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Abstract

We present a novel approach to reconstruct RGB-D in-
door scene with plane primitives. Our approach takes as
input a RGB-D sequence and a dense coarse mesh re-
constructed by some 3D reconstruction method on the se-
quence, and generate a lightweight, low-polygonal mesh
with clear face textures and sharp features without losing
geometry details from the original scene. To achieve this,
we firstly partition the input mesh with plane primitives,
simplify it into a lightweight mesh next, then optimize plane
parameters, camera poses and texture colors to maximize
the photometric consistency across frames, and finally opti-
mize mesh geometry to maximize consistency between ge-
ometry and planes. Compared to existing planar recon-
struction methods which only cover large planar regions
in the scene, our method builds the entire scene by adap-
tive planes without losing geometry details and preserves
sharp features in the final mesh. We demonstrate the effec-
tiveness of our approach by applying it onto several RGB-D
scans and comparing it to other state-of-the-art reconstruc-
tion methods.

1. Introduction

Online and offline RGB-D reconstruction techniques are
developing fast in recent years with the prevalence of con-
sumer depth cameras, and they have wide applications in
many popular areas such as virtual reality (VR), augmented
reality (AR), gaming and 3D printing. State-of-the-art on-
line 3D reconstruction methods can capture indoor and out-
door scenes in the real-world environments efficiently with
geometry details [19, 24, 25, 6, 21]. However, resulting 3D
models of these methods are usually too dense with unsat-
isfying textures due to many reasons including noisy depth
data, incorrect camera poses and oversmoothing in data fu-
sion. These models can not be used directly in most appli-
cations without further refinement or post-processing.

In order to lower the density of reconstructed models and
improve the structure quality, one typical strategy is to in-
troduce plane primitives into front-end (such as tracking)
or back-end (such as model refinement) of reconstruction
pipeline, as typical indoor scenes are primarily composed of
planar regions, especially buildings and houses with struc-
ture following Manhattan-world assumption. However, al-
most all existing planar reconstruction methods take into
account only large planar regions such as walls, ceilings,
floors and large table surfaces, and simply ignore and re-
move other objects with freeform surfaces no matter if they
contain planar regions or not, such as various indoor fur-
niture and objects on or adhering to large planes. These re-
constructed models with only large planes are too simplified
and lack fidelity that they are not applicable to many situ-
ations acquiring geometry details such as indoor roaming
with decorations, gaming and various VR or AR applica-
tions. Moreover, one challenging problem in planar recon-
struction of indoor scene is that geometry details are usually
noisy because of noisy RGB-D raw data, and it is difficult
and also time-consuming to extract plane primitives or other
types of geometry priors from the scene while still preserv-
ing the original shape.

In this paper, we present a novel approach to recon-
struct RGB-D indoor scene using planes and generate a
lightweight and complete 3D textured model without los-
ing geometry details. Our method takes as input a RGB-
D sequence of indoor scene and a dense coarse mesh re-
constructed by some online reconstruction method on this
sequence. We firstly partition the entire dense mesh into
different planar clusters, each of which represents a plane
primitive. Next, we simplify the dense mesh based on the
planar partitions into a lightweight mesh which preserves
both large planar regions as well as small objects without
losing geometry details. In order to generate texture map-
ping for mesh faces, we create texture patch for each plane
and sample points on the plane, and run a global optimiza-
tion process to maximize the photometric consistency of
sampled points across frames by optimizing camera poses,



plane parameters and texture colors. Finally, we optimize
the mesh geometry by maximizing consistency between ge-
ometry and plane primitives, which further preserves sharp
features of original scene such as edges and corners of plane
intersections.

Our approach can be regarded as a back-end RGB-D re-
construction framework after online reconstruction process.
Experiments show that our method exceeds state-of-the-art
RGB-D planar reconstruction method in keeping geometry
details and sharp features in the result lightweight 3D tex-
tured models.

