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ABSTRACT
Recently, generative adversarial networks (GAN) have been widely
used to solve image-to-image translation problems such as edges
to photos, labels to scenes, and colorizing grayscale images. How-
ever, how to recover details of smoothed images is still unexplored.
Naively training a GAN like pix2pix causes insufficiently perfect
results due to the fact that we ignore two main characteristics in-
cluding spatial variability and spatial correlation as for this problem.
In this work, we propose DeSmoothGAN to utilize both character-
istics specifically. The spatial variability indicates that the details
of different areas of smoothed images are distinct and they are
supposed to be recovered differently. Therefore, we propose to
perform spatial feature-wise transformation to recover individual
areas differently. The spatial correlation represents that the details
of different areas are related to each other. Thus, we propose to
apply full attention to consider the relations between them. The
proposed method generates satisfying results on several real-world
datasets. We have conducted quantitative experiments including
smooth consistency and image similarity to demonstrate the ef-
fectiveness of DeSmoothGAN. Furthermore, ablation studies are
performed to illustrate the usefulness of our proposed feature-wise
transformation and full attention.
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1 INTRODUCTION
The modern beauty smooth cameras generate attractive and myste-
rious selfies, due to the image modifications performed by the black
box beauty algorithms.While such algorithms have helped us create
pleasing beautifications, if used without the viewer’s knowledge,
they can cause serious problems such as producing fake impres-
sions before dating or affecting photo forensics [9] when handling
criminal cases. To avoid such problems, it is important for us to
come up with a toolkit to reverse this process and one of its key
procedures is to recover the details of your selfies that are lost due
to the smoothing operations. In multimedia, it is related to how to
recover details of all kinds of smoothed images including selfies
as illustrated in Figure 1. The goal of this work is to explore the
foundational techniques about how to recover details of smoothed
images. Such detail recovering techniques can even help artists
repair murals [28]. It is worth mentioning that recovering details
of smoothed images is different from super resolution [6] since the
missing details between smoothing algorithms and downsampling
operations are different.

Recently, several image-to-image translation problems [16, 21, 23,
29, 40, 44, 53, 55, 56] have been explored with the popular GAN [13].
For example, pix2pix [23], as a general image-to-image translation
framework, generates amazing results in edges to photos, labels to
scenes, and so on. In contrast to pix2pix that uses a single phase,
Zhang et al. [53] proposed to fill large holes in natural images
progressively in multiple phases based on the observation that
humans are good at thinking missing contents from the exterior
to the interior of the hole. However, the boundary areas between
the holes and the original image are often unsatisfactory. A fusion
block is proposed in [16] in order to provide a smooth transition
at the boundary area by generating a flexible alpha composition
map. As for faces manipulated by Photoshop, Wang et al. [44]
not only developed a network to classify whether the face images
are manipulated or not, but also proposed a local warping field
prediction network to recover the unmanipulated faces.

However, it remains unclear and challenging about how to re-
cover details of smoothed images. Designing several functions man-
ually to recover different objects is extremely complex owing to
the boundless details. Instead, we propose to learn this kind of
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Figure 1: Illustration of recovering details of the smoothed images and our proposed DeSmoothGAN, where the spatial feature-
wise transformation and full attention modules are placed in the upsampling phase.

function through the DeSmoothGAN, which is built on pix2pix [23]
as a general image-to-image translation framework, and consists
of a generator to recover details of the input smooth image and a
discriminator to encourage the generator to recover as more details
as possible. One key for employing a GAN-based solution lies in
an appropriate design of the network architecture. Considering
the specificity of smoothed images, we design the corresponding
specific blocks to enhance performance. Especially, we conclude
two main characteristics consisting of spatial variability and spatial
correlation for smoothed images. The spatial variability drives us to
recover the distinct areas of one smoothed image differently. There-
fore, we propose to perform spatial feature-wise transformation to
achieve this goal. The spatial correlation motivates us to consider
the relations between areas when recovering a smoothed image. As
a result, we propose to design full attention to utilize the relations
between different areas. Our DeSmoothGAN follows the encoder-
decoder structure [14] as shown in Figure 1. We place the spatial
feature-wise transformation and the full attention modules in the
upsampling phase because we expect the details are recovered from
coarse to fine in the progressive upsampling phase.

