axis of a shape is the set of all points having at least
two closest points on the shape boundary. Medial axis trans-
form (MAT) is a shape descriptor including the medial axis
together with the associated radius function of the maximally-
inscribed spheres, which can be used to reconstruct the orig-
inal shape. There has been strong evidences on the impor-
tance of medial axis on human’s perception of shapes. For
example, physiologists have found that neurons in the pri-
mary visual cortex (V1) show strong response to the 2D me-
dial axis of a textured figure [Kimia, 2003], and neurons in
the inferior temporal cortex (IT) encode 3D medial axis in-
formation [Hung et al., 2012]. Despite the important links
between MAT and human cognitive system, there is still no
study of 3D deep learning methods from the perspective of



MAT, to the best of our knowledge. In this paper, we inte-
grate the MAT of 3D shapes into the design of deep neural
network, called MAT-Net, for 3D shape recognition.

In Q-MAT [Li et al., 2015], the MAT is approximated by
a medial mesh, which is a 2D simplicial complex consisting
of spheres, edges, and triangle faces. A sphere is expressed
as a four-dimensional vector: position coordinates (x, y, z)
and radius (r). The medial mesh gives a linear approximation
to the true MAT through linear interpolation of the spheres
along its edges and faces. Q-MAT [Li et al., 2015] proposes
a method for simplifying an initial medial mesh to obtain a
geometrically accurate and structurally simple MAT repre-
sentation. Figure 1 shows an example of simplified medial
mesh.

There are several difficulties that we need to address when
designing and exploiting MAT-Net for 3D deep learning.

1. Deep learning needs large data set for training, but there
is no MAT data set with a large number of samples.
ModelNet40 [Wu et al., 2015] is one of the most pop-
ular data set on 3D object classification. Converting
it to MAT representation is a non-trivial task. This is
because MAT computation often needs closed manifold
mesh surface. In ModelNet40, a lot of shapes are not
watertight or are non-manifold. We repaired the meshes
of majority objects in ModelNet40, and used Q-MAT
to construct an open MAT data set called ModelNet40-
MAT for research community.

2. Similar to point clouds, the medial spheres (x, y, z, r)
are unordered and cannot be directly input to typical
CNNs. PointNet [Qi et al., 2017a] provides a solution
for feature extraction of point clouds or other coordinate-
based representation. Except for position coordinates
(x, y, z), other local features (e.g. radius r of sphere as
in our case) may be added as additional dimensions.

3. Another difficulty is local feature extraction from its
topological structure. Although the medial sphere al-
ready expresses the local volumetric feature by its ra-
dius, it is better to extract different resolutions of local
features from these spheres. A convenient method is to
use the strategy in PointNet++ [Qi et al., 2017b] to sam-
ple and group neighboring spheres around a given cen-
ter sphere. However, this method still cannot utilize the
topological structure of MAT.

In this paper, we propose two facilitating modules: Group-
MAT and Edge-Net. The Group-MAT groups the unordered
spheres into a regular local data structure by referring to their
edge information. Then Edge-Net is designed to extract fea-
tures of local shape. The idea is to use max-pooling function
to select the max response sphere features from the neighbor
spheres. The detailed description is given in Section 3.3.

The contributions of this paper are as follows:

• We present the first deep neural network architecture that
can learn the features of MAT, for 3D object recognition.

• By utilizing MAT’s edge information, we design Group-
MAT and Edge-Net modules to capture local features
from its topological structure, which achieves remark-

able performance on 3D shape classification task, even
for MATs with very few number of spheres only.

• We construct an open MAT dataset: ModelNet40-MAT,
by repairing the majority of 3D models in ModelNet40.

2 Related Work
2.1 Shape Representation for 3D Analysis
Hand-Crafted Features. 3D shapes can be represented us-
ing either histograms or bag of features models, such as point
feature histograms and normal histograms. Other representa-
tions include Light Fight Descriptor [Chen et al., 2010], Heat
Kernel Signatures [Bronstein et al., 2011], and Spherical Har-
monics [Kazhdan et al., 2003], to name a few.