2. Related work
Online and offline 3D reconstruction with consumer

depth cameras have been widely studied in recent years.
One major category of online large-scale 3D reconstruc-
tion methods utilizes volume data structure and volumet-
ric fusion technique, like one of the earliest online method
KinectFusion [18] and its subsequent variants such as scal-
able online reconstruction [4], VoxelHashing [19], Volume-
shifting [23], BundleFusion [6] and InfiniTAM [21]. One
important advantage of these volume-based methods is that
it is fast and efficient to smooth noisy data scanned by depth
cameras and easy to generate mesh with connected surface.
However, a major limitation is that volumetric fusion over-
smoothes the surface and removes the sharp features since
it tends to average points and their colors in the same voxel
position in the volume. Besides volume-based method, an-
other strategy is point-based method, which utilizes surfels
as basic data structure to represent the surface without con-
nectivity [14, 24, 25]. However, it still suffers from over-
smoothing problem since it also tends to make a moving
average of points nearby in the space [24]. Moreover, er-
ror accumulates in surface representation and camera poses
through the scanning process because of oversmoothing as
well as other factors including noisy color and depth data.

In order to improve camera pose estimation and also
the quality of surface, several works introduce planes into
the reconstruction pipeline to estimate complicated surface
with simple surface priors, especially in buildings or indoor
scene with special structure features like Manhattan-world
assumption. One category of methods introduce plane con-
straints into front-end of the reconstruction process to im-
prove robustness of camera tracking. One of the earliest
methods by Dou et al. [7] combines both plane and feature
point correspondences to estimate camera poses in RGB-
D scanning. A recent work by Hsiao et al. [12] uses very
similar idea to introduce plane constraint into tracking in
SLAM framework, and their result exceeds current state-
of-the-art online 3D reconstruction methods in pose esti-
mation. For offline reconstruction framework, a very re-
cent work by Halber and Funkhouser [10] proposes a fine-
to-coarse global registration algorithm on RGB-D data by

combining planar relationship constraints with other types
of constraints, and their method works efficiently on large-
scale RGB-D data.

Another category of methods tries to utilize planes to
better represent the surfaces of final model reconstructed
from RGB-D data. Dzitsiuk et al. [8] introduce plane priors
in real-time 3D reconstruction pipeline on mobile devices to
lower the computation complexity, de-noise depth data and
improve indoor structure. However, this method only re-
fines several limited types of planes like walls, ceilings and
floors and leaves other scanned data unchanged. Another
impressive method 3DLite [13] is the latest method we
found to reconstruct RGB-D model by planes and optimize
face textures on them. This method generates lightweight
model with optimized textures from an input dense and
fused reconstruction. It proposes a frame-based plane de-
tection technique to extract large planes from RGB-D mesh,
and then globally optimizes camera poses and face textures
on the planes. However, this method still cannot detect
and simply removes all small planes and non-planar geom-
etry details, whereas our method is to reconstruct the entire
scene by planes without losing geometry details.

Planar reconstruction from point clouds is also a hot
topic for decades, as point cloud data is prevalent and can be
easily acquired via various tools such as Laser scanners or
structure from motion (SfM) data. Planes are widely used in
reconstruction of outdoor environments to fit building struc-
ture. Monszpart et al. [16] extract regular arrangement
of planes from unstructured, large-scale and noisy build-
ing scans, and reconstruct the building model with com-
plete and lightweight planes. However, it only detects large
planar regions in the building framework and ignore de-
tails inside, so it is more like an architecture reconstruc-
tion method using planes. So is another method proposed
by Mura et al. [17] that reconstructs only the permanent
components (walls, ceilings and floors) of buildings by ex-
tracting planes on these components from all detected ones
from input point cloud.

The two most common plane primitive detection strate-
gies are RANSAC and region growing. RANSAC-based
method is popular for its simplicity, scalability and proba-
bilistic guarantees. However, it easily misses global scene-
level structures and ignores the neighborhood regularity be-
tween points [16]. Therefore, RANSAC-based method are
usually used on regular models such as CAD shapes and
building structure [15]. Compared with RANSAC, region
growing expands from seeds to neighbors and inherently
detects parts that are connected, and is more suitable and
widely used in plane detection of large-scale models. How-
ever, one important disadvantage is that region growing is
not designed to detect planes on free-form shapes since
it easily partitions curved surfaces into irregular parts and
causes over-segmentation. Chauve et al. [3] propose one



of the earliest methods to extract planes and build triangu-
lar mesh from noisy unstructured point cloud with planar
regions. Boulch et al. [1] present a 3D reconstruction of
a piecewise-planar surface from range images by regular-
izing the surface with respect to edges and corners. Oesau
et al. [20] propose a planar shape detection and regulariza-
tion method in tandem from raw point sets. Similarly, even
though these methods do not ignore non-planar regions on
purpose, they rely on region growing and still cannot pre-
serve shape of curved surfaces.

