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Abstract While progressive compression techniques were proposed long time ago, fast
and efficient streaming of detailed 3D models over lossy networks still remains a challenge.
A primary reason is that packet loss occurring in unreliable networks is highly
unpredictable, leading to connectivity inconsistency and distortions of decompressed
meshes. Although prior researches have proposed various methods to handle errors caused
by transmission loss, they are always accompanied by additional costs such as redundant
transmission data, bandwidth overloads, and result distortions. In this paper, we address this
problem from a receiver’s point of view and propose a novel receiver-based loss tolerance
scheme which is capable of recovering the lost data when streaming 3D progressive meshes
over lossy networks. Specifically, we use some constraints during the model compression
procedure on the server side, and suggest a prediction method to handle loss of structural
and geometric data on the client/receiver side. Our algorithm works without any data
retransmission or introducing any unnecessary protection bits. We stream mesh refinement
data on reliable and unreliable networks separately so as to reduce the transmission delay as
well as to obtain a satisfactory decompression result. The experimental results indicate that
the decompression procedure can be accomplished quickly, suggesting that it is an efficient
and practical solution. It is also shown that the proposed prediction technique achieves a
very good approximation of the original mesh with low distortions, and in the mean time,
error propagations are also well controlled.

Keywords Progressive compression - 3D streaming - Loss tolerance

Z. Tang (PX) + X. Guo * B. Prabhakaran
Computer Science Department, University of Texas at Dallas, Richardson, TX, USA
e-mail: zxt061000@utdallas.edu

X. Guo
e-mail: xguo@utdallas.edu

B. Prabhakaran
e-mail: praba@utdallas.edu

@ Springer



780 Multimed Tools Appl (2011) 51:779-799

1 Introduction

With the development of the Internet, networks related applications have grown
phenomenally in the last few decades. Among different media, 3D models have received
increasing attentions due to their abilities of representing objects more realistic and
comprehensive, and in the past several years, they have been extensively used in network
multimedia applications such as online games, distributed simulations and Internet
shopping. In general, the amount of data representing a high quality 3D mesh can be
very huge. It may have thousands to millions of vertices to represent its complex geometry,
and connectivity relationships among vertices to denote the complicated topology.
Therefore, it has long been considered as a challenge to quickly transmit detailed 3D
meshes to end users with acceptable quality.

Progressive compression techniques [1, 10, 19, 23] address this problem by sending to
users a crude mesh followed by a sequence of refinements so that they can provide meshes
in different level of details. By doing so, users are able to visualize a rough model quickly,
and then gradually, the model increases its details. Most of those progressive compression
algorithms are designed to transmit using lossless network protocols such as TCP. Using
reliable channels is stable and safe, but it is not real-time streaming friendly and may result
in an undesired delay due to the data retransmission mechanism. In order to raise the
streaming speed, some algorithms [3, 4, 6] use unreliable but fast protocols, i.e., UDP, other
techniques such as [15-18, 24] utilize hybrid channels to take advantages of both TCP and
UDP. Although these methods are more streaming effective, but packet loss due to the
usage of unreliable transmission protocol is a problem they cannot avoid. Packet loss leads
to incomplete decoding data on the receiver side, which can cause crashing of the decoding
procedure or large distortions on the decompressed results. Therefore, it is very necessary to
have error handling scheme to deal with packet loss. Unfortunately, existing methods to
handle packet loss either introduce extra protection information, which introduces extra
transmission loads, wastes network bandwidth and substantially degrades the streaming
performance, or simply retransmit the lost packet which causes the unavoidable time delay.
Thus, there is no very efficient solution which maintains high transmission speed and low
communication loads, and at the same time obtains good decompression results.

In this paper, we address the problem of packet loss during 3D progressive streaming
from a different point of view, i.e., clients’ side. We propose a receiver-based loss-tolerance
streaming strategy, and our focus is in handling packet loss without retransmission or any
recovery and protection bits. Specifically, we introduce a prediction method to obtain an
approximated decompression result when a packet loss occurs. Since a vertex split
transformation takes place in the split-vertex’s one-ring neighborhood, which is generally a
small region, we can project this region in 2D space and apply a hole filling technique to
insert new vertices and then perform triangulation. In addition, we adjust new vertices’
geometric coordinates using the idea of the partition of unity method [18]. The fact that
vertex split transformation is a local operation and involves a small number of neighbor
vertices on the mesh makes our prediction very efficient, i.e., we only need O(n) time to
predict n lost vertices. Furthermore, to control prediction error in a limited area, we define a
constraint during model compression procedure in addition to the use of reliability bit [13,
16]. Our method enables fast and successful streaming of 3D models progressively over
lossy networks. Besides, the prediction process can be completed very quickly and does not
delay the decompression procedure.

