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Medial-Axis-Driven Shape Deformation with Volume
Preservation

Lei Lan · Junfeng Yao · Ping Huang · Xiaohu Guo

Abstract The medial axis is a natural skeleton for
shapes. However, it is rarely used in the existing skeleton-

based shape deformation techniques. In this paper, we
propose a novel medial-axis-driven skin surface defor-
mation algorithm with volume preservation property.

Specifically, an as-rigid-as-possible deformation scheme
is used to deform the medial axis so that its local trans-
form is as close as possible to a rigid transform. We

maintain surface features of the deformed shape based
on an implicit skinning method. Our experiments show
that the proposed algorithm effectively preserves the

volume of deformed shape, and addresses the bend-
ing and twisting problems associated with traditional
skeleton-based shape deformation techniques.

Keywords Medial Axis · Shape Deformation · Implicit
Skinning · Volume Preservation

1 Introduction

It could be observed from our natural world that the
pose of humans and most animals are dependent on the

pose of their internal skeleton. The geometric structure
of a skeleton is simpler than its associated surface, and
the motion of skeleton is rigid inherently. So, skeleton-

based shape deformation methods were proposed intu-
itively in early works, and has been very popular in
many applications. The idea of skeleton, first proposed

by Blum [6], is called medial axis. It is defined as the set
of points with at least two closest points on the shape
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boundary. Thus it contains the surface features and lo-
cal thickness of shape. However, the existing skeleton-

based shape deformation methods usually apply a stick
skeleton [24,18] or a curve skeleton [44], instead of me-
dial axis. Because medial axis computation is sensitive

to noise, it is very difficult for the early works to obtain
a high quality medial axis, which is structurally simple
(without undesirable spikes), accurately approximating

the surface, and compact enough for computing defor-
mation. Fortunately, with the recent advancement of
medial axis simplification, such as Q-MAT [22], a high

quality medial axis can be obtained by pruning unsta-
ble branches and simplification from an initially poor
quality medial axis. Thus, it becomes practical now to

use “real” medial axis to drive shape deformation.

The medial axis of a 3D shape is a combination

of non-manifold triangle meshes with dangling edges.
Thus, it seems difficult to directly integrate medial axis
into the pipeline of existing skeleton-based shape defor-

mation methods. Yoshizawa et al. [41] proposed a varia-
tional mesh deformation approach, by using medial axis
for preserving geometric details and thickness of shapes.

In their method, the medial axis is deformed by Skele-
tal Subspace Deformations (SSD) [4], then the deformed
shape is reconstructed with the original Laplacian coor-

dinates from the deformed medial axis. However, their
method needs to build a one-to-one correspondence be-
tween the surface vertices and medial axis triangles,

thus it is not general enough to handle medial axis with
dangling edges (e.g., fingers of a hand).

In this paper, we propose a truly medial-axis-driven
shape deformation algorithm. Different from Yoshizawa

et al.’s approach [41], medial axis is directly deformed
by the user, and an implicit skinning technique is pro-
posed to drive the surface deformation, and preserve

the volume of deformed shape. To achieve this goal, an
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As-Rigid-As-Possible (ARAP) deformation scheme is

adopted to deform medial axis so that the local trans-
form of medial primitive is as close as possible to a
rigid transform. The deformed medial axis drives each

vertex of the surface to a temporary position by us-
ing their parametric coordinates, which is defined by
the local enveloping primitives of medial axis. We ex-

tend the implicit skinning method [37] to rebuild sur-
face features from the deformed medial axis. The local
scalar field is simply defined based on each enveloping

primitive of medial axis, which allows preserving surface
features through iso-surface projection and tangential
relaxation. Volume preservation can be achieved easily

by adjusting the radius of spheres on medial axis, since
the medial axis is deformed in an ARAP manner. The
results prove our algorithm can be used to manipulate

different 3D shapes and produce visually plausible de-
formations with volume preservation.