Voxel Grids. 3D ShapeNets [Wu et al., 2015] uses convo-
lutional deep belief network to learn probability distribution
of binary information on 3D voxel grids. Similar to regu-
lar data in 2D images, voxel grids are proposed to repre-
sent 3D shapes because they are compatible with 3D con-
volutional neural networks. A similar approach was pro-
posed in VoxNet [Maturana and Scherer, 2015]. Volumetric-
MVCNN [Qi et al., 2016] and FusionNet [Hegde and Zadeh,
2016] also combine the voxels and images. Using voxel grid
representation achieves good results on a variety of recogni-
tion tasks. However, it is constrained by the grid resolution
and computational cost.

2D Images. By taking advantages of pre-trained 2D con-
volutional neural networks [Krizhevsky et al., 2012], multi-
view methods [Su et al., 2015; Qi et al., 2016; Li et al.,
2018] have achieved excellent performance on shape classifi-
cation tasks. PANORAMA-based methods [Shi et al., 2015;
Sfikas et al., 2017] extract the panoramic representation that
preserves feature continuity of the 3D models and achieves a
performance above or comparable to the state-of-the-art.

Kd-tree and Octree. Kd-Net [Klokov and Lempitsky,
2017] uses a kd-tree structure to form a computational graph,
and computes a sequence of hierarchical representation. O-
CNN [Wang et al., 2017] presents an octree-based convolu-
tional neural network, which represents the 3D shapes with
octrees and performs 3D CNN operations on the sparse oc-
tants occupied by the surfaces of 3D shapes. The octree struc-
ture stores the octants information computed from surfaces.
Then it can be input into the common deep network to real-
ize shape analysis tasks including object classification, shape
retrieval, and shape segmentation.

2.2 Feature Capturing on Point Clouds
PointNet [Qi et al., 2017a] and PointNet++ [Qi et al., 2017b]
are the pioneering methods to directly process point cloud
by utilizing symmetric function for disordered input. Al-
though PointNet has excellent result on point cloud learning,
it ignores the features extraction of local structures. Point-
Net++ proposes a set abstraction level to extract multiple
scales of local patterns and combine them intelligently ac-
cording to local point densities. It constructs local region
sets by finding “neighboring” points around the center points.
Inspired by this idea, PointCNN [Li et al., 2018] proposed
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Figure 2: MAT-Net Architecture. The network takes N medial spheres, N ×K edge index and N ×K edge mask as inputs. Red dashed
boxes denote transformation network from Spatial Transformer Networks. Purple dashed boxes denote feature capture module.

X-Conv operator that weights and permutes input points and
features before they are processed by a typical convolution.
GraphCNN [Wang et al., 2018] also recomputes a graph by
using nearest neighbors in the feature space produced by each
neural network layer.

3 The Method

3.1 Simplified Medial Mesh

Q-MAT [Li et al., 2015] uses quadratic error minimization
to compute a structurally simple, geometrically accurate, and
compact simplicial complex representation of the MAT. A
triangle mesh Ms, called medial mesh is used to approx-
imate the MAT of a 3D shape S. Each vertex si of Ms

represents a medial sphere and is denoted as a 4D point
s = (x, y, z, r)> which contains the center (x, y, z)> and
radius r of the sphere. eij is the edge of Ms between two
medial spheres si and sj , in which case si and sj are called
neighboring spheres.

Each edge of the medial mesh defines an enveloping vol-
ume primitive. The primitive given by the edge eij= {si, sj}
is swept by the family of spheres defined by the linear inter-
polation of si and sj , that is, (1−t)si+tsj , t ∈ [0, 1]. It com-
prises two spherical caps joined by a truncated cone, called a
medial cone. A medial cone can be seen as a part of a 3D
shape, such as the human arm. Meanwhile a medial sphere
may have several edges connecting with other medial spheres.
All composed medial cones can express various shapes. We
call si and all of its neighbor spheres as the neighbor data.
Experiments show that using neighbor data of MAT can im-
prove classification accuracy remarkably.

As shown in Figure 1, the MAT sampled and interpolated
with a few medial spheres can still represent a 3D object very
well. The question is how to use these data for designing an
appropriate architecture of neural networks.