Similar to [3, 13], we use hybrid channels to deliver different parts of encoded
information separately. In order to satisfy various quality requirements and network
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capacities, refinements are further constructed into smaller packets through a subdivision
procedure. On the user side, we utilize a reconstructor to synchronize hybrid channels,
reassemble packets and detect packet loss. During decompression, depending on whether
complete refinement data for decoding is available, a regular decompression or the
proposed loss tolerance scheme is applied to gradually obtain a detailed 3D mesh.

Our approach has the following novelties. This receiver-based loss tolerance scheme
works independently of channel behaviors, and we are able to predict both the structural
data and the geometry information. We can successfully decode meshes without
retransmission or any protection bits, thus there is no additional transmission load and no
extra transmission delay. The prediction achieves a good decompression quality without
incurring high computational cost.

The rest of this paper is organized as follows. After reviewing the related works in
Section 2, Section 3 gives a short overview of progressive compression technique and
related concepts. Details of the loss tolerance method are presented in Section 4, and
Section 5 explains the performance evaluations. The last part, Section 6, concludes this
paper with some future works.

2 Related works

Our work is closely related to two research directions: the progressive compression
techniques and related works in transmission of progressive meshes over networks.

2.1 Progressive compression techniques

Progressive Mesh (PM) [10] is the first progressive compression technique. It defines the
elementary mesh transformations: vertex split and edge collapse, as shown in Fig. 1. In this
method, at every compression level, only one vertex is removed through an edge collapse
transformation. Similarly, during decompression, one new vertex is inserted into the current
mesh, using a reverse transformation, vertex split. Though PM is able to provide meshes in
different level of details (LODs), it fails to gain a good compression ratio in one level.

Both Progressive Forest Split (PFS) [23] and Compressed Progressive Meshes (CPM)
[19] follow a similar compression strategy and group edge collapse transformations into
batches to achieve a higher compression ratio. In CPM, the connectivity information of a
removed vertex is stored in two cut edges while its geometric information is represented as
an error correction vector storing the difference between the original position and the
predicted displacement. This idea has been extended in Modified Compressed Progressive
Meshes (MCPM) [24]. In [24] the geometric data of each refinement batch is divided into
some sub layers, so that optimal transmission decision could be made for each sub layer.
Alliez and Desbrun introduce a valence-driven decimating approach [1] for lossless
transmission of triangle meshes. By checking the degree, a vertex can be removed with a
valence of more than three. In [2], the encoded geometric data contains the difference
between the predicted and the real vertex positions, which is similar to CPM, but the
connectivity information is the only criteria to select removed vertices, so [2] is less
accurate than CPM. Devillers and Gandoin propose a geometry-driven compression
algorithm [8], where they use the k—d tree to represent the geometric information of vertices
and use neighboring vertices to derive the structural data.

From a different point of view, some works such as [9, 10, 21] support selective
refinements. They consider the fact that users cannot see the whole model’s all parts at one
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Fig. 1 Vertex split and edge — >
: Edge collapse

collapse operations
Vertex split
—

time, so taking the client’s viewpoint information, they only improve the LODs at particular
parts which are visible for clients. By doing so, they can save network loads and reduce the
data which needs to be transferred so as to improve streaming efficiencies. Note that here
the mesh needs to be partitioned offline in advance, and when we get a request and
viewpoint information from client, particular partitions are selected and transmitted.

2.2 Transmission of progressive meshes

In order to improve the transmission speed, some progressive compression algorithms use
fast but lossy network protocols such as UDP. This kind of streaming protocol does not
have re-transmission mechanism, so it is unreliable and may cause packet loss during
streaming, which leads to crashing or distortions for decoding. Therefore packet loss
handling becomes quite necessary. Yan et al. [24] and Al-Regib et al. [2, 4] separately
propose different approaches using redundant bits. They measure the importance of the data
in advance, and insert redundant bits accordingly to tolerate packet loss during
transmission. Al-Regib and Altunbasak propose 3TP protocol [3]. They notice that the
connectivity data, which represents the structure information, affects the quality of decoded
mesh more than the geometric data. Therefore, by intelligently selecting the particular parts
of 3D mesh to be transmitted over TCP and the rest over UDP, they could minimize the
distortion caused by packet loss. Cheng et al. [6] suggest an analytical model to measure
streaming of progressive meshes over lossy networks. But they focus on analyzing the
effect of dependencies among split vertices to improve the qualities of decoded models,
instead of directly dealing with the packet loss during transmission. The lost data in their
method will be detected and retransmitted to clients.