2 Related Work

2.1 Medial Axis Computation

Extracting the medial axis from given shapes is called
Medial Axis Transform (MAT). MAT is typically com-

puted by the Voronoi diagram of a set of sampled points
on the shape boundary [1]. However, the computed me-
dial axis has many undesirable spikes, making them un-

suitable for any practical application. Du et al. [10] pro-
posed a diffusion-based extraction method which com-
bines the grassfire flow simulation and diffusion propa-

gation. To obtain a structurally simple and compact
medial axis, several methods have been proposed to
simplify medial axis by identifying and pruning the

spikes. To determine the points or edges to be pruned,
most existing methods formulate a local or global thresh-
old based on certain pruning criteria.

Angle-based filtering method [3,2,12,9,34] adopts the
angle as global threshold, which is formed by a vertex
of medial axis with its two closest points on the shape

boundary. The vertex is removed from medial axis di-
rectly, if its angle is less than a user-specified thresh-
old. Similarly, λ-based filtering method [8,7] specifies

a threshold λ as the smallest circumradius of closest
points at the simplified medial axis. The point is re-
moved if its circumradius of closest points is smaller

than threshold λ. A local pruning criterion is applied
by Scale Axis Transformation (SAT) [26]. It adopts a
factor s > 1 to enlarge all medial spheres, then re-

moves the medial spheres that are contained in other
medial spheres. The final medial axis is obtained by
scaling back the surviving medial spheres by the fac-

tor 1/s. Although the method is highly effective, the

quality of simplification deeply depends on the factor

s. Besides the pruning criteria defined on the vertices
of medial axis, Faraj et al. [11] proposed Progressive
MAT (PMAT) method to perform MAT simplification

by collapsing edges of medial axis. The pruning cri-
terion is defined as a cost of edge-collapse, which is
related to the edge length and the difference of the me-

dial radii at the endpoints. Sun et al. [36] proposed
the union of volume primitives as volume representa-
tion. The volume primitives are linear interpolation of

the medial spheres. The medial axis simplification is
guided by the volume approximation error. Li et al. [22]
proposed an efficient and effective MAT simplification

method, called Q-MAT. In Q-MAT, a quadratic error
metric [13] is adopted to measure approximation errors
in MAT simplification, and a stability ratio is proposed
to distinguish the spikes of medial axis. Recently, Yan

et al. [40] proposed a global measure criterion based on
the Erosion Thickness (ET) which performs very well
in differentiating boundary noises from shape features.

2.2 Shape Deformation

In our deformation algorithm, the deformation of a given
3D model is driven by its medial axis. Although, the me-

dial axis is a natural skeleton for shapes, most existing
skeleton-driven deformation methods take the form of
a “stick skeleton”, which could be considered as a sim-

plified form of medial axis. Traditional skeleton-driven
deformation methods assume that a skeleton is com-
posed of rigid bones with linear [24] or non-linear [18,

19] blending weights. At run-time, the mesh vertices are
rigidly transformed by its associated bones. The meth-
ods, such as Linear Blend Skinning(LBS) and Dual

Quaternion Skinning (DQS) [18], have been proved to
be practical for many applications due to their efficiency
and simplicity. However, the quality of deformation may

be degraded by the well known artifacts, such as candy-
wrapper artifacts and volume-loss artifacts for LBS and
bulging artifact for DQS. To prevent these artifacts,

multi-linear skinning methods [39,25,17] introduce ex-
tra scalar weights for each bone. These extra weights
add additional degrees of freedom to joints by blend-

ing separately in the subspace of bones. Helper bones
with single weight [27,28] can be estimated from given
examples, and be added to diminish the angle between

bones when the joints suffer from twisting and bend-
ing. Although the methods reduce the artifacts, extra
weight functions and bones introduce more computa-

tion overheads. Le and Hodgins [20] proposed to pre-
compute the optimized center of rotation for each point
from the rest pose and skinning weight. During anima-

tion, these centers of rotation are used to interpolate the
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rigid transformation for each vertex, which can reduce

the artifacts significantly with less computations. For
volume preservation, Zhou et al. [42] presented volu-
metric graph Laplacian to encode the volumetric details

of input mesh and formulated the volumetric details as
a quadric energy function. The volumetric graph can
be built without a solid meshing of surface’s interior.