In order to evaluate our DeSmoothGAN, we propose two quanti-
tative measures. One is the smooth consistency (SC) which means
if we smooth the generated image, the smoothed result should be
as similar as the input image. The other is the image similarity
metric measuring the similarity between the generated image and
the ground truth. Our contributions can be summarized as follows:

• By exploiting the spatial variability that details of different
areas of smoothed images are varied, we propose to utilize
spatial feature-wise transformation to recover different de-
tails correspondingly.

• Considering the spatial correlation that details of different ar-
eas of smoothed images are related to each other, we propose
to utilize full attention to take advantage of the relations.

2 RELATEDWORK
In this section, we review the research works related to feature-wise
transformations and attention mechanisms separately.

2.1 Feature-wise Transformation
Feature-wise transformation [7] indicates that we perform transfor-
mation at the feature level. Specifically, the affine transformation
(𝑦 = 𝛾 ∗𝑥 +𝛽) has been widely used considering effectiveness and ef-
ficiency, where 𝑥 and𝑦 represent features and 𝛾 and 𝛽 represent the
learned parameters. The 𝛾 and 𝛽 are used to scale and shift learned
features, respectively. According to different tasks, the parameters
𝛾 and 𝛽 are learned in different ways.

As for visual reasoning [36], a visual network that processes
images and a linguistic network that processes text-based questions
are often used. The 𝛾 and 𝛽 that are used to transform the feature
𝑥 of the visual network in [36] are learned from the linguistic
network. Later, instead of generating 𝛾 and 𝛽 all at once from the
linguistic network, Strub et al. [39] employ an attention mechanism
to generated 𝛾 and 𝛽 in a multi-hop way. Furthermore, if we pre-
train the visual network and train the linguistic network while
freezing all parameters of the visual network except for 𝛾 and 𝛽 , the
visual reasoning ability of the visual network can be enhanced [5].

As for style transfer [11], 𝛾 and 𝛽 are used to represent different
style images and stored in an embedding table as in [8]. Later, Ghiasi
et al. [12] proposed to predict 𝛾 and 𝛽 using an auxiliary style
prediction network that is trained jointly with a primary network
that performs style transfer. What is more, Huang et al. [19] showed
that the primary network itself can generate 𝛾 and 𝛽 and performs
style transfer simultaneously.

As for generative modeling, one form of conditioning in the
autoregressive PixelCNN [41] is to only generate 𝛽 while setting𝛾 =

1. The StyleGAN [25] utilizes a mapping network including several
fully connected layers to generate 𝛾 and 𝛽 . A similar mappling
network used in [20] also generates 𝛾 and 𝛽 based on the style code
in order to perform multimodal image-to-image translation.

The 𝛾 and 𝛽 we discuss above are one-dimensional. However,
when processing two-dimensional image data, an inherent limita-
tion of one-dimensional 𝛾 and 𝛽 is that it treats all pixels equally
and uses the same weight for them. It does not work as well as we
expect in some tasks below. In order to recover realistic textures
from low-resolution images with different styles, Wang et al. [46]
proposed to generate two-dimensional 𝛾 and 𝛽 based on semantic
guidance. As for generating photorealistic images from semantic
layouts, Park et al. [35] showed that generating two-dimensional



𝛾 and 𝛽 is the key to generate satisfying images successfully. A bi-
directional spatial feature-wise transformation ( two-dimensional
𝛾 and 𝛽 ) is also used in [1] to achieve a guided image-to-image
translation.

In this work, as for recovering details of smoothed images, dif-
ferent areas are supposed to be recovered differently. Therefore,
we choose to perform spatial feature-wise transformation ( two-
dimensional 𝛾 and 𝛽 ) to achieve pleasing results.

2.2 Attention Mechanisms
Attention mechanisms have been widely used in processing se-
quences [2, 43] due to the fact that it can model long-distance
relations. Especially, Bahdanau et al. [2] are the first to utilize at-
tention in a Recurrent Neural Network [15] to enhance alignment
machine translation. Later, the performance of machine translation
is improved by Transformer architecture [42] with self-attention.