3.2 MAT-Net Architecture
Our full network architecture is visualized in Figure 2. The
inputs of MAT-Net include medial axis sphere information
and edge information. The sphere information is represented
by an N × 4 matrix:

S =
{
si ∈ R4, i = 0, · · · , N − 1

}
,

where N is the total number of spheres, i is sphere’s index,
and si = (xi, yi, zi, ri)

>. The edge information is repre-
sented by two N × K matrices. One is called Edge Index
Matrix:

D = {dik, i = 0, · · · , N − 1; k = 0, · · · ,K − 1} ,

where dik is the index of the k-th neighbor sphere of si. We
set the number of neighbors to be a constant K. If a medial
sphere’s number of neighbors is less than K, we set the re-
dundant dik = −1. Another one is called Edge Mask Matrix:

M = {mik, i = 0, · · · , N − 1; k = 0, · · · ,K − 1} .

If dik ≥ 0, then mik = 1; otherwise mik = 0. Figure 3
shows the illustration of these two matrices.

As shown in Figure 2, the medial spheres are processed
into two branches. The top branch is similar with the origi-
nal PointNet. The Spatial Transformation module can predict
an affine transformation matrix by neural networks and di-
rectly apply this transformation to input data. It aligns all in-
put set to a canonical space before feature extraction, which
improves the classification performance. Feature Transfor-
mation extends this idea to the alignment in the feature space.
To be exact, Transformation module learns a K ×K feature
map from N ×K input features. Then multiplies the N ×K
input features and K×K feature map, and get a transformed
N ×K features. This performs better than using N ×K in-
put features directly. Feature Transformation just has lager K
value than Spatial Transformation. After transformation, we
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Figure 3: Group-MAT and Edge-Net. We take four medial spheres as an example to describe a local shape. Center medial sphere (red) has
three neighbor spheres (yellow). In Group-MAT module, Edge Index Matrix (Here we assume K = 5) is used to group the center sphere’s
neighbors, and gray sphere is the filled sphere with (0, 0, 0, 0)>. In Edge-Net, utilizing the convolution operation and relu function, grouped
spheres are computed to a feature map F0 = {f0, · · · , f4}. Because using relu function, fi ≥ 0. In order to eliminate the interference caused
by f4, we take the element-wise product between F0 and Edge Mask Matrix M0. Finally, a max-pooling operation will find the maximum
responsive sphere feature of the current feature map.

use multiple layer perceptrons and max-pooling to obtain a
feature vector fsphere.

In the bottom branch, we utilize topology structure that
groups the neighbor data according to Edge Index Matrix and
Edge Mask Matrix. Group-MAT constructs a N × K × 4
sphere tensor T by filling medial spheres to their correspond-
ing positions. This operation is shown in Figure 3. TheK×4
matrix Ti, i = 0, · · · , N − 1 can be seen as a local shape
patch centered around sphere si. Let us use δ = si − sj to
denote the offset between the spheres i and j. We define Edge
Label Vector (ELV) to be: lij = (δx, δy, δz, δr, ri, rj , ‖δ‖)>.
Here the dimension of ELV is E = 7. We construct an ELV
tensor that is of dimension N × K × E to represent local
neighbor information of all spheres [Simonovsky and Ko-
modakis, 2017]. Then we use two sub-branches with Edge-
Net to learn local shape’s features. After Feature Capture
Module, we obtain two feature vectors: fgroup sphere and
fgroup elv . Then the three features fsphere, fgroup sphere,
and fgroup elv are concatenated into global features. Finally
MAT-Net uses fully connected networks and soft-max layers
to classify these features.

3.3 Group-MAT and Edge-Net
Suppose the sphere si has Ki neighbor spheres. In order to
extract features from a local shape centered around si, a sim-
ple and convenient way is to group the neighbor spheres into
a Ki × 4 matrix. We can extract a feature map by using a
Ki×4 kernel. But in the medial mesh, spheres have different
number of neighbors Ki, thus a fixed-size kernel cannot be
applied directly. We choose a large enough number K for all
spheres (i.e. Ki ≤ K), and then fill the redundant value of
the kernel with 0 if Ki < K. In this method, a K × 4 ker-
nel can be used to represent the neighbor data of each sphere.
Obviously, the neighbor data of different spheres have differ-
ent numbers of filling elements. In addition, the spheres in
the neighbor data do not have a reasonable order.