All the above protection schemes belong to sender-based error control methods.
Similarly, another kind of error handling category is receiver-based error control, which
includes the robust transmission method by Bischoff [5].

Some approaches target on building a framework to deliver 3D mesh according to users’
rendering capability and network conditions. Martin [17] suggests a framework to convert a
3D object to different modalities like 2D image, depth image, or polygonal meshes, and
selects the appropriate modality to deliver. Li et al. [14, 16] use a generic 3D middleware
between the 3D application layer and the transport layer. Their approach is a real time
decision making algorithm that effectively uses the network resources to reduce both
delaying and distortions. Their method can dynamically choose the transport protocol based
on the network traffic.

Our error handling method belongs to the receiver-based error control category, and is
inspired by some hole-filling techniques which are not used in progressive compression
fields but in surface reconstructions. Pfeifle and Seidel [20] fill holes in piecewise
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polynomial surfaces after finding a spanning triangulation in 2D space. The method in [12] fills
a hole based on a cloning technique. We expand these ideas in our loss tolerance scheme to
reconstruct decoded meshes with only partial refinements data. We have published a
conference version of our work in [22]. In this paper, we introduce the details of a general
loss tolerance system with different modules and include two different stream constructions to
further improve streaming efficiency. We also present more experimental results.

3 Progressive compression

Before introducing our loss tolerance scheme, we would like to first give an overview of
progressive compression technique and related concepts, which are helpful to understand
our work. Basically, there are two elementary mesh transformations in the progressive
compression, namely vertex split and edge collapse, as depicted in Fig. 1. During
compression, a sequence of edge collapse transformations is applied to remove batches of
vertices and get a simplified 3D mesh and a series of refinements. The simplified mesh is
called the base mesh which contains the basic topology of the original mesh. The
refinements enclose split bit, structural data and geometric data for all removed vertices.
Split bit is a bit corresponding to one vertex, indicating whether this vertex will split during
decoding process; “1”means the vertex is a split-vertex and “0” otherwise. Structural data
presents the connectivity of decoded new vertices with their neighbors. Geometric data
stores the positions of decoded new vertices. During decompressing, vertex split
transformations, the reverse operations of edge collapses, are applied to increase model’s
level of details (LODs) gradually from base mesh to the original resolution or to the
maximum LODs which users can afford based on their network conditions and display
capabilities. For detail explanations of the progressive compression techniques, please refer
to [10, 19, 23]. Different compression methods may have their own ways to explain those
basic concepts, meanwhile they keep the same principles. In our algorithm, we follow the
definitions from [10, 19], which is widely used in many applications.

4 Loss tolerance scheme

We propose a receiver-based loss tolerance method for 3D progressive streaming. Instead of
protecting data from losing, we suggest a prediction method to recover the lost data.
Moreover, we present two streaming construction strategies and one simplification
constraint to control errors. Our scheme is able to provide a successful and effective
solution of streaming 3D complex models over lossy networks.

4.1 System model

Figure 2 illustrates a general architecture of the proposed scheme, which is applicable to
different progressive compression approaches. Besides common steps such as the mesh
simplification, we include some additional modules in the architecture: refinements process,
streaming process, synchronization and reordering and prediction module. Before explain-
ing the details of those modules, we firstly introduce the system model and streaming
strategies.

The server carries the compression procedure, through which we get a base mesh and a
sequence of refinements. The mesh simplification process is the first step of compression,
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Fig. 2 Architecture of the proposed scheme

and many simplification techniques such as [10, 19, 23] can be applied to complete it.
Then, a refinement process module is performed to extract split bits from other refinement
data. Subsequently, depending on the network conditions such as the bandwidth, geometric
and structural data are further constructed into smaller packets in the streaming process
step. And then, base mesh, split bits and geometric and structural data are transferred
separately using two channels. On the client’s side, a decompression procedure is
conducted to improve the 3D model’s LODs progressively. Before decoding, we employ
a synchronization and reordering process to correct packets orders, synchronize two
streaming channels and detect packet loss. Then based on whether we have complete data
for decoding or not, a regular decompression or our prediction algorithm is applied to
obtain a detailed mesh and send it to 3D viewer.