With the success above in natural language processing, attention
mechanisms are also applied in several visual tasks. For example, in
order to generate detailed and satisfying images, Zhang et al. [52]
proposed a self-attention generative adversarial network that mod-
els the long-range relation between different pixels. Hu et al. [18]
reweighed the channel feature maps by aggregating information
from the whole feature maps and calculating their relation in or-
der to improve the performance of image classification and object
detection. Furthermore, Hu et al. [17] enhanced this idea by intro-
ducing a general gather-excite operator. Instead of only refining
channel feature maps, Woo et al. [48] also applied the spatial atten-
tion to refine feature maps after channel attention. However, how
to combine channel attention and spatial attention matters. Rather
than utilizing channel attention and spatial attention sequentially,
Park et al. [34] proposed to perform channel attention and spatial
attention in parallel. Similarly, Chen et al. [4] proposed double
attention networks consisting of feature gathering and feature dis-
tribution, which results in better performance than non-local neural
networks [45]. In non-local neural networks [45], several non-local
residual blocks combining self-attention with convolutional mod-
ules are added to the main architecture. However, one limitation
of [45] is that it needs ImageNet pretraining. Therefore, attention
augmented convolution networks [3] concatenating features maps
from both convolution and self-attention were proposed to solve
this problem.

In this work, we target at recovering details of smoothed images.
When recovering one area of a smoothed image, it is necessary to
consider the relations between this and the other areas in the same
image. Therefore, we propose full attention to achieve this goal.

3 METHOD
The goal of this work is to recover details of smoothed images.
Considering the extreme complexity to design rules manually for
different objects, we propose to learn this recovering process in
a data-driven way. Nowadays, one typical solution to apply data-
driven ideas is to train a GAN on the corresponding dataset. How-
ever, the results of a trained GAN are still heavily dependent on
the network architecture and the loss functions. In this work, we
specifically design spatial feature-wise transformation as shown in
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Figure 2: Spatial feature-wise transformation (SFT). The in-
put feature 𝑥 is scaled by 𝛾 and shifted by 𝛽 spatially. The
symbol ⊗ denotes element-wise matrix multiplication and
the symbol ⊕ represents element-wise matrix addition. The
output feature 𝑦 will be further processed by full attention.

Section 3.1 and full attention as described in Section 3.2 to enhance
performance. Then, we describe the loss functions in Section 3.3.

3.1 Spatial Feature-wise Transformation
Feature transformation has been a common and popular technique
in several areas [19, 35, 36], and pix2pix [23] as a general image-to-
image translation framework is no exception. The popular feature
transformation can be represented as follow:

𝑦 = 𝛾 ∗ 𝑥 + 𝛽, (1)

where 𝑥 ∈ R𝑁×𝐶×𝐻×𝑊 and 𝑦 ∈ R𝑁×𝐶×𝐻×𝑊 describe the input
feature and the output feature, 𝛾 and 𝛽 denote the transformation
parameters.

There are two main limitations for pix2pix if we naively ap-
ply it to recover details of smoothed images. One limitation of
pix2pix is that it treats all pixels equally. It means 𝛾 ∈ R𝑁×𝐶×1×1

and 𝛽 ∈ R𝑁×𝐶×1×1. This is somewhat inappropriate for recover-
ing details of smoothed images due to the fact that the details of
different areas are different and thus, different areas of smoothed
images are supposed to be recovered differently. Therefore, we
propose to perform spatial feature-wise transformation (SFT) to
compensate for spatial variability. SFT means 𝛾 ∈ R𝑁×𝐶×𝐻×𝑊 and
𝛽 ∈ R𝑁×𝐶×𝐻×𝑊 . The other limitation is that the transformation
parameters 𝛾 and 𝛽 are learned to be optimal over the global train-
ing dataset. However, not only the details of different areas in one
image are different but also the same area of different images are
distinct. It tends to be hard to learn global optimal 𝛾 and 𝛽 . Thus,
we propose to condition 𝛾 and 𝛽 based on the input smoothed im-
age 𝐼𝑠𝑚 . As a side note, our spatial feature-wise transformation
is inspired by SPADE [35]. The difference part is that we learn
the spatial 𝛾 and 𝛽 from 3-channel smoothed images rather than
predefined class labels for every pixel.

We show the spatial feature-wise transformation in Figure 2. We
can observe that the input smoothed image 𝐼𝑠𝑚 is passed through
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Figure 3: Full attention (FA). As for the input feature 𝑦, we consider both the channel relation and the spatial relation to
generate the output feature 𝑧.

several convolutional filters to generate conditioned 𝛾 and 𝛽 . The
input feature 𝑥 is scaled by 𝛾 and shifted by 𝛽 spatially to generate
feature 𝑦. Another aspect of this is that during the different upsam-
pling phases, we interpolate the input image 𝐼𝑠𝑚 to the same height
and width as the input feature.