3. Planar reconstruction pipeline
Our reconstruction pipeline takes a RGB-D sequence as

input, and firstly uses some state-of-the-art online recon-
struction such as BundleFusion [6] to reconstruct an initial
dense mesh. Initially, we detect plane primitives by parti-
tioning the mesh into different clusters, each of which rep-
resents a plane patch (Section 3.1). The following step is
to simplify the dense mesh based on the planar partition
(Section 3.2). Next, we sample points on each plane in the
mesh and create texture patch for the plane patches, and op-
timize camera poses, plane parameters and texture colors to
maximize the color consistency across frames (Section 3.3).
Finally, we optimize the mesh geometry to maximize con-
sistency between vertices on the mesh and corresponding
plane primitives (Section 3.4).

3.1. Mesh planar partition

Unlike existing planar reconstruction methods which
only take into account large planar regions, we aim to par-
tition the entire mesh into plane primitives to include all
geometry details. As we introduce in Section 2, two most
common plane detection method is RANSAC and region
growing. RANSAC-based detection is efficient but easily
misses global scene-level structures, while region growing
is more robust in detecting planes under regularity but still
is not designed to detect planes in freeform shapes with
curved surfaces. 3DLite [13] proposes a frame-based plane
detection method to extract large planes from RGB-D mesh.
However, this method still cannot detect small planar re-
gions or non-planar surfaces and it simply removes them in
the final mesh. Moreover, the frame-by-frame plane detec-
tion and merging scheme used in 3DLite is time-consuming
and easy to accumulate errors so it has to utilize many fur-
ther optimization steps for robustness.

In our approach we refer to a state-of-the-art surface par-
tition algorithm proposed by Cai et al. [2]. This method
proposes a new principle component analysis (PCA) based
energy, whose minimization leads to an optimal piecewise-
linear planar approximation of the entire surface with high
quality. After an input mesh is partitioned into clusters, each
cluster is attached with a plane proxy φi defined by the cen-
troid ci and normal ni as the smallest eigenvector direction

Figure 1. Plane partition result on a mesh without plane merging
(left) and with merging (right) on the ‘lr kt2n’ model from ICL-
NUIM dataset. Notes that small neighbor plane patches on the
walls, floors and ceilings are merged into large planes.

from the covariance matrix of the cluster. In order to detect
planes more sensitively and regularize the compactness of
planar clusters, in our experiments we lower the coefficient
α used in Eq. (4) of the paper [2] from 10−15 to 10−20. Fig-
ure 1 (left) shows planar partition result on a dense mesh re-
constructed by online reconstruction system VoxelHashing
[19] with groundtruth camera poses.

After we get the initial planar partition, we run a further
plane merging step to merge adjacent planes together into
large ones (Figure 1 right). The reason is that, the recon-
structed mesh on noisy RGB-D data always contains noise
such as bumpy points on planar regions. Because of this, a
large planar region is possibly partitioned into several dif-
ferent small clusters instead of only one large cluster (see
the walls in Figure 1 left). Our plane merging criteria is like
this: two adjacent planes i and j can be merged together if
they satisfy all following conditions:

(1) Angle between two plane normals are small:
θ(ni,nj) < εn;

(2) Average distance between two planes is small:
Avgdis(i, j) < εd, Avgdis(j, i) < εd;

(3) Angle between the ray connecting two plane cen-
ters rij = ci − cj and each plane normal is
as close as possible to 90◦: | cos(θ(rij ,ni))| <
εc, | cos(θ(rij ,nj))| < εc.

Here θ(·, ·) is the angle between two vectors, and
Avgdis(i, j) is the average distance between all vertices
in cluster i and plane j. In our experiment we use εn =
8◦, εd = 0.05, εc = cos(80◦). The first two conditions are
from the plane merging method by Dzitsiuk et al. [8]. We
add the third rule to get rid of special cases that two adjacent
planes are almost ‘overlapped’ in the noisy mesh, and only
merge neighbor planes that are on one side of each other.