In order to reduce distortions caused by packet loss during transmission, while keep a
fast transmission speed, both TCP and UDP protocol are used in our system to deliver
different parts of refinement data separately. Specifically, the base mesh and split bits are
transmitted reliably while geometric and structural data are streamed over unreliable
networks. A reliable channel using TCP can guarantee successful transmission and correct
packet orders, but it may lead to longer delay due to the retransmissions and congestion
control mechanisms. Unreliable channel, which follow UDP protocol, is fast and real-time
streaming friendly but may suffer from packet loss. We choose to use both channels
simultaneously to take their advantages. The base mesh which stores the basic topology of
the 3D model is the foundation of the whole progressive compression procedure, so it is
important to ensure its reliable delivery. Meanwhile, split bits carry the information of
where the higher level of details is going to take places. By safely transmitting them to the
client side, we are able to know which vertex should split so that we could keep the
decoded mesh in a similar level of details as the original one. In our architecture, both
structural data and geometric data are transferred over unreliable channel, because both of
their data sizes are large and heavy to transfer. As shown in Table 1 [15], the bits which are
used to encode a vertex’s structural data and geometric data is not small. Therefore, we
deliver both of them using UDP to achieve a high streaming speed.
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Table 1 Bits used to encode structural and geometric data

Compression algorithm Bits of structural data/vertex Bits of geometric data/vertex
PFS 10 30
CPM 7.2 15.4

4.2 Stream construction

The last step of our compression procedure is the streaming process, which generate
network packets before transmission starts. Since both the geometric and structural data are
streamed unreliably, the packetization strategy over the UDP channel can influence the
result of a packet loss and consequently affect the decompression outcomes. Thus we focus
on the stream construction over UDP channel and propose two different ways to divide
refinement information into small streaming packets, as illustrated in Fig. 3.

1. For each vertex split transformation, the corresponding structural and geometric data
are bundled together as one basic streaming fragment (SF). Each SF contains the
refinement and split-vertex id. Based on the SF, we divide each refinement into several
packets, and each of them has one or more SF depending on network conditions. An
example is presented in Fig. 3(a).

2. For a vertex split transformation, we treat its corresponding structural and geometric
data as two basic SFs separately. Both of them have the refinement and split-vertex id.
Stream construction based on this kind of SF can generate packets with any number of
structural data and geometric data SF, as shown in Fig. 3(b).

The goal of using small streaming packet is to distribute the packet loss risk and improve
streaming efficiency. Moreover, the packetization strategy may also influence the streaming
results, and affect the decompression procedure accordingly. The first stream construction
method put both structural and geometric data for a vertex split together, so whenever there
is a packet loss, we lose both of them. On the other hand, in the second case, we may get
different number of structural and geometric streaming fragments.

Data on UDP Data on UDP
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Fig. 3 Streaming packet on UDP
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4.3 Synchronization, ordering and loss detection

On the client side, we include a module to deal with the synchronization, packet reordering
and detection of packet loss before starting decompression. Based on the results from this
module, we perform regular decoding or follow our prediction algorithm.

While two channels are used simultaneously in the system, we need to synchronize them
and detect the end of the each refinement transmission on both channels. The
synchronization between two channels can be accomplished by sending a flag message.
For example, at the end of reliable part of each refinement, an END message containing the
refinement id is sent to indicate the delivery end of this refinement. Similar message is also
used on the unreliable channel. A simple acknowledgement-timeout-retransmission scheme
with packet sequence number is used to handle possible loss of END messages over
unreliable channels. We could start the reordering and loss detection process when both
channels receive the END message.

Packets may arrive in different orders in unreliable channels, so we use a stream
reconstructor, which works as a buffering pipeline, to reassemble them in the correct order.
These packets can be either the structural data or the geometric data for a refinement. As
described previously, we insert corresponding split-vertex id and refinement id on each part,
so that the reconstructor can group the packets for the same refinement, and rearrange them in
the correct orders using these ids. Another responsibility of the reconstructor is the packet loss
detection. We compare both split bits and assembled structural and geometric data for the
same refinement to detect the packet loss. Packets loss happens when a vertex’s split bit is
valued one which indicates it is a split-vertex, but there is no available corresponding
structural data or geometric data or both. Depending on whether there is packet loss or not,
we apply our prediction method or follow regular decompression procedure. After reordering
and loss detection, the refinement can be delivered to the decoder for decompression, and the
stream reconstructor can clean up its buffering for the next refinement.

