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Real-time hybrid solid simulation:
spectral unification of deformable and

rigid materials

By Yin Yang, Guodong Rong, Luis Torres and Xiaohu Guo*

A novel framework is proposed in this paper to simulate hybrid solids with deformable and
rigid materials in real-time. Both types of materials are uniformly integrated into one
spectral simulator. Based on the modal warping technique, we employ a new constraint

strategy which eliminates the accumulation of approximation errors at the boundary
interfaces, thus naturally gluing different materials. We also utilize the GPU to accelerate
the run-time computation when updating the geometry of the hybrid solid—the most
expensive step in this framework. This work provides a general-purpose solution of
simulating hybrid objects in real-time, even for large-scale models. Copyright © 2010 John

Wiley & Sons, Ltd.
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Introduction

In physically-based animation, objects are expected to ef-
ficiently exhibit realistic motions. Different types of ob-
jects typically require particularly designed simulating
strategies. The diversity of these techniques which nicely
resolve each individual physical phenomenon raises new
challenges if we want to have a mixed scenario that ei-
ther various simulators are to be incorporated!= or if the
object under simulation itself is a compound of different
physical features.*” The challenge originates from the
intrinsic discrepancies among various physical solvers
with specialized techniques. The difficulties go further
for the hybrid body simulation because of the ambiguity
of physical properties at the connecting regions of differ-
ent materials which calls for a sophisticated constraint
strategy.

Inspired by such requirements and challenges we pro-
pose a new spectral framework to simulate hybrid solids
consisting of both deformable and rigid materials. In this
framework, heterogenous materials correspond to sub
dynamic systems that evolve in a fully coupled manner
in the spectral domain. The spectral reduction of degrees
of freedom (DoF), as the biggest benefit of spectral simula-

*Correspondence to: X. Guo, Assistant Professor, Department
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tion technique (also well known as modal analysis) results
in a significant speed-up over its spatial counterpart.

In addition, the uniform simulation strategy at all the
subsystems allows us to construct a unified spectral sim-
ulator for the whole hybrid solid. We assemble the global
spectral displacement and rotation matrices, and use
these matrices to convert spectral displacement to spatial
displacement. Because every three rows in these global
matrices correspond to a node on the hybrid solid, these
global matrices based operations can be naturally paral-
lelized with graphics processing units (GPU). Our experi-
ments (Table 1) show that the utilization of the GPU con-
tributes about an extra threefold improvement in terms
of time performance. Meanwhile, the symmetric and con-
sistent formulation smooths the whole theory derivation
and effectively facilitates the programming implementa-
tion.

We extend the modal warping method® to make the
simulation robust to rotation. This technique provides
an elegant approach to approximate nodal rotation ac-
companied with deformation using linear-strain-tensor-
based computation. This rotation is also used in our forti-
fied constraint formulation ensuring correct interactivity
among subsystems. System degeneration induced by the
reinforced boundary condition is alleviated by limiting
the number of boundary constraints without introduc-
ing much boundary inconsistency (Figure 3). As a result,
real-time simulation of hybrid solids with deformable
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Offline computation (seconds) Online computation (FPS)
Model #Tletra. #Modes Build Solve Initialize CPU GPU
M, K, C eigenproblem linear system simulation simulation
Barl 323 100 0.008 1.547 0.006 269.1 845.2
Bar2 5372 200 0.419 4617 0.026 31.9 89.2
Gargoyle 10 000 50 1.547 5.101 0.022 20.3 64.9
Armadillo 13 852 100 2.931 6.823 0.035 4.3 43.6
Dragon 32 959 50 12.209 8.781 0.05 10.3 35.6

Table |I. Time performance.

Figure 1. The hybrid Armadillo model with two rigid bones
inside the right leg.

and rigid materials is made possible by utilizing only a
small number of modal bases. Figure 1 shows the result
of bending one leg of the Armadillo model with 13 852
tetrahedra and 100 spectral bases, where the hybrid leg
has two rigid “bone” regions inside.

