1

Supplementary Material

In this supplementary material, we show how the covariance matrix can be efficiently initialized and updated from merging and swapping operations.

1 INITIALIZATION OF COVARIANCE MATRIX FOR A TRIANGLE

Given a triangle \mathbf{T} of the input mesh with three vertices $\mathbf{v}_i, i=1,2,3$, the covariance matrix $\mathbf{U}(\mathbf{T})$ can be efficiently represented using the coordinates of three vertices. We denote the centroid of \mathbf{T} as $\mathbf{x}_c: \mathbf{x}_c = \frac{1}{3}(\mathbf{v}_1 + \mathbf{v}_2 + \mathbf{v}_3)$. $\mathbf{U}(\mathbf{T})$ can be represented:

$$\mathbf{U}(\mathbf{T}) = \iint_{\mathbf{p} \in \mathbf{T}} (\mathbf{p} - \mathbf{x}_c) (\mathbf{p} - \mathbf{x}_c)^{\top} d\mathbf{p}$$
$$= \iint_{\mathbf{p} \in \mathbf{T}} \mathbf{p} \mathbf{p}^{\top} d\mathbf{p} - A \cdot \mathbf{x}_c \mathbf{x}_c^{\top},$$

where A is the area of triangle T:

$$A = \frac{1}{2} ||(\mathbf{v}_2 - \mathbf{v}_1) \times (\mathbf{v}_3 - \mathbf{v}_1)||.$$

 \mathbf{p} can be parameterized to compute $\iint_{\mathbf{p} \in \mathbf{T}} \mathbf{p} \mathbf{p}^{\top} d\mathbf{p}$:

$$\mathbf{p} = \mathbf{v}_1 + s(\mathbf{v}_2 - \mathbf{v}_1) + t(\mathbf{v}_3 - \mathbf{v}_1) \tag{1}$$

where 0 < s, t, s + t < 1 must be satisfied. We denote this parameterization domain (i.e., a right triangle) as **D**.

Thus

$$\iint_{\mathbf{p} \in \mathbf{T}} \mathbf{p} \mathbf{p}^{\top} d\mathbf{p} = \iint_{\mathbf{D}} \mathbf{p} \mathbf{p}^{\top} \left\| \frac{dr}{ds} \times \frac{dr}{dt} \right\| ds dt$$

$$= \iint_{\mathbf{D}} \mathbf{p} \mathbf{p}^{\top} \left\| (\mathbf{v}_{2} - \mathbf{v}_{1}) \times (\mathbf{v}_{3} - \mathbf{v}_{1}) \right\| ds dt \quad (2)$$

$$= 2A \iint_{\mathbf{D}} \mathbf{p} \mathbf{p}^{\top} ds dt.$$

Substituting Eq. (1) into Eq. (2), we can get:

$$\iint_{\mathbf{p} \in \mathbf{T}} \mathbf{p} \mathbf{p}^{\top} d\mathbf{p} = \frac{A}{6} (\mathbf{v}_{1} \mathbf{v}_{1}^{\top} + \mathbf{v}_{2} \mathbf{v}_{2}^{\top} + \mathbf{v}_{3} \mathbf{v}_{3}^{\top}) + \frac{A}{12} (\mathbf{v}_{1} \mathbf{v}_{2}^{\top} + \mathbf{v}_{1} \mathbf{v}_{3}^{\top} + \mathbf{v}_{2} \mathbf{v}_{3}^{\top} + \mathbf{v}_{2} \mathbf{v}_{1}^{\top} + \mathbf{v}_{3} \mathbf{v}_{1}^{\top} + \mathbf{v}_{3} \mathbf{v}_{2}^{\top}).$$
(3)

Note that:

$$A \cdot \mathbf{x}_c \mathbf{x}_c^{\top} = \frac{A}{0} (\mathbf{v}_1 + \mathbf{v}_2 + \mathbf{v}_3) (\mathbf{v}_1 + \mathbf{v}_2 + \mathbf{v}_3)^{\top}.$$
 (4)

Combining Eq. (3) and Eq. (4), we have:

$$\mathbf{U}(\mathbf{T}) = \frac{A}{36} \begin{pmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{v}_3 \end{pmatrix} \begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix} \begin{pmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{v}_3 \end{pmatrix}^{\top}.$$

2 EFFICIENT UPDATE OF COVARIANCE MATRIX FOR MERGING OPERATION

We denote its surface area as $A(\mathbf{C}_i)$ and its centroid as $\mathbf{x}_c(\mathbf{C}_i)$:

$$A(\mathbf{C}_i) = \iint_{\mathbf{p} \in \mathbf{C}_i} d\mathbf{p},$$
$$\mathbf{x}_c(\mathbf{C}_i) = \frac{\iint_{\mathbf{p} \in \mathbf{C}_i} \mathbf{p} d\mathbf{p}}{A(\mathbf{C}_i)}.$$

Considering the merging operation $(\mathbf{C}_i, \mathbf{C}_j) \to \mathbf{C}_k$, it is obvious the surface area $A(\mathbf{C}_k)$ and the centroid $\mathbf{x}_c(\mathbf{C}_k)$ can be updated easily:

$$A(\mathbf{C}_k) = A(\mathbf{C}_i) + A(\mathbf{C}_j).$$

$$\mathbf{x}_c(\mathbf{C}_k) = \frac{A(\mathbf{C}_i)\mathbf{x}_c(\mathbf{C}_i) + A(\mathbf{C}_j)\mathbf{x}_c(\mathbf{C}_j)}{A(\mathbf{C}_i) + A(\mathbf{C}_j)}.$$