Considering two different packetization strategies, after reordering and loss detection,
we may face following four different cases to decompress one vertex split transformation:
(1) both the structural and the geometric data arrive correctly at the client side; (2) both the
structural and the geometric data are lost during transmission; (3) the structural data is lost
but the geometric data arrives correctly; (4) the geometric data is lost but the structural data
arrives safely. We apply the regular decompression procedure for the first case, and for the
second case we use our prediction algorithm for both structural and geometric data. Case 3
and 4 appear only when we use the second packetization method. For case 3, we could use
method similar to [8]. Specifically, based on successfully received geometric data, we
obtain the coordinates of new vertices and then calculate their neighbors. Subsequently,
neighboring vertices are used to derive the structural data, which is considered as a
triangulation procedure. In case 4, only the geometric data is lost, so we only need to apply
partial of our prediction method, namely the geometric prediction.

4.4 Prediction algorithm

We employ hybrid streaming channels to deliver different parts of refinement data separately,
and to deal with the packet loss occurs over UDP, we propose a prediction algorithm. Packet
loss refers to data failing to reach its destination when transmitted across networks. Unreliable
channels using UDP have no recovery mechanism for packet loss, resulting in incomplete
streaming data. So we may only have partial refinement data. Then, the decoder either aborts the
decoding process which leads to a significant visual degradation during rendering, or makes a
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random guess which may introduce connectivity inconsistencies and cause decoding crash.
Therefore, we propose a receive-based loss prediction algorithm to recover lost data and predict
decompression results, as illustrate in Fig. 4.

1.

Find the least-square best fitting plane of the one-ring region which consists of the
split-vertex and its neighbor vertices, and project them onto this plane. We take this
plane as a parametric plane.

In the parametric plane, find the farthest edge from the split-vertex, denoted as e.
Insert a vertex in the triangle formed by the split-vertex and vertices of edge e. The
inserted vertex is the new vertex.

Connect the new vertex to the split-vertex and two vertices of edge e to form three
triangles.

Apply edge flipping to ensure Delaunay triangulations of the whole polygon including
the new vertex, the split-vertex, neighbor vertices and all corresponding edges.
Update the coordinates of new vertex and split-vertex as following:

a. For a selected vertex v, find its neighbor vertex v; and assign a weight to its
neighbor using Eq. 1:
v —vil

where ||v — ;|| represents the Euclidean distance of vertex v and v; in the

parametric plane. We have n neighbors in total, with the summation of all weights

being unity and the neighbor vertex which is closer to v; having a higher weight.
b. New coordinates of the vertex v can be computed by Eq. 2:

View = Z:I:O WiV (2)

c. Update the vertex v with its new coordinates.

Our prediction method is inspired by some hole filling techniques [12, 20]. Compared

with general hole-filling techniques which typically deal with large holes and complicated
boundaries, our vertex prediction is a rather simpler problem, because only a one-ring
“hole” of the missing vertex needs to be filled. The calculation only relies on the one-ring
neighborhood information of the missing vertex, so it takes constant time for predicting a

(a) (b) (©

Fig. 4 Loss prediction algorithm: step 2 to step 5. a On the best fitting plane, find out the split vertex, and
the farthest edge e. b The new vertex, the split vertex and vertices of edge e form three triangles. ¢ The
polygon after applying Delaunay triangulation
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vertex. Observing that an edge collapse and its corresponding vertex split transformation
are local operations and take place in the one-ring neighborhood of the split-vertex which is
normally a very small region, we can project this region in 2D space, called the least-square
best fitting plane. This plane serves as the parametric plane, on which we employ a
simplified hole filling technique to predict new vertices. Vertices included in this small
region are fairly limited amount, typically 6 to 7, which means for each vertex prediction
there is only 6 to 7 vertices involved. Thus, if we lose information of one vertex split, the
corresponding prediction following our method can be completed in constant time. Assume
there are n vertices which needs to be predicted during decompression, the prediction
procedure will take O(n) time. Therefore, our approach is very effective and satisfies the
requirement of real time streaming.

In addition, we are able to obtain decompressed meshes with high qualities using the
proposed prediction algorithm. As mentioned in [3], the structural data affects the
quality of a decoded mesh more than the geometric data does. The decoded mesh with
valid triangulations still maintains the same topology as the original 3D model. Our
streaming strategy guarantees that split bits are received successfully, notifying us where
a higher level of details is needed on the current 3D mesh. Moreover, the neighbor
vertices of split-vertex also give additional information. Consequently, we can generate a
valid triangulation for each split vertex using proposed method. Furthermore, we adjust
geometric coordinates of new vertices according to the partition of unity method [18].
Following a linear combination, we calculate the location of the new vertex as a weighted
sum of its neighbors. The neighbors closer to the new vertex play a more important role
in evaluating the coordinates. Thus, our prediction generates a good approximation of
decompressed mesh.