Related Work

In deformable model, the linear strain tensor is com-
monly used for the sake of computational efficiency.
However, it cannot properly handle rotational deforma-
tions. Some researches”!? treated the deformations as lin-
ear elasticity and rigid motion separately. However, the
globally extracted rotation is still not precise enough for
large rotations. The domain decomposition method (DDM)"!
was proposed as a solution to this problem where the
rotation is computed at each subdomain. Alternatively,
Miiller et al.'? invited stiffness warping where the stiffness
is warped according to an estimated nodal rotation.
Modal analysis, on the other hand, gives a new per-
spective to deformation. Pentland and Williams!? first
proposed a basic solution using modal analysis to simu-

late a deformable body. It was pointed out that the modes
associated with higher resonance have less effect on the
shape of the object. This property is utilized in almost
all the research related to modal analysis because by dis-
carding the high frequency components, the original sys-
tem is reduced to a new subspace of much smaller size.
Choi and Ko® transplanted the warping idea into spectral
space. In their work, rotation is calculated as the curl of
the displacement field expressed using spectral displace-
ment. Hence, similar to stiffness warping, linear-strain-
tensor-based computation is able to approximate rota-
tional deformation as well in spectral space. This tech-
nique is further extended to meshless simulation!* and
thin shell simulation.!® Besides algorithms, the rapid de-
velopment of graphics hardware also provides new re-
search space on this topic.!*'” With more powerful pro-
gramable graphics hardware, the time performance can
be improved even further.

Mixed simulation of multiple physical simulators
is more involved, as the interaction and coordination
among the different simulators generate more complex-
ity. We roughly classify this type of research into three
categories. References [2—4] are several top paradigms
of the first category where multiple physically heteroge-
nous scenarios are simulated simultaneously. Coupling
of these objects as well as the simulators behind them
is the main objective of this type of research. As a re-
sult, collision or contact detection is a must because the
simulators are not truly coupled until the objects are in-
teracting with each other. Another category of research
featured in References [5,18,19], on the other hand, fo-
cuses on only one object that more or less demonstrates
mixed physical characteristics. Certain hierarchical aux-
iliary structures in addition to the original mesh such as
coarse meshes or grids are commonly employed to facil-
itate simulation. Although computation based on lower
resolution meshes is much faster, this advantage is some-
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how overshadowed by the additional expense of con-
verting, embedding or mapping between multiple reso-
lutions. The last category®”!® puts considerable efforts
on physically solving the internal connections among
different objects or components. Unfortunately, the ro-
tation at the interface between heterogeneous materials
isnotclearly addressed: Galoppo et al.!° used the uniform
rigid body rotation during simulation. This approach, to
our understanding, could lead to some unnatural results
when there is large rotational deformation and in Ref-
erences [6,7], certain constraint based formulation were
introduced without explicitly comments on rotation han-
dling while we explicitly handle such rotation based on
finite strain theory. In the following sections, the detailed
build-up of our framework is described.

Spectral Simulation of
Deformable and Rigid
Regions

We use the subscript ; to denote the values for deformable
regions. The Euler-Lagrange equation of a deformable
body in R® discretized using the finite element method
(FEM) is:

M, + Couy + Kyuy = £ 1

where u, is a time-dependent vector representing the
spatial displacement of the object; K, and M, are the
stiffness matrix and mass matrix, respectively; f, is the ex-
ternal force; C, is the Rayleigh damping matrix as com-
monly adopted, which is the linear combination of K,
and M, i.e., C;, = M, + (K, where & and ¢ are two
weighting constants.
The generalized eigenproblem defined as:

K,®, = M,;®,A, 2)

is solved, where ®, is called the modal displacement matrix
whose columns are the eigenvectors; A, is a diagonal
matrix and the diagonal elements are the corresponding
eigenvalues. With the computed eigenvectors, the spatial
displacement u, can be expressed as:

u; = ®,qy 3

where qy is called the spectral displacement. All the spatial
unknowns are to be re-expressed in the spectral version

of Equation (1):
Mydy + Cotys + Kaqu =1 4)

where f;, = @, is the spectral force. A convenient side-
effect is that M, = I (I is the identity matrix), K,= Ay
and €, = (€I + ¢A,) are all diagonalized.

The rotation is handled using the modal warping®
method. With this technique, the rotation at each node
in the deformable region is extracted and tracked by a
3x1 rotation vector w, whose direction and magnitude
denote the rotation axis and angle, respectively. The ro-
tation vector can be computed as the curl of the displace-
ment field. Then we can build a modal rotation matrix ¥
as a counterpart of ® such that:

1
Wy = E(VX)H‘I’de =¥,q (5)

Here H is the shape function of the tetrahedra mesh, w,
isa3 x n vector concatenating the rotation at every node.
When advancing simulation, we embed a local coordinate
frame at each node. Now the motion within one time step
of the deformable region can be re-expressed as:

MLdy + Cods + Koas = ‘I’;(R;fd) (6)

where R, is the rotation matrix computed from wy.
4, q, and q correspond to the local quantities as men-
tioned. The final spatial displacement used for updating
the geometry of the deformable region can be computed
through:

w, = R,®,q. (7)

where R, is the accumulated rotation at each node from
the beginning of simulation to the current time step. The
detailed derivation can be found in Reference [8].