Huang et al. [16] introduced the nonlinear volume con-
straint into subspace deformation. Zhou et al. [43] pro-
posed an explicit mathematical model of spine-driven

bending to address preserving local volume.

Our medial mesh deformation method is related to
an important category of methods which try to main-

tain geometric relationship between mesh primitives.
Sorkine and Alexa [33] solve non-linear optimization
to keep local transform As-Rigid-As-Possible (ARAP).

Sumner et al. [35] proposed an embedded deformation
method, which samples some vertices from surface and
organize them as a graph structure. The features of sur-

face are encoded in the graph by applying each trans-
formation of node on graph to deform its nearby space.
A non-linear optimization problem is solved to ensure
all transformations of nodes are as-close-as-possible to

affine transformations. These methods can produce a
high quality of deformation for surfaces.

2.3 Implicit-Function-Driven Deformation

In our deformation algorithm, the surface features are
maintained by the implicit function defined on medial
axis. The idea of implicit-function-driven deformation

have been proposed, such as Metaballs [5,4,31], polygon-
based implicit primitives [32], ellipsoidal implicit prim-
itives [21], convolution surfaces [29], and for point set

surfaces [15]. Recently, Vaillant et al. [37] proposed im-
plicit skinning method to mimic realistic deformations,
such as skin contact effects and muscular bulges. An

extended method [38] is proposed for interactive char-
acter skinning.

Bloomenthal [4] used medial axis with a convolu-

tion field to address the well known artifacts in the
skeleton-driven shape deformation, but the medial axis
drives deformation indirectly. In our algorithm, we use

deformation of medial axis to drive the deformation of
its 3D shape, and use the implicit function constructed
from medial axis to maintain the surface details.

3 Implicit Surface Based on Medial Axis

Medial axis of a 3D shape S is a combination of non-
manifold triangle meshes with dangling edges. It could

be represented as a mesh Ms, called medial mesh, as

shown in Figure 1(a). Following Sun et al. [36], a ver-

tex of medial mesh Ms is a medial sphere, denoted m.
m is embedded in 4D space by m = {c, r}, where c is
the center of medial sphere and r is the associated ra-

dius. Let eij = {mi,mj} denote an edge of Ms, which
connects two medial spheres mi and mj . Similarly, let
fijk = {mi,mj ,mk} denote a triangle face of Ms.

The volume primitive associated with edges and faces
of the medial mesh is called enveloping primitives, as
shown in Figure 1(b). For an edge eij , its enveloping

primitive is swept by the family of spheres defined by
linear interpolation of the medial spheres mi and mj :
{m|m = αmi + (1 − α)mj , α ∈ [0, 1]}. It comprises

two spherical caps joined by a truncated cone, and will
be called a medial cone, as shown in Figure 1(c). For
the triangle face fijk, its primitive is obtained by lin-

early interpolating the three medial spheres mi, mj and

mk: {m|m = βimi + βjmj + (1 − βi − βj)mk, βi ∈
[0, 1] , βj ∈ [0, 1− βi]}. This primitive is called a me-
dial slab, bounded by three spherical caps, three conical

patches, and two triangles, as shown in Figure 1(d). For
a 3D shape S, its medial mesh Ms is an inner skeleton
with the enveloping primitives approximating S effec-

tively.

(a) (b)

(c) (d)

Fig. 1: (a) Medial mesh of Plane shape. (b)
Enveloping primitives of its medial mesh. (c) Medial

cone of an edge. (d) Medial slab of a triangle.