4.5 Control of error propagation

In the last stage of the decompression procedure, all predicted new vertices are marked
as unreliable [13]. For every vertex, we use one bit, called reliability bit, to indicate
whether this vertex is from prediction or regularly decoding. By doing so, we are able to
track the vertices with predicted connectivity and coordinates to ensure validity of our
further decoding, and also to prevent the prediction errors from propagating to other
regions on the mesh.

A packet loss may refer to one or more vertices loss depending on the packetization
strategy. If we treat the refinement of a vertex split transformation as a packet and streaming
it over UDP, when a packet loss occurs, we lose information of one vertex split. If
refinement information of several continuous vertex split operations is constructed into one
packet and streamed over unreliable channel, one packet loss can lead to losing of a group
of neighbor vertices which may cause distortion propagation on the predicted meshes.
Therefore, to prevent burst loss and error propagation during compression, we introduce a
mesh simplification constraint: at most one edge be collapsed into one vertex. This
constraint ensures that at most two vertices may be collapsed into one. As a result, one
split-vertex in mesh M; corresponds to only one single edge in M;, ;. Assume that there are
more than one edge collapsed into one vertex, and these vertex split transformations are
packetize into one packet and streamed over UDP. When packet loss happens, we need to
predict more than one new vertex in a small one-ring neighbor region. Subsequently, a
vertex split based on a predicted vertex could spread errors from the previous prediction.
We explain this prediction error propagation problem using an example, as depicted in
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Fig. 5. In a small region on the mesh, two edges AB and BC collapse into one vertex C, as
shown in Fig. 5(a) and (b). So during decompression, we sequentially insert two new
vertices, vertex B and vertex 4, based on vertex C. When packet loss occurs on unreliable
channels, we lose refinement information of both vertex 4 and B. Thus, the prediction
method is applied to get the new vertex B (Fig. 5(c)), and then based on the predicted vertex
B, a subsequent prediction is made to get the vertex 4 (Fig. 5(d)). Note that the prediction
error of the vertex B is propagated to the vertex 4. Hence, in order to prevent this kind of
error propagation, we always follow the above constraint. By doing so, we can ensure only
one edge collapses into one vertex, and a packet loss will not bring burst loss. This
constraint can be simply accomplished by a checking step: during mesh simplification,
when we select an edge to perform edge collapse transformation, we first check whether it
shares a vertex with another collapse-edge. If not, it can be a candidate collapse-edge, and
edge collapse happens only on those candidate edges.

5 Performance evaluation
5.1 Error metrics

Distortion is served as a metric to evaluate the decoding performance of our system. We
focus on two types of distortions, namely the geometric distortion like differences at vertex
positions, and the visual difference such as curvature dissimilarities. Two widely used
techniques, Hausdorff Distance [7] and Laplacian Operator [11], are utilized to capture
these two kinds of distortions separately. Even though packet loss occurs in different
segments of a refinement, instead of individually comparing the distortion of each fragment
[14], we compare the completely decoded 3D mesh with and without packet loss and
consequent prediction. Equation 3 gives the definition of the Hausdorff Distance between
two meshes M and M"

H(M, M) = max{h(M, M), h(M', M)}, (3)

where (M, M") = max,cyyming cpp||a — d'||, and |Ja—a'|| represents the Euclidean distance
between vertex a and vertex a'.

N Y
DHOE
2

Fig. 5 Prediction error propagation. a Two edges AB, BC are collapse edges; b Collapse edges AB, BC from
(a) to vertex C; ¢ Using prediction method to get vertex B; d Based on B using prediction method to get
vertex 4
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The Laplacian Operator captures the visual difference such as curvature and smoothness
between two meshes. It requires that the two compared meshes have the same vertex
number, which is fulfilled in our approach. The Visual difference between mesh M and M’
is given by the following Eq. 4:

IV = M) = 2 (v =] + [GL(Y) — GLO) ), @)

where v is the set of vertices on mesh M, and v' is the set of vertices on mesh M'. GL(v) is
the value of the geometric Laplacian of v, and similarly, GL(v") is the geometric Laplacian
of v". n is the number of vertices on the mesh. For any vertex v;, the geometric Laplacian is
defined as the Eq. 5:

jeni by v
GL(v) = vi = L (5)
2jenti b

where /; denotes the geometric distance between vertices i and j, and N(i) is the set of
indices of neighbors of vertex i.