Clearly, fewer modes used bring more deformation
details loss. However, in our experiment, it is typically
hard to tell by sight such difference and some previous
researches®!® also justify the high visual plausibility of
using spectral simulation.

Because both M and K are positive semi-definite ma-
trices, all the eigenvalues from Equation (2) are greater
than or equal to zero. Interestingly, there are always six
eigenvalues equal to zero. This implies that these six
spectral modes represent a dynamics with a zero spectral
stiffness matrix which, naturally, results in a zero-strain
over the body. Such dynamics is precisely the rigid body
motion and the number of modes equals to the number
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of DoF needed in the spatial case, i.e., three for the posi-
tion and three for rotation. Based on the above analysis,
the formulation for simulating the rigid region can be
directly incorporated as:

Mrdr + Crdr + qur = q>;r(:R‘;rfr) (8)

Similarly, we use the subscript , to represent the values
of rigid regions. The number of spectral bases employed
is the only difference between deformable and rigid re-
gions.

Without loss of generality, we suppose the hybrid ma-
terial consists of one deformable region and one rigid
region. We can then unify all subsystems into one as:

©)

N6 + Cadu + Kyaa = @) (R £))
NLg +C4q +K.q = (Rf)

where f; and f, include not only the external forces ap-
plied to each subsystem but also the internal forces be-
tween the subsystems.

Boundary Handling

The explicit computation of these internal forces is not
trivial. However, these forces can be naturally expressed
in the form of constraints which make the duplicated
boundary nodes overlap at the interface: u} = u?, where
u) and u? stand for the nodal displacements from the de-
formable region and the rigid region, respectively. One
must note that regions of the same type sharing one or
more triangle faces are counted as one. Thus the concept
of boundary is only the interface between a pair of de-
formable and rigid regions. Using Equation (7) we have:

EZqu’de = EI:qu)rqr (10)

where E!, and E? are the mapping matrices. The displace-
ment at the boundary nodes are picked out by pre-
multiplying E? to the global displacement u such that:
u” = E’u. The mapping matrices can be easily built once
the partition of the deformable region and the rigid re-
gion is finished.

Equation (10), however, does not yield expected re-
sults. Our experiments show that the strain accumu-
lates at the boundary and suddenly releases periodically,
which causes oscillation at the boundary and the system
is highly unstable under rotation. The reason behind this
problem is the accumulated rotation term, R in Equa-
tion 10. According to finite strain theory, the deformation
can be considered as a combination of a linear elastic de-
formation and an infinitesimal rotation. Though the first
term is computed accurately with the linear tensor, the
rotation term is approximated using modal warping. The
errors generated will accumulate and make the system
unstable. Accordingly, we propose a new constraint for-
mulation following the same idea of finite strain theory
that decomposes the boundary constraint into two types
of subconstraints of linear elastic and rotation, respec-
tively. In the other words, the change of both linear de-
formation and rotation within one time step are forced
to be equal from two neighboring regions. The modal
displacement matrix and modal rotation matrix facili-
tate the extraction of the linear deformation and rotation
symmetrically:

(11)

qu)dqd = Efq)rqr
EZ‘I’de = Ef\lqur

If the warping technique is to combine the linear rotation
and deformation together, this constraint formulation is
to inversely separate these two components. With the
explicitly defined linear rotation and deformation, the
approximation error does not accumulate or cause any
stability issues.

Figure 2. A hybrid bar model consisting of 323 tetrahedra is twisted: (a) The rest shape, (b) Equation (10) is used as boundary
constraint, (c) all eight boundary nodes are constrained (over-constrained), and (d) Only two nodes on the boundary are constrained
(over-constraint resolved).
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Figure 3. Boundary deviation comparisons with different
number of modes and boundary constraint nodes.