3.1 Implicit Surface of Enveloping Primitives

Our approach is inspired by the idea of implicit skin-
ning [37], in which a scalar field is constructed with its

0.5-level-set approximating the surface. We denote the
enveloping primitives of the medial mesh as C. Since
the boundary surface ∂S of shape S could be approxi-

mated by the boundary surface ∂C of C, we can build
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the implicit surface of ∂C to approximate ∂S. In this

way, when the medial mesh Ms is deformed, we can up-
date the implicit surface of ∂C to drive the deformation
of ∂S.

For a given point p, we construct the implicit func-

tion f(p) based on the distance from p to Ms as well
as the radius defined on Ms. Similar to Vaillant et al.’s
approach [37], f(p) is generated by combining a set of

local fields using Ricci’s max operator [30]:

f(p) = max
l

{fl(p)}, (1)

where fl(p) denotes a local scalar field and is constructed

individually by a medial cone or a medial slab using the
following distance-driven scalar function dl(p).

For a primitive Cl (medial cone or medial slab),

dl(p) can be defined by finding a medial sphere mn =
{cn, rn} on Cl, such that the scalar function Em is min-
imized: dl(p) = minEm(mn), where:

Em(mn) = ∥p− cn∥2 − r2n. (2)

We call the sphere mn minimizing Em(mn) as the foot-
print sphere of point p on primitive Cl, as shown in
Figure 2(a).

(a) (b)

Fig. 2: (a) The footprint sphere mn of a point p on the
medial cone defined by mi and mj . (b) Definition of

local scalar function fl(p) for any surface point p, with

its footprint sphere {cn, rn}. Note that the surface
point may not exactly lie on the 0.5-level-set of fl.

Without loss of generality, let us consider Cl being

the medial cone of eij . In this case cn = αci+(1−α)cj ,
and rn = αri+(1−α)rj . By replacing them into Eq. (2),
the scalar function dl(p) could be seem as a quadratic
minimization problem with α ∈ [0, 1] being the only

variable to be decided. We could reformulate Eq. (2) as
follows:

Em(α) = ∥p−(αci + (1− α)cj)∥2 − (αri + (1− α)rj)
2

= (Ai +Aj − 2Aij)α
2 − 2(Aj −Aij)α+Aij ,

(3)

where:

Ai = (p− ci)
T (p− ci)− r2i ,

Aj = (p− cj)
T (p− cj)− r2j ,

Aij = (p− ci)
T (p− cj)− rirj .

(4)

The second order derivative of Em(α) is:

H(Em) = 2(Ai +Aj − 2Aij)

= 2[(ci − cj)
T (ci − cj)− (ri − rj)

2]
(5)

Note that H(Em) ≤ 0 if one sphere is inside another
for the two spheres mi and mj , as shown in Figure 3.

However, this will break the geometric morphology of a
medial cone. Thus, H(Em) > 0 could be proved for all
valid medial cones. To acquire minimal Em(α), α could

be solved by
dEm(α)

dα
= 0. If α < 0 or α > 1, we set

α = 0 or α = 1, respectively.

(a) (b) (c)

Fig. 3: (a) H(Em) < 0; (b) H(Em) = 0; (c)
H(Em) > 0.

The footprint sphere of point p on the medial cone

can be determined by mn = αmi + (1 − α)mj . The
same method can be extended directly to compute the
footprint sphere of p on a medial slab. Please refer to

Appendix A for the proof of uniqueness of footprint
sphere for the medial slab case.