We treat a local shape as a K × 4 matrix with some fill-
ing value of (0, 0, 0, 0). As shown in Figure 3, Group-MAT
groups the spheres by referring to Edge Index Matrix and re-

shapes si’s local shape data into a K × 4 matrix Ti. Then
Edge-Net uses a kernel w of size 4 × 1 and bias vector b of
size K × 1 to compute a feature map:

Fi = relu(Ti ∗w + b), i = 0, · · · , N − 1. (1)

We use rectified linear unit as activation function to insure
that Fi ≥ 0. In Figure 3, F0 = (f0, · · · , f4). Directly us-
ing max-pooling operation will fail to extract maximum re-
sponsive feature Fi,max because of those Fi,r where r cor-
responds to the filling entries, i.e., di,r = −1. For exam-
ple, f4 of Figure 3. In order to solve this problem, we make
an element-wise product between Fi and Edge Mask Matrix
Mi, to let Fi,r = 0 for all filling entries r. Finally, by using
max-pooling we get Fi,max from the neighbor data of si:

F∗i = prod(Fi,Mi),

Fi,max = max− pooling(F∗i ).
(2)

Since multiple convolution kernels are used, different kernels
make different maximum responsive sphere features. This
means that the local features of neighbor spheres can be rep-
resented as a set of maximum responsive sphere features from
all feature maps. Our following experiments show that using
Group-MAT and Edge-Net greatly improves the classification
performance.

4 Experiments
4.1 Datasets
We evaluate MAT-Net on ModelNet40-MAT (rigid object)
and SHREC15 [Lian et al., 2015] (non rigid object).

• ModelNet40-MAT: ModelNet40 is a popular 3D data
set to verify the classification capability of 3D deep
learning methods. To prepare the input MAT data for
our MAT-Net, we need to compute MAT for the 3D
data in ModelNet40. The MAT computation typically
needs the 3D surface to be uniformly sampled, and be
a closed manifold. But the majority of 3D models in



Method Representation Input Size Overall Accuracy(%)

PointNet xyz points 1024× 3 90.2
PointNet++(msg) xyz points 1024× 3 90.5

xyz points + normals 1024× 6 91.3
PointCNN xyz points + normals 1024× 6 91.6
O-CNN(6) octree 643 87.4
MVCNN, 12× images 224× 224× 3 90.2

MAT-Net(fsphere) xyzr 256× 4 90.8
MAT-Net(fsphere + fgroup sphere) xyzr 256× 4 92.0
MAT-Net(fsphere + fgroup elv) xyzr 256× 4 92.8
MAT-Net(fsphere + fgroup sphere + fgroup elv) xyzr 128× 4 91.1

xyzr 256× 4 93.2
xyzr 512× 4 92.9
xyzr 1024× 4 92.4

Table 1: Object classification in 83.2% objects of ModelNet40 data set. Contents in parentheses represent the features used.

Sphere Number Accuracy(xyz) Accuracy(xyzr)

128 88.8% 90.2%
256 89.7% 90.8%
512 90.4% 91.3%

1024 90.3% 91.1%

Table 2: Comparing the effects without and with radius used.

ModelNet40 do not satisfy these requirements. Conse-
quently, Q-MAT [Li et al., 2015] can not be applied di-
rectly to compute MAT. We successfully repaired 83.2%
of all 3D models in ModelNet40 and constructed a MAT
data set, named ModelNet40-MAT, which has multi-
resolution MAT data for each 3D model.

• SHREC15: The database has 1200 watertight meshes
which are equally classified into 50 categories. Each
category contains 24 shapes which generated from an
original 3D shape by implementing various pose trans-
formations. Because all shapes are watertight and mani-
fold, we can directly generate simplified medial meshes
by Q-MAT. We use five fold cross validation to acquire
classification accuracy.

4.2 Mesh Repair
The repairing method is inspired by the virtual camera algo-
rithm [Wang et al., 2017]. We first place several cameras
on the external ball, and sample the first intersected point
between the ray emitted by the camera the faces of the 3D
model. The parallel rays are uniformly cast toward the object.
In this way, we can delete the point whose normal is different
from the ray direction to fix the normals of the faces. This
method can fix most of faces. However, there could be some
occluded surfaces inside the 3D model, no matter how many
cameras are placed around it. So we use a dynamic camera-
placing strategy. If two intersected points of neighboring rays
from the same virtual camera are far away from each other,
there may be a gap on the faces of the model, so we can place
the new camera in the further point position. This method

generates surface samples that are more uniform and com-
plete. Finally we use Poisson surface reconstruction to obtain
a closed manifold surface from these samples.