3.2 Full Attention
Modeling relations with attention mechanisms have been utilized
in several tasks [10, 42, 45, 48]. In this work, we wish to model
relations between different pixels. There exist relations between
the details of different pixels. For example, as for smoothed selfies
in Figure 1, if we know the center pixels represent the nose, the
surrounding pixels are likely to be skin. Therefore, the relations
between different pixels can give us more information to recover
details. However, the smoothed images are represented with multi-
channel features in our DeSmoothGAN. As a result, if we want
to model relations between pixels, we must consider the relations
between different channels. Thus, we propose full attention con-
sisting of spatial relation and channel relation as shown in Figure 3.
One key for applying attention mechanisms in a GAN is how to
calculate the weights for the input feature 𝑦, as introduced below.

As for spatial relation, we employ matrix multiplication to cal-
culate weights for each pixel. In detail, the input feature will be
passed through 3 convolution layers separately as follows,

𝑦𝑓 = 𝑓 (𝑦) =𝑊𝑓 ∗ 𝑦 + 𝑏 𝑓 ,
𝑦𝑔 = 𝑔(𝑦) =𝑊𝑔 ∗ 𝑦 + 𝑏𝑔 ,
𝑦ℎ = ℎ(𝑦) =𝑊ℎ ∗ 𝑦 + 𝑏ℎ,

(2)

where𝑊𝑓 ,𝑊𝑔 and𝑊ℎ denote the 1 × 1 convolutional filters; 𝑏 𝑓 , 𝑏𝑔
and 𝑏ℎ denote the bias. A related point to consider is that 𝑓 (𝑦) and
𝑔(𝑦) are used to calculate the weights. In order to reduce heavy com-
putation of matrix multiplication, we reduce the feature channel to
1, which means𝑦𝑓 ∈ R𝑁×1×𝐻×𝑊 and𝑦𝑔 ∈ R𝑁×1×𝐻×𝑊 . In order to
perform matrix multiplication, we reduce the dimension of the fea-
turemaps by flattening them. As a result,𝑦𝑓 ∈ R𝑁×1×𝐻×𝑊 becomes
𝑦
′

𝑓
∈ R𝑁×1×𝐻𝑊 ; 𝑦𝑔 ∈ R𝑁×1×𝐻×𝑊 becomes 𝑦

′
𝑔 ∈ R𝑁×1×𝐻𝑊 ;

𝑦ℎ ∈ R𝑁×1×𝐻×𝑊 becomes 𝑦
′

ℎ
∈ R𝑁×1×𝐻𝑊 . Let 𝑀 be the weight

matrix for each pixel, it is calculated as follows,

𝑀 = 𝑦
′

𝑓

𝑇 · 𝑦
′
𝑔 , (3)

where 𝑇 denotes the transpose operation and · denotes matrix
multiplication. Further, we also apply a softmax layer to rescale
weights to the range [0, 1]. Finally, we multiply the weight matrix
with the feature to generate the output feature 𝑦𝑠𝑟 as follows,

𝑦𝑠𝑟 = 𝑦
′

ℎ
·𝑀, (4)

where · denotes matrix multiplication.
As for channel relation, we employ pooling operation and a

multilayer perceptron to calculate weights for each channel. In
detail, the input features 𝑦

′
= 𝑦 + 𝑦𝑠𝑟 will be passed through a max

pooling layer and an average pooling layer separately. Both max
pooling layer and average pooling layer reduce 𝑦

′ ∈ R𝑁×𝐶×𝐻×𝑊

to 𝑦𝑝𝑙 ∈ R𝑁×𝐶×1×1. The max pooling layer takes the max value
over the whole feature maps as follows,

𝑦𝑚𝑎𝑥 (𝑁𝑖 ,𝐶 𝑗 , 0, 0) = max
𝑚=0...𝐻−1

( max
𝑛=0...𝑊 −1

(𝑦
′
(𝑁𝑖 ,𝐶 𝑗 ,𝑚, 𝑛))), (5)

while the average pooling layer takes the average value over the
whole feature maps as follows,