5.2 Simulation results

The proposed loss-tolerance scheme is generally applicable to different progressive
algorithms, and we choose to implement it based on CPM for experiments. Our system is
tested on a network with packet loss ratio / between 2% and 12%, and to be more realistic,
we follow random packet loss pattern. In our experiments, 35%—40% more vertices are
added in every refinement. For illustrating our simulation results, we use the Standford
“Bunny” model (34843 vertices, 2.96 MB) and the Cyberware “Horse” model (48485
vertices, 4.74 MB).

Our experiments focus on testing how the prediction method works during the
decompression under different data loss ratios. We present the distortion values and screen
shots of decoded meshes in different level of details and with various loss ratios. The
performance of experimental results is evaluated using both the geometric distortion and the
visual distortion simultaneously. Figures 6 and 7 explain the geometric distortions of the
Bunny and the Horse respectively, using Hausdorff Distance. Figures 8 and 9 demonstrate the
results” visual distortions using Laplacian Operator. Mesh sequence in Fig. 10 shows the
decoded progressive meshes of the Bunny model using proposed method. In Fig. 11, we use
increased percentage of decoding time to explain the computational cost of our approach,
based on the regular decoding time without predictions for packet loss.

From Figs. 6 to 9, we can see that with the increasing of loss ratio, the distortion
increases and the mesh surface becomes less smooth. This phenomenon is because large
loss ratio implies more packets lost during transmission, then more new vertices are predicted
which leads to higher possibility of distortions. When the refinement increases, distortion also
raises accordingly. There are some packets losses in each refinement, more refinements means
more packets losses totally. As shown in those figures, the distortion caused by our prediction is
only a very small percent of the whole model. Therefore, we can conclude that distortions
caused by prediction are very limited. As shown in Figs. 6 and 7, distortions do not change
linearly. This may relate to vertices” importance. As mentioned in [4, 6], every split-vertex has
an importance value and there are dependencies between split vertices. Once random loss
occurs on those split vertices with high importance, results may have more distortion.
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Fig. 6 Geometric distortion 0.75%
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Therefore, taking into account the importance of split vertices before streaming may further
improve our results.

As described in Fig. 11, the decoding time increases when packet loss ratio is larger.
This is because high loss ratio implies that we have more vertices which need to be
predicted. Figure 11 also proves that the proposed scheme is very efficient. Even when the
loss rotio / is high as 12%, which happens rarely in real applications, we only introduce
about 10% more decoding time. Note that it takes longer time to decode the Horse model
than the Bunny model, which is only because the previous has more vertices. The decoding
time is largely related to the hardware performance, so it can be further reduced if the client
has more powerful computing hardware.

As mentioned previously in Section 4.2, two different stream construction methods are
proposed, so we compare our prediction results based on these two packetization strategies.
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Fig. 8 Visual distortion 0.7% ]
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The geometric distortions and visual distortions between the zero-loss decoded and
proposed decoded bunny model over loss ratio 12% (/=0.12) are shown in Figs. 12 and 13
separately. We can see that the second packetization strategy is better, because structural
and geometric data are packetized separately, so when packet loss happens, we may still get
partial refinement information of a split-vertex, as case 3 and 4 in Section 4.3. Lost both
structural and geometric data for a vertex split transformation in the second strategy does
not occur very frequently.

5.3 Comparison with Priors works
We have compared the proposed method with some existing mesh streaming techniques.

Comparison results confirm that our algorithm is able to achieve high quality decoded
meshes with lower distortions.

Fig. 9 Visual distortion
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ME, 34834 vertices

M1, 7213 vertices 2311KB

a 441KB

M2,9713vertices M3, 13023 vertices M4, 18031 vertices M5, 24896 vertices
597KB 834KB 1.163KB 1.632KB

Fig. 10 Sequence of meshes for the Bunny model over loss ratios 0.12

An extreme and easy way to handle packet loss is simply abort the vertex split
transformations wherever the corresponding refinements are lost during transmission.
Moreover, to avoid crashing at later decompression phases, all the subsequent vertex split
transformations based on the lost ones need to be abandoned as well. We name this method
Loss-without-prediction (LwoP) and compare it with our method. Experiments show that
around 70% of our results are better than the LwoP method, and we can improve
decompression results and present smoother meshes. The comparison results are illustrated
in Figs. 14 and 15. In LwoP, whenever a vertex’s refinement information is lost in some
level, the consequent mesh area stops at that resolution. Therefore, after decoding, the
decoded mesh M, can have different parts in different level of details. Moreover, the

Fig. 11 Increased decoding
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Fig. 12 Using two packetization 0.75% -
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decoded meshes have less vertex number than the original ones. For example, after three
refinements, the decoded mesh with size 755 KB has 12063 vertices using LwoP, while
using the proposed technique the mesh has 13023 vertices with size 834 KB. In our
method, the prediction results in smooth decoded meshes, provides better visual effect and
keeps same number of vertices. In addition, when the data loss ratio is higher, which
implies more packet loss occurs during transmission, the decoded meshes have more
distortions using LwoP. Furthermore, if the base mesh is in a very low resolution, which
means we need more refinements data to decompress the base mesh into the original mesh,
the results using LwoP are not satisfying.

