Supplementary Material

In this supplementary material, we show how the covariance matrix can be efficiently initialized and updated from merging and swapping operations.

1 Initialization of Covariance Matrix for a Triangle

Given a triangle \mathbf{T} of the input mesh with three vertices $\mathbf{v}_{i}, i=1,2,3$, the covariance matrix $\mathbf{U}(\mathbf{T})$ can be efficiently represented using the coordinates of three vertices. We denote the centroid of \mathbf{T} as $\mathbf{x}_{c}: \mathbf{x}_{c}=\frac{1}{3}\left(\mathbf{v}_{1}+\mathbf{v}_{2}+\mathbf{v}_{3}\right)$. $\mathbf{U}(\mathbf{T})$ can be represented:

$$
\begin{aligned}
\mathbf{U}(\mathbf{T}) & =\iint_{\mathbf{p} \in \mathbf{T}}\left(\mathbf{p}-\mathbf{x}_{c}\right)\left(\mathbf{p}-\mathbf{x}_{c}\right)^{\top} d \mathbf{p} \\
& =\iint_{\mathbf{p} \in \mathbf{T}} \mathbf{p} \mathbf{p}^{\top} d \mathbf{p}-A \cdot \mathbf{x}_{c} \mathbf{x}_{c}^{\top}
\end{aligned}
$$

where A is the area of triangle \mathbf{T} :

$$
A=\frac{1}{2}\left\|\left(\mathbf{v}_{2}-\mathbf{v}_{1}\right) \times\left(\mathbf{v}_{3}-\mathbf{v}_{1}\right)\right\| .
$$

\mathbf{p} can be parameterized to compute $\iint_{\mathbf{p} \in \mathbf{T}} \mathbf{p p}^{\top} d \mathbf{p}$:

$$
\begin{equation*}
\mathbf{p}=\mathbf{v}_{1}+s\left(\mathbf{v}_{2}-\mathbf{v}_{1}\right)+t\left(\mathbf{v}_{3}-\mathbf{v}_{1}\right) \tag{1}
\end{equation*}
$$

where $0<s, t, s+t<1$ must be satisfied. We denote this parameterization domain (i.e., a right triangle) as \mathbf{D}.

Thus,

$$
\begin{align*}
\iint_{\mathbf{p} \in \mathbf{T}} \mathbf{p p}^{\top} d \mathbf{p} & =\iint_{\mathbf{D}} \mathbf{p} \mathbf{p}^{\top}\left\|\frac{d r}{d s} \times \frac{d r}{d t}\right\| d s d t \\
& =\iint_{\mathbf{D}} \mathbf{p p}^{\top}\left\|\left(\mathbf{v}_{2}-\mathbf{v}_{1}\right) \times\left(\mathbf{v}_{3}-\mathbf{v}_{1}\right)\right\| d s d t \tag{2}\\
& =2 A \iint_{\mathbf{D}} \mathbf{p p}^{\top} d s d t .
\end{align*}
$$

Substituting Eq. (1) into Eq. (2), we can get:

$$
\begin{align*}
\iint_{\mathbf{p} \in \mathbf{T}} \mathbf{p} \mathbf{p}^{\top} d \mathbf{p} & =\frac{A}{6}\left(\mathbf{v}_{1} \mathbf{v}_{1}^{\top}+\mathbf{v}_{2} \mathbf{v}_{2}^{\top}+\mathbf{v}_{3} \mathbf{v}_{3}^{\top}\right)+\frac{A}{12}\left(\mathbf{v}_{1} \mathbf{v}_{2}^{\top}\right. \\
& \left.+\mathbf{v}_{1} \mathbf{v}_{3}^{\top}+\mathbf{v}_{2} \mathbf{v}_{3}^{\top}+\mathbf{v}_{2} \mathbf{v}_{1}^{\top}+\mathbf{v}_{3} \mathbf{v}_{1}^{\top}+\mathbf{v}_{3} \mathbf{v}_{2}^{\top}\right) \tag{3}
\end{align*}
$$

Note that :

$$
\begin{equation*}
A \cdot \mathbf{x}_{c} \mathbf{x}_{c}^{\top}=\frac{A}{9}\left(\mathbf{v}_{1}+\mathbf{v}_{2}+\mathbf{v}_{3}\right)\left(\mathbf{v}_{1}+\mathbf{v}_{2}+\mathbf{v}_{3}\right)^{\top} \tag{4}
\end{equation*}
$$

Combining Eq. (3) and Eq. (4), we have:

$$
\mathbf{U}(\mathbf{T})=\frac{A}{36}\left(\begin{array}{lll}
\mathbf{v}_{1} & \mathbf{v}_{2} & \mathbf{v}_{3}
\end{array}\right)\left(\begin{array}{ccc}
2 & -1 & -1 \\
-1 & 2 & -1 \\
-1 & -1 & 2
\end{array}\right)\left(\begin{array}{lll}
\mathbf{v}_{1} & \mathbf{v}_{2} & \mathbf{v}_{3}
\end{array}\right)^{\top}
$$