𝑦𝑎𝑣𝑔 (𝑁𝑖 ,𝐶 𝑗 , 0, 0) =
1

𝐻 ∗𝑊

𝐻−1∑
𝑚=0

𝑊 −1∑
𝑛=0

𝑦
′
(𝑁𝑖 ,𝐶 𝑗 ,𝑚, 𝑛), (6)

where 𝑁𝑖 denotes the 𝑖-𝑡ℎ sample, 𝐶 𝑗 denotes the 𝑗-𝑡ℎ channel, 𝐻
and𝑊 denote the height and the width of the feature map. Further,
we employ a multilayer perceptron and a sigmoid function to refine
the weights for each channel. Then, the weights are multiplied with
the corresponding channels. Finally, we sum the features from two
branches including max pooling and average pooling to get the
output feature 𝑧 as follows,

𝑧 = 𝑆 (𝑀𝐿𝑃 (𝑦𝑚𝑎𝑥 )) ∗ 𝑦
′
+ 𝑆 (𝑀𝐿𝑃 (𝑦𝑎𝑣𝑔 )) ∗ 𝑦

′
+ 𝑦, (7)

where 𝑀𝐿𝑃 denotes the same multilayer perceptron and 𝑆 repre-
sents the sigmoid function.



3.3 Loss Functions
Our DeSmoothGAN consists of a generator𝐺 to recover details of
smoothed images and a discriminator 𝐷 to distinguish recovered
images and corresponding unsmoothed images. Specifically, we put
the spatial feature-wise transformation and the full attention in
the upsampling phase of the generator as shown in Figure 1. We
employ the adversarial loss [13] and perceptual loss [24] to train
DeSmoothGAN.

Let 𝐼𝑠𝑚 , 𝐼𝑟𝑒 , and 𝐼𝑔𝑡 denote the smoothed images, recovered im-
ages and corresponding unsmoothed images that are also ground
truth images. The training images can be denoted as {𝐼 𝑖𝑠𝑚}𝑁

𝑖=1 and
{𝐼 𝑖𝑔𝑡 }𝑁𝑖=1, where 𝑁 represents the size of training images. The cor-
responding data distribution is denoted as 𝐼𝑠𝑚 ∼ 𝑝𝑑𝑎𝑡𝑎 (𝐼𝑠𝑚) and
𝐼𝑔𝑡 ∼ 𝑝𝑑𝑎𝑡𝑎 (𝐼𝑔𝑡 ).

As for adversarial loss, this objective can be denoted as follows,
L𝑎𝑑𝑣 (𝐺, 𝐷, 𝐼𝑠𝑚, 𝐼𝑔𝑡 ) = E𝐼𝑔𝑡∼𝑝𝑑𝑎𝑡𝑎 (𝐼𝑔𝑡 ) [𝑙𝑜𝑔𝐷 (𝐼𝑔𝑡 )]

+ E𝐼𝑠𝑚∼𝑝𝑑𝑎𝑡𝑎 (𝐼𝑠𝑚) [𝑙𝑜𝑔(1 − 𝐷 (𝐺 (𝐼𝑠𝑚)))], (8)

where𝐺 tries to recover details of smoothed images 𝐼𝑠𝑚 and𝐷 aims
to ensure recovered images 𝐼𝑟𝑒 follow the same distribution of the
corresponding unsmoothed image 𝐼𝑔𝑡 .

As for perceptual loss, this objective can be expressed as follows,

L𝑝𝑒𝑟 (𝐺) =
𝐿∑
𝑖=1

𝑤𝑖 ∥ 𝑓 𝑒𝑎𝑡𝑖 (𝐼𝑟𝑒 ) − 𝑓 𝑒𝑎𝑡𝑖 (𝐼𝑔𝑡 ) ∥1, (9)

where 𝑓 𝑒𝑎𝑡𝑖 (𝐼 ) denotes the 𝑖-th layer feature of VGG-19 [37] for the
input image 𝐼 ,𝑤𝑖 represents the weight of 𝑖-th layer, and 𝐿 describes
the number of the layers. In this work, we use five layers including
𝑐𝑜𝑛𝑣1_2, 𝑐𝑜𝑛𝑣2_2, 𝑐𝑜𝑛𝑣3_4, 𝑐𝑜𝑛𝑣4_4, and 𝑐𝑜𝑛𝑣5_4. Their weights
are 1/32, 1/16, 1/8, 1/4 and 1 respectively. We set a higher weight
for higher layers of VGG-19 because we wish the recovered results
keep more high-level information such as the overall structure as
demonstrated in [50]. The full objective is:

L(𝐺,𝐷) = L𝑎𝑑𝑣 (𝐺,𝐷, 𝐼𝑠𝑚, 𝐼𝑔𝑡 ) + 𝜆L𝑝𝑒𝑟 (𝐺), (10)

where 𝜆 controls the effect of the two different objectives. In this
work, we set 𝜆 = 100 because we wish the generator 𝐺 to recover
as many details as possible. We aim to solve:

𝐺∗, 𝐷∗ = argmin
𝐺

max
𝐷

L(𝐺, 𝐷), (11)

where 𝐺∗ and 𝐷∗ describe the parameters of the generator 𝐺 and
the discriminator 𝐷 , respectively.

4 EXPERIMENTS
In order to evaluate the proposed method reasonably, we first in-
troduce the experiment settings including implementation details,
datasets, and comparison baselines in Section 4.1. Then, we analyse
the spatial feature transformation (SFT) and full attention (FA) in
Section 4.2. Later, we propose several quantitative metrics including
image similarity and smooth consistency to show objective evalua-
tions in Section 4.3. Besides, we also conduct experiments to verify
the generalization capability of DeSmoothGAN in Section 4.4.

4.1 Experiment Settings
As for the implementation, the proposed DeSmoothGAN is built on
top of the general image-to-image translation framework pix2pix.

Specifically, we use the batch normalization [22] for normalizing
features and Adam solver [27] with 𝛽1 = 0.5 and 𝛽2 = 0.999 for opti-
mizing hyperparameters. We set the batch size as 4 and the learning
rate as 0.0002. Furthermore, we employ the Spectral Norm [32] to
the layers of the generator of DeSmoothGAN. All of the experi-
ments in this work are conducted on a GPU of NVIDIA GeForce
GTX 1080.

As for the dataset, we perform experiments on two datasets in-
cluding CelebA-HQ [30] and flower [33]. Considering the goal of
this work is to explore foundational techniques to recover details
of smoothed images, we employ the popular smoothing technique
called 𝐿0 Smoothing [49] to generate smoothed images. As a re-
sult, we obtain 27176 training images and 2824 testing images in
the CelebA-HQ dataset and 7169 training images and 1120 testing
images in the flower dataset.

As for the comparison baselines, we compare three recent founda-
tional image-to-image translation methods including pix2pix [23],
AdaIN [19], and SPADE [35]. It is worth noting that both AdaIN [19]
and SPADE [35] can not be directly used to perform this task of
recovering details of smoothed images. Therefore, we reimplement
these two ideas to achieve this task for fair comparisons. In partic-
ular, we modify SFT to generate the one-dimensional 𝛾 and 𝛽 to
construct AdaIN [19] by adding max pooling layer in our model.
Specifically, the constructed AdaIN contains full attention (FA) mod-
ule. We modify the original SPADE to learn the two-dimensional
𝛾 and 𝛽 conditioned on smoothed images. Our model without full
attention (FA) can also be viewed as a kind of SPADE and we name
it SPADE-1 as shown in Table 1.

4.2 Analysis of SFT and FA
The goal of spatial feature-wise transformation (SFT) is to utilize
the spatial variability of smoothed images and recover details of
different areas differently. In order to verify its functionality, we not
only display our results with and without SFT but also visualize the
learned 𝛾 and 𝛽 in the last SFT block in Figure 4. Specifically, we
sum all the features to one dimension to visualize learned 𝛾 and 𝛽

as the same as U-GAT-IT [26]. From the 2nd column in Figure 4, we
can observe that although the main areas of flowers are recovered
well, the top areas around the flowers are blurred and distorted. It is
understandable because every area is treated equally without SFT.
Therefore, our model without SFT can only learn a global optimal
weight to recover most areas as much as possible. In contrast, our
model with SFT can find several different optimal weights to recover
different areas. Furthermore, the visualized spatial𝛾 and 𝛽 in the last
two columns in Figure 4 reveal that different areas have different
weights.