For every constrained boundary node, the number of
vanished DoF raises from 3 (using Equation (10)) to 6
(using Equation (11)), indicating that twice as many con-
straints are induced. Importing more constraints into the
system, however, brings overhead: the increased num-
ber of eliminated DoF due to boundary constraints could
turn out to degenerate the system, i.e., there may not
be enough available DoF to allow the body to deform
properly. This causes the system to be over-constrained as
shown in Figure 2(c). One solution could be to simply in-
crease the number of spectral bases used. However, this
will weaken the major benefit of spectral simulation. Al-
ternatively, we resolve this problem by capping the num-
ber of constrained nodes at the boundary as shown in Fig-
ure 2(d) where we only constrain two boundary nodes
and the bar behaves naturally. The reader may wonder
whether this partially constrained boundary still bonds
two neighboring regions with high quality. The answer is
yes, because our size-reduced spectral simulator implic-
itly neutralizes the demand of the number of boundary
constraints. To be more specific, the deformable regions
in the hybrid solid are actually becoming ‘stiffer’ due
to the absence of high frequency vibrations. As a side-
effect, the stiffened boundary requires fewer boundary
constraints. An extreme example may explain this more
clearly: if the deformable region degenerates to a sub-
system of only six DoF, it actually becomes a purely rigid
one; as a result, a single boundary node will suffice to
connect the this subsystem with its rigid neighbor. Of
course, the boundary nodes that are not constrained can
still experience slight deviations. Figure 3 quantifies such
a situation. The curves are generated from a bar model
with 323 tetrahedra (same model as in Figure 2). One end
of the bar is fixed and the other end drops freely under

gravity. The deviation is the boundary nodal displace-
ment difference between the deformable region and the
rigid region. This quantity evaluates how well two ma-
terials are physically glued by the boundary constraint.
In order to give the reader a better understanding of the
values of deviations in the figure, the bar model is nor-
malized into a 1 x 1 x 1 cube. As shown in the figure,
when all the boundary nodes are constrained (square dot
curve) the deviation is very close to its analytical value, 0.
However if the constrained boundary nodes are reduced
to two, a system with 50 modes (triangle dot curve) sat-
isfies the boundary condition much better than a system
with 300 modes (round dot curve) does. As we always
want to use smaller number of spectral bases to reduce
the size of the system, 50 modes are always preferred over
300 modes. Such tiny errors at the boundary (< 0.2% of
model dimension) are negligible during simulation and
do not cause force feedback (the interactivity between
subsystems are affected only by constrained boundary
nodes) and thus do not affect the system’s stability.

The selection of constrained boundary nodes is not ar-
bitrary, as we always want the constrained nodes to be
evenly scattered over the boundary. In other words, the
set of chosen constrained nodes C is a subset of bound-
ary nodes B such that the distance between C and B — C
is minimized, assuming each edge on the boundary is
equally weighted. We employ a fast, simple algorithm to
select C from B as follows:

¢ Anundirected connected graph G(V, E) is constructed
from the topology of the boundary. Each node on the
boundary corresponds to a vertex in V and every edge
connecting two nodes on the boundary corresponds to
an undirected edge, e € E.

® An adjacency matrix D° from G is computed such that

1, if e(i, j) € E

0, otherwise.
puted using the Floyd—Warshall algorithm."

® The first node is chosen as the one with the largest
number of one-ring neighbors (cover the largest area).
The next candidate is b € B — C such that Y¢,c € C,
min{Distance(c, b)} is maximized, where Distance(c, b)
denotes the number of edges on the shortest patch con-

vd;; €D, d;; = and D7 is com-

necting ¢ and b in G. This value can be found in D%.

TThe degree of the adjacency matrix is ‘zﬁ because G is a bicon-

nected graph: the removal of any vertex on the graph does not
affect the connectivity of the resulting graph. % guarantees that
the length of all pair shortest path is evaluated correctly.
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Figure 4. Results of boundary node selection. Selected nodes are shown in orange.

Figure 4 shows the resulting selection of 15th, 9th, and
6th nodes out of the 37 boundary nodes.

Time Integration and
Constraint Manipulation

A coupled ODE must be solved at each time step in ev-
ery subsystem. The Newmark family is the most widely
used family of direct methods for solving systems like
Mii+ Cu+ Ku = f. Here we use an implicit family
member, average acceleration method to linear the ODE
as Aii =b, where A =M + yhC + gh’K, b = f"+1 —
co' - Kat, = tandy = 1. 0" and &' are two

predictors defined as:

= u' o+ ha + (1 - 2B)i
{ 2(1-2p) )

& =0 (1 — p)hie

The unknown displacements and velocities can be com-
puted through:

T n+ (13)

un+1 — ﬁ”+1 + ﬂhZﬁnJrl’
l'ln+1 =1 1 + hﬁn+1
Vi

In our implementation, the variables are the spectral
counterparts, i.e. . Constraints expressed as linear equa-
tions are integrated using the Lagrange Multiplier Method.
In addition to the boundary constraint (Equation (11)),
other users” manipulation constraints including either
position or orientation constraints are necessary as well.
These constraints can be formulated in a symmetric fash-
ion. Then we can build a generalized constraint matrix
demoted by J such that:

ERI

where

[ El®, —E'®, ]
E)v, -E'V¥,
g | B0 (15)
ER,Y, 0
0 E'R,®,
. 0 ER, W, |

E? and E° play roles similar to E?, i.e., picking out the cor-
responding constrained nodal values of each subsystem.
Vector c is assembled by the desired constraint values. As
in Reference [20], the damped second-order constraint
form is adopted:

As O 3T Aa
0 A dr
J 0 | | Bh*A
by
b,
- 0 (16)
R; © —2p1C — p3C
l 0 RS ] ¢

where A denotes the Lagrange Multipliers, and p; and p,
are stabilization factors. The rotation terms are moved
to the right side of the equation so the matrix on the
left-hand side can be pre-computed and J turns to g).
From the computed §, and §, we can get q, and q, as
in Equation (13). The spatial displacements for updating
geometry can be computed using Equation (7).
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Figure 5. Computational flow chart.

Implementation and
Experimental Results

Our framework is implemented using Microsoft Visual
C++ 2005 on a Windows XP PC with Intel Core2 Duo
2.93GHz CPU, 2GB DDR2 RAM, and NVIDIA GeForce
GTX 280 GPU with 1GB DDR3 VRAM.

Figure 5 is a general flow chart illustrating the com-
putational procedure of this framework. All the compu-
tation is partitioned into offline computation and online
computation. The spatial geometry update is executed
by the GPU. The original hybrid solid is subdivided into
several regions as defined by the user. Once the linear

system in Equation (16) is resolved, the framework pro-
ceeds to online computation.

The most time consuming part in online computation
is updating the geometry of the hybrid solid at each time
step as in Equation (7). Fortunately, this part can be par-
allelized with the GPU in our framework. In order to do
this, ®, or @, for all the subsystems are assembled into
one single global matrix ® and W called global displace-
ment matrix and global rotation matrix, respectively. Simi-
larly, we also build a global spectral displacement vector q
and global spectral rotation vector w. Every three consecu-
tive rows correspond to the spatial position or rotation of
one node and are updated in parallel with vertex programs
executing concurrently on multiple nodes.

We have conducted extensive experiments and tests on
various 3D tetrahedral meshes. Some of the models are
of very large size and not commonly seen in other real-
time physically-based animation applications. Detailed
benchmarks of each computational stage of our frame-
work are shown in Table 1 where the usage of the GPU
makes simulation about three times faster.

Hybrid solids provide more natural solutions to simu-
late real world objects. In Figure 6, the leg motion of the
Armadillo is simulated where two rigid interior regions
marked in dark red function as bones. Figure 7 contains
several snapshots of our implementation where the user
interactively defines the regions” properties and manip-
ulates the models in real-time. Most experiments men-
tioned can be found in the accompanying video demo
which was produced by real-time screen capture of our
implementation.

Further Work

This work provides a spectral solution of real-time simu-
lation of hybrid objects. However, currently we have not
integrated collision or contact handling into our frame-
work. Though we believe due to the uniformity of this

Figure 6. Simulate leg behavior of Armadillo model.
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Figure 7. (a) Deformable bar, (b) hybrid bar (5372 tetrahedra), and (c) the dragon model of 32 959 tetrahedra opens its mouth
with two rigid jaws (purple).

framework, collision, and contact could be incorporated
in a straightforward manner. In addition, the rapid de-
velopment of graphical hardware raises some more ad-
vanced parallel computation languages such as CUDA.
As this work is heavily involved with matrices and vec-
tors based computation, these new-emerging program-
ming tools can definitely contribute a faster simulation
and benefit the final performance. On the other hand,
the rigid region discretized by the 3D tetrahedral mesh,
in many situations may not be the best candidate for ef-
ficiently describing some natural constraints. One exam-
ple is the human body, where the rigid subsystem could
be more properly expressed using only line-based rigid
constraints.’ In the future, we will investigate different
types of rigid subsystems as well as some joint hierarchies
models?! and attempt to integrate them into the spectral
hybrid framework to simulate more realistic behaviors
of natural creatures in the real world.
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