Obiviously, dl(p) defined above is a globally-supported
scalar function in the range of [−r2n,+∞]. To allow
for the compositions of the fl(p) according to Eq. (1),

we use the following mapping function tr(·) to convert
dl(p) to a compactly-supported scalar function [37]:

tr(·) =
−3

16
(·)5+5

8
(·)3− 15

16
(·)+ 1

2
, (6)

And, the local scalar functions of fl(p) are computed

as follows:

fl(p)=



1, if
dl(p)

rn
≤ −1,

0, if
dl(p)

rn
> 1,

tr(
dl(p)

rn
), otherwise,

(7)
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where rn is the radius of the footprint sphere of p. In

this way, the local scalar functions of fl(p) are mapped
to the range of [0, 1]. The boundary surface ∂Cl is mapped
to 0.5-level-set. When p is outside the surface ∂Cl, we

have fl(p) ∈ [0, 0.5); when p is inside the surface ∂Cl,
we have fl(p) ∈ (0.5, 1]. Figure 2(b) gives an illustration
of this local scalar function fl(p). Since the boundary

surface ∂C is just an approximation of the boundary
surface ∂S, for any given point p on ∂S, it may not
exactly lie on the 0.5-level-set of fl. In Section 4.3 we

present a projection operator to maintain the surface
points on their original level-set throughout the surface
deformation.

3.2 Parametric Coordinate

For any surface point p on ∂S, we would like to maintain

its “relative position” w.r.t. the footprint sphere mn

and its corresponding medial primitive Cl. We call such
“relative position” as the parametric coordinate of p in

Cl. Whenever the medial meshMs is deformed by users,
each surface point p can be directly deformed to the po-
sition according to its parametric coordinate, before ap-

plying further iso-surface projections (Section 4.3) and
tangential relaxations (Section 4.4).

We define the parametric coordinate of p w.r.t. Cl

using the polar coordinate system. Specifically, if Cl is
a medial cone, the parametric coordinate is defined as
δc = {α, ρ, φ, θ}; if Cl is a medial slab, the paramet-

ric coordinate is defined as δs = {βi, βj , ρ, φ, θ}. α (or
βi and βj) is the linear interpolation parameter of mn

on medial cone (or medial slab), where mn is the foot-

print sphere of p on Cl. ρ is the distance from p to the
spherical surface of mn, and (ρ + rn, φ, θ) is the po-
lar coordinate of p w.r.t. its footprint sphere mn. The

polar coordinate system of mn is aligned with the lo-
cal coordinate system defined on the medial primitive
Cl, except for its origin being at cn. Specifically, in the

local coordinate system of Cl, we can transform para-
metric coordinates to Cartesian coordinates [x, y, z]T as
follows:

x = cn,x + (ρ+ rn) sinφ cos θ,

y = cn,y + (ρ+ rn) sinφ sin θ,

z = cn,z + (ρ+ rn) cos θ.

(8)

4 Deformation Algorithm

4.1 Overview

In the previous section, a time-varying global scalar

field f(p) is defined by combining the local scalar fields

fl(p), which is defined based on the footprint spheres

on enveloping primitives of medial mesh Ms. For ev-
ery vertex p of the boundary surface ∂S, we initially
compute the global field values f(p) and its paramet-

ric coordinates w.r.t. the medial mesh Ms. When the
user performs as-rigid-as-possible (ARAP) deformation
to the medial mesh, p is first transformed to a tempo-

rary position by using its parametric coordinates. Then,
the surface features are rebuilt by projecting vertices to
their original iso-surfaces along the current gradient di-

rection of f(p). Tangential relaxation is further applied
to evenly distribute vertices on the deformed surface,
in order to capture the deformed shape and avoid self-

intersections between neighboring triangles. Since the
medial mesh is deformed in an ARAP manner, we pro-
vide an approach to preserve the global volume of the

shape by simply adjusting the radii of the medial mesh.
The pipeline of our deformation algorithm is illustrated
in Figure 4.