Our ModelNet40-MAT has 10, 243 MAT objects in 40 cat-
egories, about 83.2% of the original ModelNet40. We use
8, 208 objects for training and 2, 035 objects for testing. For
each 3D object, we use Q-MAT to compute the MAT data
of different numbers of spheres: 128, 256, 512, and 1024.
All medial sphere centers and radii are normalized into a unit
ball. To ensure a fair comparison, all compared methods are
run on the same 83.2% objects of ModelNet40.

4.3 Implementation Details
Our network is implemented with TensorFlow on an NVIDIA
TITAN Xp. All experiments are trained with a large-enough
number of neighbors K = 16. We jitter the initial me-
dial spheres (with random translation of Gaussian distribu-
tion N (0, 0.008) and clipped to 0.01 to generate the aug-
mented spheres. Edge-Net has only 1 convolution layer with
output channel of 32. In group sphere and group elv sub-
branches, Edge-Net is also used after the Spatial Transfor-
mation module. Batch-normalization and relu activation are
applied to other layers.

The first CONV module of Feature Capture Module has
two convolution layers and the second has three convolution
layers. Their filters size are {64,64,128,256,1024}. The con-
volution kernel size of the first layer is 1× 4, and the rest are
1 × 1. FC module has two fully connected layers and filters
size are {512,256}. The three branch features are 1 × 256
vectors. The concatenated feature is a 1 × 768 vector. The
loss function includes cross entropy loss for classification and
L2 loss of feature transformation matrix. The batch size of
ModelNet40-MAT classification is 32, and 16 for SHREC15.

For fair comparison, we reproduced the representative 3D
CNN methods on the same 83.2% objects of ModelNet40.
The grouping method of PointNet++ is multi-scale grouping
(MSG). The PointCNN is trained on modelnet x3 l4, which
includes the configured network structure and hyper param-
eters. We generated the octree data, and rotated them to 12
orientations. The resolution of leaf octants is 643. MVCNN



overall avg.class radio table vase wardrobe bench plant lamp door person

PointNet++ 0.912 0.86 0.75 0.86 0.78 0.86 0.67 0.69 0.45 1.00 1.00
MAT-Net(fsphere) 0.908 0.86 0.65 0.84 0.77 0.84 0.53 0.78 0.82 1.00 0.94
MAT-Net(3 features) 0.932 0.89 0.90 0.97 0.90 0.97 0.87 0.72 0.64 0.94 0.94

Table 3: Accuracy of different classes of 3D objects.

Method Input Size Input feature Accuracy(%)

PointNet++ 1024× 3 XYZ 60.18
PointNet++ Intrinsic features (Euclidean) 94.49
PointNet++ Intrinsic features (Non-Euclidean) 96.09

MAT-Net(fsphere) 256× 4 XYZR 95.58
MAT-Net(fgroup sphere) 256× 4 XYZR 96.25
MAT-Net(fsphere + fgroup sphere) 256× 4 XYZR 96.42

Table 4: Non-Rigid object classification on SHREC15.

airplane person chair

low response mid response high response

sofa

Figure 4: The responsive spheres of MATs with 256 medial spheres.
From top to bottom, every row shows the responsive spheres of dif-
ferent objects under incremental frequency threshold. The third row
only shows the mid and high responsive spheres. In the first column,
the high responsive spheres are gathered in fuselage of airplanes,
which have the ability to distinguish airplane from other categories.

is pre-trained on the ImageNet1K data set. We fine-tuned this
model on multi-view data (views=12). The object classifica-
tion results of all methods are computed without voting.

4.4 3D Object Classification
Table 1 compares the classification performance of different
methods. We can see that even using only 256 medial spheres
MAT-Net (fsphere) can get an accuracy better than Point-
Net’s 90.2% and PointNet++’s 90.5% (without normals).
By using three features simultaneously, MAT-Net (fsphere +
fgroup sphere + fgroup elv) gets an overall classification ac-
curacy of 93.2%. Compared with using only the sphere fea-
ture fsphere, adding the local shape feature fgroup sphere and

fgroup elv produces improvements for accuracy, respectively.
Note that the classification accuracy does not necessarily im-
prove with the increase of MAT resolution. The low reso-
lution MAT contains simple but concise topology, while in
high resolution MAT the topology has redundant informa-
tion. Thus, it will slightly affects the classification accuracy
as shown in Table 1. It can be seen that the MAT resolution
of 256 spheres produces the best results.