2 Efficient Update of Covariance Matrix for Merging Operation

We denote its surface area as $A\left(\mathbf{C}_{i}\right)$ and its centroid as $\mathbf{x}_{c}\left(\mathbf{C}_{i}\right)$:

$$
\begin{gathered}
A\left(\mathbf{C}_{i}\right)=\iint_{\mathbf{p} \in \mathbf{C}_{i}} d \mathbf{p} \\
\mathbf{x}_{c}\left(\mathbf{C}_{i}\right)=\frac{\iint_{\mathbf{p} \in \mathbf{C}_{i}} \mathbf{p} d \mathbf{p}}{A\left(\mathbf{C}_{i}\right)} .
\end{gathered}
$$

Considering the merging operation $\left(\mathbf{C}_{i}, \mathbf{C}_{j}\right) \rightarrow \mathbf{C}_{k}$, it is obvious the surface area $A\left(\mathbf{C}_{k}\right)$ and the centroid $\mathbf{x}_{c}\left(\mathbf{C}_{k}\right)$ can be updated easily:

$$
\begin{gathered}
A\left(\mathbf{C}_{k}\right)=A\left(\mathbf{C}_{i}\right)+A\left(\mathbf{C}_{j}\right) \\
\mathbf{x}_{c}\left(\mathbf{C}_{k}\right)=\frac{A\left(\mathbf{C}_{i}\right) \mathbf{x}_{c}\left(\mathbf{C}_{i}\right)+A\left(\mathbf{C}_{j}\right) \mathbf{x}_{c}\left(\mathbf{C}_{j}\right)}{A\left(\mathbf{C}_{i}\right)+A\left(\mathbf{C}_{j}\right)}
\end{gathered}
$$

We consider the update of the covariance matrix $\mathbf{U}\left(\mathbf{C}_{k}\right)$, which is:

$$
\mathbf{U}\left(\mathbf{C}_{k}\right)=\iint_{\mathbf{p} \in \mathbf{C}_{k}}\left(\mathbf{p}-\mathbf{x}_{c}\left(\mathbf{C}_{k}\right)\right)\left(\mathbf{p}-\mathbf{x}_{c}\left(\mathbf{C}_{k}\right)\right)^{\top} d \mathbf{p}
$$

The integral domain \mathbf{C}_{k} can be split into two parts: $\mathbf{C}_{k}=$ $\mathbf{C}_{i} \cup \mathbf{C}_{j}$. For the first part $\mathbf{p} \in \mathbf{C}_{i}$, substituting $\mathbf{p}-\mathbf{x}_{c}\left(\mathbf{C}_{k}\right)$ with $\mathbf{p}-\mathbf{x}_{c}\left(\mathbf{C}_{i}\right)+\mathbf{x}_{c}\left(\mathbf{C}_{i}\right)-\mathbf{x}_{c}\left(\mathbf{C}_{k}\right)$, it becomes:

$$
\begin{aligned}
& \iint_{\mathbf{p} \in \mathbf{C}_{i}}\left(\mathbf{p}-\mathbf{x}_{c}\left(\mathbf{C}_{k}\right)\right)\left(\mathbf{p}-\mathbf{x}_{c}\left(\mathbf{C}_{k}\right)\right)^{\top} d \mathbf{p} \\
= & \mathbf{U}\left(\mathbf{C}_{i}\right)+A\left(\mathbf{C}_{i}\right)\left(\mathbf{x}_{c}\left(\mathbf{C}_{i}\right)-\mathbf{x}_{c}\left(\mathbf{C}_{k}\right)\right)\left(\mathbf{x}_{c}\left(\mathbf{C}_{i}\right)-\mathbf{x}_{c}\left(\mathbf{C}_{k}\right)\right)^{\top} .
\end{aligned}
$$

The second part is alike, so we can update the covariance matrix $\mathbf{U}\left(\mathbf{C}_{k}\right)$ as:

$$
\begin{aligned}
\mathbf{U}\left(\mathbf{C}_{k}\right) & =\mathbf{U}\left(\mathbf{C}_{i}\right)+\mathbf{U}\left(\mathbf{C}_{j}\right) \\
& +A\left(\mathbf{C}_{i}\right)\left(\mathbf{x}_{c}\left(\mathbf{C}_{i}\right)-\mathbf{x}_{c}\left(\mathbf{C}_{k}\right)\right)\left(\mathbf{x}_{c}\left(\mathbf{C}_{i}\right)-\mathbf{x}_{c}\left(\mathbf{C}_{k}\right)\right)^{\top} \\
& +A\left(\mathbf{C}_{j}\right)\left(\mathbf{x}_{c}\left(\mathbf{C}_{j}\right)-\mathbf{x}_{c}\left(\mathbf{C}_{k}\right)\right)\left(\mathbf{x}_{c}\left(\mathbf{C}_{j}\right)-\mathbf{x}_{c}\left(\mathbf{C}_{k}\right)\right)^{\top} .
\end{aligned}
$$