4.2 Medial Mesh Deformation

Firstly, each step begins from the deformation of me-

dial mesh Ms. In our algorithm, users are allowed to
manipulate medial mesh by selecting medial spheres
and manipulate them to desired positions. We choose

the ARAP scheme to guide the deformation of medial
mesh, and the energy term is formulated based on the
rigid shape matching [23] as:

Ed({Rj , tj}, {c̃i}) =
∑
i

n∑
j∈N (i)

∥Rjc
0
ij + tj − c̃i∥2, (9)

where N (i) denotes the set of indices of medial primi-
tives {Cj |j ∈ N (i)} which are connected with the me-
dial sphere mi. Rj and tj are the rotation matrix and

translation vector for medial primitive Cj . c̃i is the de-
formed position of the medial sphere mi. In the rest
pose of the medial mesh, each medial sphere mi has a

corresponding center position c0ij in its connected me-
dial primitive Cj . If each Cj is individually transformed
by rotation Rj and translation tj , these c

0
ij will be trans-

formed along with each Cj and will not agree with each
other on their positions in general.

When the user manipulates some medial spheres to
their desired positions, we need to minimize Ed and
solve for {Rj , tj} and {c̃i} in an iterative manner: (1) fix

the positions {c̃i} of medial spheres, and solve for rigid
transforms {Rj , tj} of primitives; (2) fix {Rj , tj}, and
solve for {c̃i}. The details of our ARAP deformation

computation are given in Appendix B.
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Fig. 4: The overall pipeline of our deformation algorithm.

4.3 Iso-surface Projection

After the medial mesh Ms is deformed, we first deform
the boundary surface ∂S according to the parametric
coordinates of the vertices. However, due to the exis-

tence of bending deformation, such initial deformation
of ∂S may not agree with the deformed global scalar
field f(p) as defined in Eq. (1). We still need to fur-

ther project them to the surface corresponding to their
original f(p) value.

Note that f(p) is composed from local scalar func-
tions fl(p), which is further dependent on the foot-
print sphere of p. Thus our projection is formulated

as an iteration of the following two steps: (1) based
on the current position of pk, find its footprint sphere
mk

n = {ckn, rkn}; (2) project pk along the gradient direc-

tion
pk−ckn

∥pk−ckn∥
:

pk+1 = ckn + λ
pk − ckn

∥pk − ckn∥
, (10)

where λ = |(rkn)2 + rkn
∥p0−c0n∥

2−(r0n)
2

r0n
| 12 is the marching

length in one projection. Here the superscript k is the
iteration number, and the superscript 0 denotes the rest
state. Note that the above step (2) will move p exactly

onto its original level-set defined by tr(
∥p0−c0n∥

2−(r0n)
2

r0n
)

in Eq. (6). Thus the iteration typically converges in very

few iterations.

4.4 Tangential Relaxation

For some large bending operations, such as the bending
of elbow, the surface vertices may become too sparse for
the outer elbow region, or too dense for the inner elbow

region. Thus it is important to relax the stretching or
squeezing of the surface mesh. The tangential relaxation
steps [37] are conducted as follows:

pk+1 = (1− µ)pk + µ
∑
j

Φjq
k
j , (11)

where the superscript k is the iteration number, µ = 0.2

is a constant, qkj is the position of its 1-ring neighbor

projected onto its tangent plane, and Φj is its associated

mean value coordinate.

We use the following quantity ε to control the tan-

gential relaxation steps:

ε =

∑
i∥pki − pk+1

i ∥2

nv
, (12)

where nv is the total number of surface vertices. Tan-

gential relaxation is repeated until ε ⩽ 1.0 × 10−6 or
the number of iterations exceeds 20.

After iso-surface projection introduced above, the
tangential relaxation is performed. Since the tangential

relaxation moves each vertex on its tangent plane, after
tangential relaxation, iso-surface projection is executed
again to guarantee the surface vertices stay on their

original f(p) value. Figure 5 shows the illustration of
iso-surface projection and tangential relaxation.

Fig. 5: Iso-surface projection moves the vertice p along
black arrow. Tangential relaxation moves the vertice p

along blue arrow.