3.2. Mesh simplification

After partitioning the mesh into plane clusters, we sim-
plify the mesh based on clusters to create a lightweight
mesh for further optimization. Note that even though we
already have a model composed of planes, we still choose



to create a mesh by simplifying the original dense mesh in-
stead of using some mesh generation algorithm (such as
Delaunay triangulation) on planes which strategy appears
in most existing methods [3, 13, 15]. The reason is that,
we found that it is difficult and also time-consuming to cre-
ate correct connectivity from complicated plane intercep-
tions in a noisy model, especially an indoor reconstruction
mesh containing various geometry objects with free-form
shapes. Therefore, our strategy is to efficiently create an ini-
tial lightweight mesh through simplifying the original dense
mesh based on planes, and further optimize its geometry to
fit the planes (Section 3.4).

Figure 2. Simplified mesh by standard QEM (a) and our method
(b) on the scan ‘lr kt2n’ from ICL-NUIM dataset. Note for sharp
features such as plane boundaries, and curved surfaces such as
vase and pillows.

During mesh simplification, we choose the classic
quadric error metric (QEM) based surface simplification
[9]. The core of QEM is to contract edges by minimiz-
ing a point-to-plane energy, which suits our purpose to pre-
serve plane shapes very well. Moreover, QEM is simple
and efficient and also tends to preserve sharp features of
original model, which is also what we need in the simpli-
fied mesh. The difference is that, unlike a standard QEM
process which puts all edges into a minimum heap based on
contraction energy and contracts them globally, our simpli-
fication process works cluster-by-cluster and is composed
of two steps: (1) fix all cluster boundary edges and sim-
plify only inner-cluster edges of each cluster separately; (2)
fix simplified inner-cluster edges and simplify all bound-
ary edges of clusters. Through this two-step process, we
can reduce unimportant information inside planes while still
preserving important sharp features which usually appear
along plane boundaries. Another consideration is that clus-
ter sizes are different from each other, but we prefer every
cluster contains almost the same number of edges after sim-
plification. That is, large planes contain large triangles and
vise versa. Then, simplifying cluster-by-cluster with a same
contraction target is better to make small clusters denser to
preserve their shapes, as they are usually the partition of

curved surfaces. Figure 2 shows comparison between stan-
dard QEM (keep mesh boundary) and our method on the
same model used in Figure 1. The two simplified models
have exactly the same number of faces 41K while mesh
QEM model has 30K points, larger than our model with
22K points. Obviously QEM oversimplifies plane bound-
aries and curved surfaces while our method keeps the sharp
features and geometry details better.

3.3. Plane, camera pose and texture optimization

After we get the simplified mesh with plane partition, we
run an optimization process to maximize the photometric
consistency for the mesh geometry between frames. Before
optimization, we still need to do some pre-processing on the
mesh.

The first work is to generate an initial texture mapping
for all the faces of the mesh. In our method we create a 2D
texture patch for each 3D plane on the mesh. Even though
there are many mature parameterization methods to gener-
ate 2D texture patches for 3D mesh surface, we use a very
simple and efficient one. Considering that vertices in each
cluster on the mesh are already near co-planar, we simply
project them onto the plane to get the 2D patch, and then
sample grid points inside the patch boundary to get texel
points. In our experiment we use a fixed sampling density
0.0025m. That is, 1 meter in global space corresponds to
1.0/0.0025 = 400 pixels in the texture image. Clearly,
each texel is located inside some projected triangluar face
from the mesh. Then, we compute each texel’s barycentric
coordinates inside its corresponding 2D face, and use them
to compute the texel’s corresponding 3D point p in global
space by simply applying the same barycentric coordinates
onto the three vertices of the face in 3D space. These 3D
texel points will be used as the major elements during opti-
mization process.

Another thing to mention is about the keyframes selected
from RGB-D frames. To reduce time complexity and in-
crease texture quality, we follow the similar idea of color
map optimization by Zhou and Koltun [26] to select only
sharp frames in every interval. Similar to their method,
we quatify the blurriness of each image with the metric by
Crete et al. [5]. The difference is that, instead of selecting
keyframe for every 1 to 5 seconds in [26], we simply select
the sharpest frame in every 5 or 10 frames depending on the
data.