We consider the update of the covariance matrix $\mathbf{U}(\mathbf{C}_k)$, which is:

$$\mathbf{U}(\mathbf{C}_k) = \iint_{\mathbf{p} \in \mathbf{C}_k} (\mathbf{p} - \mathbf{x}_c(\mathbf{C}_k)) (\mathbf{p} - \mathbf{x}_c(\mathbf{C}_k))^{\top} d\mathbf{p}.$$

The integral domain C_k can be split into two parts : $C_k = C_i \cup C_j$. For the first part $p \in C_i$, substituting $p - x_c(C_k)$ with $p - x_c(C_i) + x_c(C_i) - x_c(C_k)$, it becomes:

$$\iint_{\mathbf{p} \in \mathbf{C}_i} (\mathbf{p} - \mathbf{x}_c(\mathbf{C}_k)) (\mathbf{p} - \mathbf{x}_c(\mathbf{C}_k))^{\top} d\mathbf{p}$$

$$= \mathbf{U}(\mathbf{C}_i) + A(\mathbf{C}_i) (\mathbf{x}_c(\mathbf{C}_i) - \mathbf{x}_c(\mathbf{C}_k)) (\mathbf{x}_c(\mathbf{C}_i) - \mathbf{x}_c(\mathbf{C}_k))^{\top}.$$

The second part is alike, so we can update the covariance matrix $\mathbf{U}(\mathbf{C}_k)$ as:

$$\begin{aligned} \mathbf{U}(\mathbf{C}_k) &= \mathbf{U}(\mathbf{C}_i) + \mathbf{U}(\mathbf{C}_j) \\ &+ A(\mathbf{C}_i)(\mathbf{x}_c(\mathbf{C}_i) - \mathbf{x}_c(\mathbf{C}_k))(\mathbf{x}_c(\mathbf{C}_i) - \mathbf{x}_c(\mathbf{C}_k))^\top \\ &+ A(\mathbf{C}_j)(\mathbf{x}_c(\mathbf{C}_j) - \mathbf{x}_c(\mathbf{C}_k))(\mathbf{x}_c(\mathbf{C}_j) - \mathbf{x}_c(\mathbf{C}_k))^\top. \end{aligned}$$

3 EFFICIENT UPDATE OF COVARIANCE MATRIX FOR SWAPPING OPERATION

For a swapping operation which swaps a triangle face \mathbf{T} from \mathbf{C}_i to \mathbf{C}_j . Suppose after swapping, \mathbf{C}_i becomes $\mathbf{C}_{i'}$ and \mathbf{C}_j becomes $\mathbf{C}_{i'}$, i.e., $\mathbf{C}_i = \mathbf{C}_{i'} \cup \mathbf{T}$, and $\mathbf{C}_{i'} = \mathbf{C}_j \cup \mathbf{T}$.

It is obvious the surface areas and the centroids can be updated by:

$$A(\mathbf{C}_{i'}) = A(\mathbf{C}_i) - A(\mathbf{T}),$$

$$A(\mathbf{C}_{i'}) = A(\mathbf{C}_j) + A(\mathbf{T}),$$

$$\mathbf{x}_c(\mathbf{C}_{i'}) = \frac{A(\mathbf{C}_i)\mathbf{x}_c(\mathbf{C}_i) - A(\mathbf{T})\mathbf{x}_c(\mathbf{T})}{A(\mathbf{C}_i) - A(\mathbf{T})},$$
$$\mathbf{x}_c(\mathbf{C}_{j'}) = \frac{A(\mathbf{C}_j)\mathbf{x}_c(\mathbf{C}_j) + A(\mathbf{T})\mathbf{x}_c(\mathbf{T})}{A(\mathbf{C}_i) + A(\mathbf{T})}.$$

This swapping operation can be interpreted as two merging operations: C_i is the cluster merged from $C_{i'}$ and T, and $C_{j'}$ is the cluster merged from C_j and T:

$$\begin{split} \mathbf{U}(\mathbf{C}_{i'}) &= \mathbf{U}(\mathbf{C}_i) - \mathbf{U}(\mathbf{T}) \\ &- A(\mathbf{C}_{i'}) (\mathbf{x}_c(\mathbf{C}_{i'}) - \mathbf{x}_c(\mathbf{C}_i)) (\mathbf{x}_c(\mathbf{C}_{i'}) - \mathbf{x}_c(\mathbf{C}_i))^\top \\ &- A(\mathbf{T}) (\mathbf{x}_c(\mathbf{T}) - \mathbf{x}_c(\mathbf{C}_i)) (\mathbf{x}_c(\mathbf{T}) - \mathbf{x}_c(\mathbf{C}_i))^\top. \\ \mathbf{U}(\mathbf{C}_{j'}) &= \mathbf{U}(\mathbf{C}_j) + \mathbf{U}(\mathbf{T}) \\ &+ A(\mathbf{C}_j) (\mathbf{x}_c(\mathbf{C}_j) - \mathbf{x}_c(\mathbf{C}_{j'})) (\mathbf{x}_c(\mathbf{C}_j) - \mathbf{x}_c(\mathbf{C}_{j'}))^\top \\ &+ A(\mathbf{T}) (\mathbf{x}_c(\mathbf{T}) - \mathbf{x}_c(\mathbf{C}_{j'})) (\mathbf{x}_c(\mathbf{T}) - \mathbf{x}_c(\mathbf{C}_{j'}))^\top. \end{split}$$