We propose full attention (FA) to consider the spatial correlation
of smoothed images. Since images are represented as multi-channel
features in current CNN-based networks, we are supposed to con-
sider both the spatial relation and the channel relation. The spatial
relation can give us more information about the missing details.
For example, as shown in Figure 5, the central parts of flowers
including pistils and stamens can help us inference the details of
petals of flowers. Although the result without spatial relation in
Figure 5 looks okay, the details of petals are different from the
ground truth. The purpose of channel relations is to control the



Smoothed Image Ours (w/o SFT) Ours Ground Truth Spatial 𝛾 Spatial 𝛽

Figure 4: Effectiveness of spatial feature-wise transformation (SFT). The leftmost column shows the input smooth images. The
right columns display our results without SFT, our results, ground truth images, visualized spatial 𝛾 , and visualized spatial 𝛽 ,
respectively. We can observe that if we do not perform SFT, the top areas around flowers in the 2nd column are blurred and
distorted.

(a) Smoothed Image (b) Ours (w/o SR), LPIPS=0.08 (c) Ground Truth (d) Ours, LPIPS=0.05

Figure 5: Effectiveness of spatial relation (SR) in full attention (FA). (a) The input smoothed image. (b) Our result without
spatial relation. (c) The ground truth. (d) Our result. The details of petals in (b) do not conform to the details of (c).

weights of different channels adaptively. It can help us weaken the
redundant details while enhancing the necessary details. As shown
in Figure 6, the details of central petals without channel relation
are overly recovered.

4.3 Quantitative Experiments
For smoothed images in our experiment datasets, we have their
corresponding ground truth images before smoothing. Therefore,
we evaluate different methods from two aspects consisting of image
similarity and smooth consistency. For image similarity, it measures
how similar the generated images are to the ground truth images.
We not only use traditional image similarity metrics including
SSIM [47] and PSNR but also employ the Learned Perceptual Image
Patch Similarity (LPIPS) [54] to represent image similarity. As for
smooth consistency, it means that if we apply the same smoothing
algorithm to the generated images 𝐼𝑟𝑒 , they should be the same as

𝐼𝑠𝑚 . We define smooth consistency as follows:

𝑆𝐶 = 𝑀𝑆𝐸 (𝐹𝑠𝑚 (𝐼𝑟𝑒 ), 𝐼𝑠𝑚), (12)

where 𝐹𝑠𝑚 represents the corresponding smooth algorithm and
𝑀𝑆𝐸 denotes the mean squared error. For these different metrics,
higher values of SSIM and PSNR, and lower values of SC and LPIPS,
mean better results.

We show several comparisons in Figure 7. The top two samples
are from the flower testing dataset and the bottom sample is from
the CelebA-HQ testing dataset. From the results, we can observe
that our results are either as good as others or the best among
the comparisons. For instance, as for the 2nd row in Figure 7, the
petal details of pix2pix [23] and SPADE [35] are overly recovered
while the artifacts exist in the petals of AdaIN [19]. In contrast,
compared to the ground truth, our result looks better and artifacts-
free. We also display several additional recovered results in the
supplementary material.



(a) Smoothed Image (b) Ours (w/o CR), LPIPS=0.10 (c) Ground Truth (d) Ours, LPIPS=0.08

Figure 6: Effectiveness of channel relation (CR) in full attention (FA). (a) The input smoothed image. (b) Our result without
channel relation. (c) The ground truth. (d) Our result. The details of central petals in (b) are overly recovered, compared to (c).

Smoothed Image pix2pix [23] AdaIN [19] SAPDE [35] Ours Ground Truth

LPIPS=0.0815 LPIPS=0.0877 LPIPS=0.1258 LPIPS=0.0597

LPIPS=0.0884 LPIPS=0.0805 LPIPS=0.0880 LPIPS=0.0596

LPIPS=0.0846 LPIPS=0.0850 LPIPS=0.0932 LPIPS=0.0600

Figure 7: Comparisons with different methods. The leftmost column shows the input smooth images. The right columns
display results with pix2pix [23], AdaIN [19], SPADE [35], ours, and ground truth, respectively. The better the result, the lower
the LPIPS. We also display the visualized color difference map with CIEDE 2000 in the lower right corner for each comparison.
The brighter the color, the greater the error.