The input in our optimization process is color images
{Ii} and depth images of keyframes, all texels’ 3D points
{p} sampled on the mesh, initial camera poses T = {Ti}
(global to camera space) and initial plane parameters Φ =
{φj}. During the optimization, we maximize the photo con-
sistency of 3D texels’ projections on corresponding planes
across frames by optimizing camera poses, plane param-
eters and texture colors. More specifically, our objective



function is

Etex(T,Φ,C,F) = Ec(T,Φ,C,F)+λ1Ep(Φ)+λ2Es(F),
(1)

where Ec is photometric consistency energy, Ep is con-
straint for planes, Es is constraint for non-rigid correction
offsets for color images introduced in [26], and λ1 and λ2
are coefficients to balance terms. In our experiment we use
λ1 such that initial values of Ec = λ1Ep and λ2 = 0.1.

Photometric consistency term. The photometric en-
ergy is designed to measure the photometric error between
color of each texel’s projection point on its corresponding
plane and its target color across frames:

Ec(T,Φ,C,F) =
∑
i

∑
p∈Pi

||C(p)− Ii(Fi(π(Tiq)))||2,

(2)
where C(p) is the target color for p, and Pi is set of all vis-
ible 3D texels in frame i, and π is the perspective projection
on homogeneous coordinate v = (v0, v1, v2, v3)>:

π(v) = (
v0 ∗ fx
v2

+ cx,
v1 ∗ fy
v2

+ cy)> (3)

where cx, cy, fx, fy are principal point and focal lengths
from camera intrinsic matrix, respectively. F = {fi,l} in
Eq. (2) is the set of non-rigid correction fuctions of control
vertices over color image Ii [26]:

Fi(u) = u +
∑
l

δl(u)fi,l, (4)

where δl is the basis functions for bilinear interpolation, fi,l
is 2D correction vector for lth control vertex in the orthog-
onal grid in color image of frame i. In our experiment we
follow the same parameters from [26] to use 20×16 grid on
each image. q in Eq. (2) is the projection point from p onto
its corresponding plane φ(p) represented by 3D normal np

and a scalar wp:

q = p− (p>np + wp)np, (5)

Plane constraint term. Plane constraint term is to min-
imize the sum of distances from 3D texel points to their
corresponding planes:

Ep(Φ) =
∑
p

||p>np + wp||2 (6)

Offset constraint term. The offset constraint is to min-
imize the magnitude of offset vectors:

Es(F) =
∑
i

∑
l

fTi,lfi,l (7)

In order to minimize the objective function in Eq. (1),
we follow the similar alternating optimization strategy in

[26]. The basic idea is to alternate between optimizing dif-
ferent variables with some others fixed. In each iteration
we firstly optimize C and fix all the others, and next op-
timize Φ and fix the others, and finally optimize T and F
and fix the others. When optimizing C, the problem be-
comes a linear system with closed form solution that C(p)
is the average color of all projected pixels associated with p
in all visible frames. When optimizing Φ, we use standard
Gauss-Newton method to update the 4 parameters of each
plane directly. Note that the optimization of each plane is
independent with others so we can solve them in parallel.
Optimizing F is similar as optimizing Φ that we update all
relevant variables directly. When optimizing T, we param-
eter each pose Ti by 6 parameters (3 for rotation, 3 for
translation) as the incremental transformation, and locally
linearize each pose around its last updated value. Similarly,
optimization of each Ti and Fi are also independent with
other frames and can be solved in parallel. Figure 3 shows
textures on a mesh before and after our optimization pro-
cess. Before optimization, we use average color from all
visible frames for each texel. Our optimization process can
reduce noise and make texture clearer.

Figure 3. Mesh with textures before and after texture optimiza-
tion on the simplified model of sequence ‘of kt2’ from ICL-NUIM
dataset [11]. (a) Texture before optimization. Each texel’s color is
the average color from all visible color frames. (b) Texture after
optimization.

3.4. Geometry optimization

The final step is to optimize the mesh geometry to fit the
planes as close as possible. The fused mesh reconstructed
from RGB-D data always contain noise or oversmoothed
surfaces, such as bumpy surfaces on planar regions and
smoothed borders which suppose to be sharp features. By
optimizing mesh geometry to fit the optimized planes, we
can reduce noise from mesh surface and sharpen geometry
features.