4.5 Global Volume Preservation

Since the deformation is directly driven by medial mesh,
it is easy to preserve the volume of deformed 3D shapes
by adjusting the radii of the medial mesh. Firstly, we

can compute the volume of the 3D shape S at rest state
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by:

V 0 =
1

6

∑
{i,j,k}∈T

pi· (pj × pk), (13)

where T is the set of triangles on the surface ∂S, and pi,

pj , and pk are the vertices of triangle {i, j, k}. During
the surface deformation, we update the radii of all me-
dial spheres on Ms uniformly, in order to preserve the

volume of S. We denote such uniform radius change as
△r, and estimate the new volume as follows:

V =
1

6

∑
{i,j,k}∈T

(pi+△rni)·[(pj+△rnj)×(pk+△rnk)],

(14)

where ni, nj , nk are the surface normal at pi, pj , pk,

respectively. We formulate the following volume pre-
serving energy to be minimized:

Ev(△r) = (V − V 0)2, (15)

Newton iterations are used to solve △r. It should be

noted that some of the medial spheres on the medial
mesh are already small enough, so reducing their radii
by △r may result in negative radii. Thus for a medial

sphere mi, if △r < −2
3ri, we simply skip the radius

update for mi.

After adjusting the radii for medial spheres, the
global scalar function f(p) is updated, so iso-surface

projection needs to be applied again.

5 Results

We have implemented our algorithm as an interactive
editing system. Our algorithm is written in Microsoft

Visual C++ 2012 and run on an Intel(R) Xeon E5645
CPU at 2.40GHz. Medial axis is extracted and simpli-
fied using Q-MAT [22]. The interactive system allows

users to select some medial spheres as “fixed”, and ma-
nipulate some other medial spheres by controlling their
positions. When the user picks a medial sphere and

drags it, only ARAP medial mesh deformation and sur-
face deformation with parametric coordinates are com-
puted on-the-fly. Iso-surface projection, tangential re-

laxation, and volume preservation are executed once the
user releases the control and stops dragging the medial
sphere. All the experiments are animated at 45 fps.

To evaluate the quality of volume preservation, we

use the following error metric:

ev =
|V d − V 0|

V 0
× 100%,

where V d is the volume of deformed shape and V 0 is
its original volume.

We show deformation results of Rapter and three

different models in Figures 6 and Figures 11. The re-
sults are summarized in Table 1. It demonstrates very
good volume preservation for stretching and rotational

deformation. The computation time highly depends on
the number of surface vertices and primitives of medial
axis. Longer computation times are needed for the steps

of iso-surface projection and tangential relaxation, such
as the deformations of Dophin, Chair and Rapter.

Fig. 6: Deformations of Rapter models.

Figures 7 shows highlighted views of Rapter defor-

sation by opening its mouth. It can be seen that the
features of its teeth are well preserved throughout such
large rotational deformation.

Figure 8 demonstrates that our algorithm could ad-
dresses the twisting and bending problems, which are
notorious in the traditional skeleton-based shape de-

formation techniques. The the candy-wrapper artifacts
caused by twisting (see Figure 8(a)) and volume-loss
artifacts caused by bending (see Figure 8(b)) may ap-

pear in the deformation before tangential relaxation,
and disappear after we relax the surfaces along the tan-
gential directions of their iso-surfaces (see Figure 8(c)

and 8(d)).
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#Ver #Tri #Pri V 0 V d ev DC
(ms)

IP
(ms)

TR
(ms)

VP
(ms)

Raptor 20876 41592 158 0.019449 0.019656 1.0615% 64 637 721 38

Hand 6191 12378 36 0.053282 0.053258 0.4517% 31 39 76 13

Dophin 15100 30196 65 0.215781 0.217734 0.9052% 45 302 387 35

Chair 10500 21008 60 0.126142 0.12725 0.8749% 39 123 241 29

Table 1: Experimental results. From left to right, the first to seventh columns are names of models, the number

of vertices, the number of triangles, the number of primitives. The last four columns are the average computation
time for ARAP medial mesh deformation and deforming surfaces with parametric coordinates (DC), iso-surface

projection (IP), tangential relaxation (TR) and volume preservation (VP).