Sphere radius is an important characteristic of MAT, which
encodes the volume of local shape. In order to explore the ef-
fect of radius for classification, we compare the performances
of different resolutions of MAT without and with radius used.
As shown in Table 2, by using only fsphere, the accuracy
is improved by around 0.8% − 1.4% after using radius. As
shown in Table 3, we compare the average class accuracies
of three methods, and list the object classes with significant
differences in classification accuracy. MAT-Net (3 features)
greatly improves overall accuracy and average class accuracy.
Only in very few object classes, as shown in the last two
columns of Table 3, MAT-Net has slightly-worse accuracy
than PointNet++. Here we use 1024 points and normals for
PointNet++, and 256 spheres for MAT-Net. For the ambigu-
ous category in ModelNet40, such as plant (confused with
flower pot and vase), the result of MAT-Net is not very satis-
factory.

4.5 Classification on 3D Non-Rigid Object

We test our method on randomly divided SHREC15 bench-
mark. As shown in Table 4, PointNet++ achieves excellent
classification performance when using non-Euclidean metric
space and intrinsic features (including wave kernel signature,
heat kernel signature and multi-scale Gaussian curvature).
However, with the spatial coordinates as input features, Point-
Net++ achieves a classification accuracy of 60.18%. MAT-
Net gets a much higher classification accuracy even using the
fsphere merely. The best classification accuracy of MAT-Net
is 96.42% when concatenating the fsphere and fgroup sphere.
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Figure 5: Responsive spheres of different branches of the MAT-Net architecture.

Method Input Overall accuracy (%) Forward time (ms)

PointNet++ 1024 points + normals 91.3 6.5
MAT-Net(fsphere) 256 spheres 90.8 4.7
MAT-Net(fgroup sphere) 256 spheres 91.7 5.2
MAT-Net(3 features) 256 spheres 93.2 12.6

Table 5: Running time comparison.

4.6 Feature Visualization

In order to explore the features that MAT-Net learned, we
visualize the information that has been learned from max-
pooling layer of Feature Capture Module. Max-pooling layer
outputs a 1024-dimensional feature vector from 1024 feature
maps of sizeN×1. A feature map includes the features ofN
spheres. The max-pooling layer will find out the maximum
features of all feature maps. These sphere features are input
to fully-connected layers, finally affecting the soft-max layer.
We call these spheres responsive spheres, which have con-
tribution to classification. As shown in Figure 4, we count
the indexes of responsive spheres from max-pooling layer,
and color these spheres by their frequency. Large frequency
spheres have more contribution to classification. In order to
eliminate the occlusion between the spheres and make it easy
to be visualized, in each row we only show the spheres whose
frequencies are larger than a certain threshold. We can ob-
serve that each class object learns its unique features that are
important for the classification.

In Figure 5, we show the responsive spheres from three
types of features proposed in our MAT-Net. The second and
third rows show that adding edge information highlights lo-
cal structures, especially for frame structures of 3D objects.
It partially explains why concatenating all three types of fea-
tures gets the best classification results.

4.7 Running Time
We record the forward time with a batch size 5 and using
TensorFlow 1.4 with a single NVIDIA TITAN Xp. The first
batch is neglected since there is some preparation for GPU.
As shown in Table 5, MAT-Net gets faster and without large
accuracy reduction when using fspheres merely. Concatenat-
ing three branch features leads to best classification result but
increases the running time a bit, since the forward propaga-
tion will be executed three times.

5 Conclusion and Future Work
In this paper, we propose the MAT-Net architecture that ex-
tracts features of spheres and their topological structures from
MAT of 3D shapes, which shows better performance on 3D
classification task than state-of-the-art methods.

We would like to extend MAT-Net to explore other 3D rep-
resentations with topology information. It is interesting to
note that in our MAT-Net architecture, Group-MAT is used
only once, and the neighbor index matrix is static. We would
like to explore the dynamic updates of neighbor index matrix
and the use of Edge-Net to learn hierarchical features.
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