In order to optimize the consistency between geometry
and planes, our method is to maximize the consistency be-
tween mesh vertices in each cluster and their correspond-



ing planes. As we introduced in Section 3.3, each 2D texel
is located inside a triangular face’s projection. During the
optimization, we utilize the initial barycentric relationship
between each texel and its corresponding face, and try to
preserve this relationship between texel points’ projections
on planes and the optimized vertices in each face. Specif-
ically, we want to minimize the following energy function
w.r.t. all vertices V = {vi}:

Evert(V) = Eg(V) + λ3Et(V). (8)

Here Eg is the geometry consistency term

Eg(V) =
∑
p

||q−
2∑

i=0

bp,ivfp,i||2, (9)

where q is the projection from 3D texel point p onto its
corresponding plane as described in Eq. (5), fp is index of
the face p corresponds to, vfp,i is the ith vertex of face fp,
and bp,i is p’s barycentric coordinate corresponding to the
ith vertex in face fp.

Another term Et in Eq. (8) is a regularization term to
minimize the difference between each vertex and the mass
center of all its neighbors:

Et(V) = ||LX||2F . (10)

Here X = [v1,v2, · · · ,vn]> is matrix of target vertices
we want to compute, with n the number of vertices on the
mesh. L is n× n matrix denoting the discrete graph Lapla-
cian matrix based on the connectivity of the mesh, and its
elements are

Lii = 1, Lij =

{
− 1
|N(i)| j ∈ N(i)

0 j /∈ N(i)
, (11)

where N(i) is the set of vi’s neighbor vertices on the mesh.
That is, we want to minimize the difference between each
optimized vertex and the average of its neighbor vertices.
The term Et is added to ensure that problem in Eq. (8) has
valid solutions. λ3 in Eq. (8) is for balancing the two terms
and we simply use λ3 = 1.0.

The problem in Eq. (8) is actually a sparse linear sys-
tem and can be solved by Cholesky decomposition effi-
ciently. Figure 4 shows result mesh with optimized geome-
try on a scan from BundleFusion dataset [6]. Even though
the input dense model is oversmoothed on sharp feature
places, our method can preserve the sharp features in the
final lightweight mesh.

4. Results
We tested our method on 10 scans from three popular

RGB-D datasets: 6 models from BundleFusion [6] (the first

Figure 4. Comparison between reconstructed mesh with or without
geometry optimization on model ‘copyroom’ from BundleFusion
dataset [6]. First row shows selected input color images of the
scene. Note for the sharp edges between planes on the printer.
(a) Fused dense mesh from BundleFusion system. Note that sharp
features are oversmoothed. (b) Our simplified mesh after geometry
optimization. Note that sharp features are clear.

6 rows in Table 1), 2 from ICL-NUIM [11] (the follow-
ing 2 rows in Table 1) and 2 from TUM RGB-D dataset
[22] (the last 2 rows in Table 1). According to Huang et
al. [13], the online BundleFusion code possibly generates
some artifacts in the resulting reconstruction. So in our ex-
periment, we follow the same idea of [13] to run VoxelHash-
ing code [19] on each RGB-D sequence to reconstruct our
input dense mesh using groundtruth poses (BundleFusion
dataset provides poses computed by BundleFusion system).
Table 1 shows quantitative results of each scan and our re-
sult models. Note that the number of faces or vertices of
each result model is only 1%-3% of that of original dense
model. Figure 5 and 6 show more qualitative results of two
scans. These figures show that our method can generate a
lightweight mesh with preserved sharp features and good
face textures.

For time analysis, we implemented our method in C++
and tested on a desktop with Intel Core i7 2.5GHz CPU and
16 GB memory. The running time on each scan is shown
in Table 1. The time data in the table is total time of our
complete pipeline, of which plane partition (Section 3.1)
and mesh simplification (Section 3.2) steps both take about
2 min on each model, while geometry optimization (Section
3.4) takes less than 10 seconds, and the majority rest is for
plane, camera pose and texture optimization (Section 3.3).
Note that our code is CPU version only and it currently does
not contain any parallel acceleration technique in all steps.
As we describe in Section 3.3, optimization of each plane is
independent with each other and the process can be run in
parallel. So is the same for the optimization of each camera



pose and correction function in each frame. Moreover, we
found that the majority of time in the optimization process is
spent on computing the Jacobian matrix in Gaussian New-
ton algorithm, which can be greatly accelerated using GPU
since each texel’s computation process is also independent
with all the others.

Figure 5. Our result on two RGB-D scans: ‘of kt2’ (left col-
umn) from ICL-NUIM dataset [11] and ‘apt0’ (right column) from
BundleFusion dataset [6]. First row: input dense model. Second
row: plane partition. Third row: result mesh. Forth row: mesh
with textures.