We compare our approach with another receiver-based progressive streaming method
proposed in [5]. Based on geometric distortion using Hausdorff Distance, comparison
results are depicted in Fig. 16. Obviously, distortions of the decoded meshes using proposed
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Fig. 14 Geometric distortion
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technique are much smaller than the ones following [5]. In comparison to their method, we
have few advantages. Since split bits are transmitted reliably in our algorithm but not [5],
we have a better understanding of where the high level of details are needed, and our
approach tends to have more vertices and triangles in decoded mesh. They only transfer the
geometric data, so it cannot ensure the correctness of always selecting the closest triangle to
insert new vertex.

We compare our streaming strategy with CPM [19]. In our streaming strategy, both
reliable and unreliable channels are included to distribute the transmission loads which are
all over the reliable channel in CPM. So our streaming procedure can be speeded up. We
are able to effectively reduce at least half of the data which needs to be delivered over
reliable channel, as shown in Table 2.

Fig. 15 The decoded Bunny model using Loss-without-prediction and the proposed method over loss ratios
1=12%

@ Springer



796 Multimed Tools Appl (2011) 51:779-799

Fig. 16 Geometric distortion 40 4
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We have also tried to compare our results with methods in [2, 4], however, they
illustrate their errors (Hausdorff Distance) using absolute values without explicitly
indicating the size of their models. Thus, we are not able to directly perform comparisons.
We try to compare the efficiency of our approach with [6, 25]. Their decoding time
includes data retransmission time when packet loss happens. Our work focuses more on
the modified compression scheme (on server side) and the prediction scheme to tolerate
packets losses (on the client side), so our decoding time does not have retransmission
delay and is used to measure the effectiveness of our prediction scheme and
decompression. Thus, it is not appropriate to perform direct comparison between [6,
25] and our approach.

6 Conclusion and future works

In this paper, we have proposed a receiver-based loss-tolerance scheme to deal with the
packet loss when 3D progressive meshes are transmitted over lossy networks. We
utilize a reliable channel with TCP protocol to transmit the base mesh and the split bits,
and follow a fast channel using UDP to deliver both structural and geometric data. To

Table 2 Data size (Bits/Vertex) over reliable and unreliable channels. CPM: data size in CPM algorithm;
Proposed: data size in our proposed method

Mesh CPM Proposed

Reliable Reliable Unreliable
Bunny 8.98 43 4.68
Horse 7.51 2.87 4.64
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further improve streaming efficiency, in the encoding procedure, refinements are
subdivided into smaller packets according to network bandwidths. During decompres-
sion, we use a stream reconstructor to synchronize reliable and unreliable channels,
reorder packets, and detect packet losses. Whenever there is packet loss, the proposed
loss tolerance scheme is applied to reconstruct the new vertices’ connectivity and
estimate their coordinates. Our method does not require any additional data from server
to recover packet loss, and it is not necessary to retransmit lost data for decoding so
there is no extra transmission load over networks and no extra transmission delay. We
are capable of predicting both the structural data and the geometry data for a lost vertex
split transformation. Our prediction is able to provide meshes with good decompression
quality without incurring high computational cost. We suggest a simplified hole-filling
technique to effectively perform prediction so that it takes only O(n) time to accomplish
prediction of n vertices loss.

The technique discussed in this paper is a generic solution for different
compression algorithms, and we have explained our result by integrating with CPM
[19]. As shown in the performance evaluation, the distortion introduced by prediction is
fairely small and the computational cost for predicting lost data is low. In our system, we
are able to achieve high transmission speeds for streaming progressive meshes due to the
use of hybrid protocols, so it is suitable for real-time applications. Moreover, we suggest
two different packetization methods to further improve streaming efficiency and
distribute loss risks. And we have illustrated the differences of two methods in the
experiments.

In the future, we will include an intelligent transmitting mechanism to control
communications at various network conditions and avoid transmitting unnecessary
refinements which will not be used during decompression due to predictions. Moreover,
we will consider integrating the partition methods [13] to further reduce the distortions
in our results. The importance of vertices will also be included to further improve our
results in the future.
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