3 Efficient Update of Covariance Matrix FOR SWAPPING Operation

For a swapping operation which swaps a triangle face \mathbf{T} from \mathbf{C}_{i} to \mathbf{C}_{j}. Suppose after swapping, \mathbf{C}_{i} becomes $\mathbf{C}_{i^{\prime}}$ and \mathbf{C}_{j} becomes $\mathbf{C}_{j^{\prime}}$, i.e., $\mathbf{C}_{i}=\mathbf{C}_{i^{\prime}} \cup \mathbf{T}$, and $\mathbf{C}_{j^{\prime}}=\mathbf{C}_{j} \cup \mathbf{T}$.

It is obvious the surface areas and the centroids can be updated by:

$$
\begin{aligned}
& A\left(\mathbf{C}_{i^{\prime}}\right)=A\left(\mathbf{C}_{i}\right)-A(\mathbf{T}), \\
& A\left(\mathbf{C}_{j^{\prime}}\right)=A\left(\mathbf{C}_{j}\right)+A(\mathbf{T})
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{x}_{c}\left(\mathbf{C}_{i^{\prime}}\right) & =\frac{A\left(\mathbf{C}_{i}\right) \mathbf{x}_{c}\left(\mathbf{C}_{i}\right)-A(\mathbf{T}) \mathbf{x}_{c}(\mathbf{T})}{A\left(\mathbf{C}_{i}\right)-A(\mathbf{T})} \\
\mathbf{x}_{c}\left(\mathbf{C}_{j^{\prime}}\right) & =\frac{A\left(\mathbf{C}_{j}\right) \mathbf{x}_{c}\left(\mathbf{C}_{j}\right)+A(\mathbf{T}) \mathbf{x}_{c}(\mathbf{T})}{A\left(\mathbf{C}_{i}\right)+A(\mathbf{T})}
\end{aligned}
$$

This swapping operation can be interpreted as two merging operations: \mathbf{C}_{i} is the cluster merged from $\mathbf{C}_{i^{\prime}}$ and \mathbf{T}, and $\mathbf{C}_{j^{\prime}}$ is the cluster merged from \mathbf{C}_{j} and \mathbf{T} :

$$
\begin{aligned}
\mathbf{U}\left(\mathbf{C}_{i^{\prime}}\right) & =\mathbf{U}\left(\mathbf{C}_{i}\right)-\mathbf{U}(\mathbf{T}) \\
& -A\left(\mathbf{C}_{i^{\prime}}\right)\left(\mathbf{x}_{c}\left(\mathbf{C}_{i^{\prime}}\right)-\mathbf{x}_{c}\left(\mathbf{C}_{i}\right)\right)\left(\mathbf{x}_{c}\left(\mathbf{C}_{i^{\prime}}\right)-\mathbf{x}_{c}\left(\mathbf{C}_{i}\right)\right)^{\top} \\
& -A(\mathbf{T})\left(\mathbf{x}_{c}(\mathbf{T})-\mathbf{x}_{c}\left(\mathbf{C}_{i}\right)\right)\left(\mathbf{x}_{c}(\mathbf{T})-\mathbf{x}_{c}\left(\mathbf{C}_{i}\right)\right)^{\top} . \\
\mathbf{U}\left(\mathbf{C}_{j^{\prime}}\right) & =\mathbf{U}\left(\mathbf{C}_{j}\right)+\mathbf{U}(\mathbf{T}) \\
& +A\left(\mathbf{C}_{j}\right)\left(\mathbf{x}_{c}\left(\mathbf{C}_{j}\right)-\mathbf{x}_{c}\left(\mathbf{C}_{j^{\prime}}\right)\right)\left(\mathbf{x}_{c}\left(\mathbf{C}_{j}\right)-\mathbf{x}_{c}\left(\mathbf{C}_{j^{\prime}}\right)\right)^{\top} \\
& +A(\mathbf{T})\left(\mathbf{x}_{c}(\mathbf{T})-\mathbf{x}_{c}\left(\mathbf{C}_{j^{\prime}}\right)\right)\left(\mathbf{x}_{c}(\mathbf{T})-\mathbf{x}_{c}\left(\mathbf{C}_{j^{\prime}}\right)\right)^{\top} .
\end{aligned}
$$