For comparison, we compare our method with two state-
of-the-art systems: BundleFusion [6] and 3DLite [13].
BundleFusion generates a dense and fused reconstruction in
real-time, and 3DLite is similar to our method that it takes
as input a dense reconstruction from BundleFusion, gener-
ates lightweight mesh with face textures by extracting large
planar regions as geometry and optimizing texture on it.
Figure 6 shows comparison of mesh with face textures be-
tween these methods. BundleFusion models are dense with
oversmoothed sharp features and coarse textures. 3DLite
models are neat and clear with sharp textures. However, it
extracts only large planar regions from the scene as the final
mesh, and obviously misses almost all geometry objects on
or adhering to planes including both large structured ones
(such as book shelf in the 1st row of Figure 6) and freeform
objects with curved surfaces (such as objects on the table
in the 2nd row of Figure 6). Our method exceeds them in
solving their aforementioned problems. Moreover, 3DLite
also generates many misaligned artifacts in the face textures
while our method is better in these relevant places (such as
the map on the wall in the 3rd row of Figure 6).

Table 1. Quantitative data of RGB-D scans and our results. Here
|V | is number of vertices, |F | is the number of faces, |K| is
the number of keyframes, t is the total running time of our en-
tire pipeline in seconds. The bottom row ‘fr3/loh’ is shorted for
‘fr3/long office household’ model.

Scan Input Result
|V | |F | |K| |V | |F | t(s)

copyroom 3.70M 7.28M 895 55.2K 104K 1850
apt0 7.83M 15.4M 860 84.6K 160K 2125

office0 5.71M 11.3M 616 68.5K 130K 1439
office1 6.03M 11.9M 573 69.1K 129K 1331
office2 5.63M 11.0M 700 73.6K 135K 1886
office3 6.36M 12.6M 763 56.7K 108K 1972
of kt2 1.20M 2.36M 176 14.9K 27.4K 986
lr kt2n 1.14M 2.25M 176 22.1K 41.9K 1128

fr2/desk 1.37M 2.69M 372 37.6K 73.4K 787
fr3/loh 2.42M 4.75M 243 43.0K 83.7K 576

Limitations. While our method can generate
lightweight textured mesh with sharp features and geom-
etry details preserved, it still contains several limitations as
we found in experiments. Firstly, our face textures are not
as sharp as 3DLite’s since the latter introduces many tech-
niques to optimize texture, such as texture sharpening and
color correction across frames. However, these steps are
very time-consuming and possibly takes hours, according
to the running time data described in the 3DLite paper [13].
We plan to find a similar but faster way to further optimize
textures. Moreover, our method cannot fill holes and gaps
that always appears in the RGB-D scans, while 3DLite can
generate a complete geometry from extracted large planes
by extrapolating existing planes and filling holes. However,
it is still a challenging problem to complete the geometry
of a noisy reconstruction without removing any geometry
details. Additionally, our texture optimization process is
similar to Zhou and Koltun [26] which relies on dense pho-
tometric error, and sensitive to initial input during camera
pose optimization and easy to end in local minima [13].
Therefore, if large error exists in initial camera poses gen-
erated from BundleFusion system, our results may contain
misaligned face textures.

5. Conclusion
We have presented a novel approach to generate

lightweight reconstruction with clear face texture from an
initial 3D reconstruction with dense and fused mesh. Un-
like existing methods which only detect large planar regions
in the scene, our method detects planes from all objects and
partitions the entire mesh by planes. Then, we simply the
dense mesh based on planar partition, and optimize planes,
camera poses and face textures to maximize the photometric



Figure 6. Result comparison between BundleFusion [6], 3DLite [13] and ours on two scans ‘office0’ (first two rows) and ‘office3’ (third
row) both from BundleFusion dataset. The color texture in BundleFusion models is default vertex colors fused from the reconstruction
system, while others are optimized face texture.

consistency across frames, and finally optimize mesh geom-
etry to maximize plane-geometry consistency. Experimen-
tal results demonstrate that our reconstruction can preserve
sharp features and geometry details in the mesh very well.
We believe that our method can be applied in relevant situ-

ations acquiring textured indoor scene reconstruction with-
out missing geometry details. In the future, we plan to im-
prove our method by solving limitations aforementioned,
and increase the efficiency of our method by introducing
GPU acceleration or other related techniques.
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