In order to compare with different methods quantitatively, we
also measure the quantitative performance including smooth con-
sistency and image similarity with ground truth and report them in
Table 1. We also display the number of parameters of different meth-
ods in Table 1. The quantitative results in the CelebA-HQ testing
dataset and the flower testing dataset reveal our method achieves

the best performance in SSIM, PSNR, and LPIPS. The first row and
second row in Table 1 reveal the performance with a light pix2pix
(16M) and a deeper pix2pix (41M) named pix2pix-EX. Simply mak-
ing the network deeper while increasing the parameters of pix2pix
do not generate a better performance since we ignore the spatial
variability and spatial correlation of smoothed images. As for the



Table 1: Performance Comparison of Different Methods

CelebA-HQ Flower
name #param SC↓ SSIM↑ PSNR↑ LPIPS↓ SC↓ SSIM↑ PSNR↑ LPIPS↓

pix2pix [23] 16M 37.5287 0.7414 26.7797 0.0939 46.4804 0.7224 25.4516 0.1007
pix2pix-EX 41M 34.2789 0.7470 26.9618 0.0921 33.9261 0.7296 25.9525 0.0996
AdaIN [19] 32M 32.8747 0.7618 27.2144 0.0850 42.3919 0.7414 25.8982 0.0996
SPADE [35] 56M 31.2382 0.7501 26.6676 0.0997 31.5496 0.7407 25.7620 0.1105

Ours 32M 32.3942 0.7661 27.3601 0.0803 31.4313 0.7518 26.3831 0.0858

Ours (w/o SFT) 19M 35.8944 0.7449 26.8964 0.0930 42.6541 0.7188 25.5838 0.1027
Ours (w/o FA) ≈ SPADE-1 29M 33.7224 0.7607 27.0853 0.0907 31.6741 0.7483 26.3652 0.0903

Ours (w/o SFT & FA) 16M 37.8993 0.7437 26.8243 0.0962 43.4639 0.7257 25.6171 0.1068

performance of AdaIN in Table 1, it reveals that utilizing spatial
variability is important for recovering details of smoothed images
since the difference between AdaIN and our method is to gener-
ate one-dimensional or two-dimensional 𝛾 and 𝛽 as introduced in
Section 4.1. As for the performance of SPADE and SPADE-1, both
of them utilize spatial variability and generate wonderful results.
However, they still ignore spatial correlation of smoothed images
compared to our method. Though our performances on SC are
slightly worse than SPADE on the CelebA-HQ dataset, we should
not ignore the difference of the number of parameters used by the
two methods: 56M (SPADE) and 32M (Ours). Overall, our method
considering spatial variability and spatial correlation improves the
performance of recovering details of smoothed images.

We also perform ablation studies to verify the effectiveness of
spatial feature-wise transformation and full attention. We conduct
three experiments including removing spatial feature-wise trans-
formation or full attention individually and removing both of them.
The quantitative results are reported in Table 1. We can observe
that both spatial feature-wise transformation and full attention are
beneficial to recover details of smoothed images. Specifically, if we
combine them, we can achieve the best performance.

4.4 Generalization Capability
In this work, we employ the popular 𝐿0 Smoothing technique [49] to
generate training and testing datasets in order to explore the foun-
dational technique to recover details of smoothed images. Though
our DeSmoothGAN is trained on this kind of dataset, it can also
be used to recover details of smoothed images generated by other
smoothing algorithms. We show several results in Figure 8. We
can find the recovered results of smoothing algorithms including
SGF [51] and FGS [31] are close to the ground truth. However, if
we want to achieve the best result on all kinds of smoothing al-
gorithms, we would better collect enough training datasets of all
kinds of smoothing algorithms, refine the network architecture,
and even investigate meta-learning techniques correspondingly.

5 CONCLUSION AND FUTUREWORK
In this paper, we propose DeSmoothGAN that utilizes the spatial
feature-wise transformation considering spatial variability and the
full attention considering spatial correlations to explore founda-
tional techniques to recover details of smoothed images. However,

(a) SGF [51] (b) Recovered (c) Ground Truth

(d) FGS [31] (e) Recovered (f) Ground Truth

Figure 8: Generalization capability. (a) The smoothed result
of SGF [51]. (b) Our recovered result of (a). (c) The ground
truth of (a). (d) The smoothed result of FGS [31]. (e) Our re-
covered of (d). (f) The ground truth of (d).

how to perform a few-shot [38] desmoothing with limited paired
training data and achieve a general image desmoothing model in
the wild require further explorations. In addition, how to develop
an all-in-one model to reverse the black-box beautification process
including smoothing, shape deformation [44], and other operations
is also an interesting avenue for the future work.
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