(a) (b)

(c) (d)

Fig. 7: Our method preserves surface features

throughout the deformation, as illustrated on the
teeth of Raptor.

(a) (b)

(c) (d)

Fig. 8: (a) and (b): Twisting and bending the model
before tangential relaxation. (c) and (d): After

tangential relaxation.

To highlight the effect of volume preservation in
our algorithm, we repeat a deformation process with
and without volume preservation. In the experiment, a

plane with 6448 vertices is modified to become a “flying
bird” through interactive deformations. Figure 9 shows
comparison of volume between two deformations during

the entire process. The vertical axis represents the er-

ror of volume preservation and the horizontal axis rep-
resents the deformation steps from t0 to t7. Figure 10
illustrates the comparison of thickness after the defor-

mation at t2.

Fig. 9: Experiment on volume preservation. The

orange circles represent the volume of deformed model
without volume preservation, the blue diamonds

represent the volume of deformed model with volume

preservation.

(a)

(b)

Fig. 10: Comparison of thickness at t2: (a) Without
volume preservation (ev = 32.49%). (b) With volume

preservation (ev = 0.7713%)
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(a) Hand (b) Dolphin (c) Chair

Fig. 11: Deformations of Hand, Dolphin and Chair models.

6 Conclusion and Future Work

In this paper, we present a shape deformation algorithm
driven by medial-axis, which is essentially a skeleton

structure for representing 3D shapes, but provides more
information about the surface, such as thickness and
features, as compared to the traditional stick-skeleton

or curve-skeleton. We combine ARAP deformation with
radius adjustment on the medial mesh to guarantee
global volume preservation during the shape deforma-

tion process. The iso-surface projection with tangen-
tial relaxation can not only preserve surface features,
but also address the candy-wrapper and volume-loss

artifacts in twisting and bending associated with tradi-
tional deformation methods.

Our current implementation of the deformation al-
gorithm is not fully optimized in performance. In the
future, we would like to further explore potential opti-

mization approaches, e.g., GPU-based implicit skinning
with tangential relaxation, in order to achieve real-time
performance. Note our current ARAP deformation en-

ergy on the medial mesh does not penalize bending de-
formation. We would like to consider adding the bend-
ing energy to the medial mesh deformation and try to

accommodate different kinds of kinematic constraints,
e.g., rotational constraints for neighboring medial prim-
itives, rigidity constraints for some medial primitives,

etc.
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A Footprint Sphere on Medial Slab

For the medial slab Cl of a triangle face fijk, the footprint
sphere of point p on the slab is the sphere mn = {cn, rn}
with minimal scalar function Em(mn) defined as:

Em(mn) = ∥p− cn∥2 − r2n. (16)

Suppose {ci, ri}, {cj , rj}, and {ck, rk} are the three spheres
defining this medial slab, then we have cn = βici + βjcj +
(1− βi − βj)ck, and rn = βiri + βjrj + (1− βi − βj)rk. The
scalar function Em(mn) can be written as:

Em(βi, βj) = ∥p− (βici + βjcj + (1− βi − βj)ck)∥2 − (βiri

+ βjrj + (1− βi − βj)rk)
2

= Aiβ
2
i +Ajβ

2
j +Ak(1− βi − βj)

2 + 2Bijβiβj

+ 2Bikβi(1− βi − βj) + 2Bjkβj(1− βi − βj),

(17)

where

Ai = (p− ci)
T (p− ci)− r2i ,

Aj = (p− cj)
T (p− cj)− r2j ,

Ak = (p− ck)
T (p− ck)− r2k,

Bij = (p− ci)
T (p− cj)− rirj ,

Bik = (p− ci)
T (p− ck)− rirk,

Bjk = (p− cj)
T (p− ck)− rjrk.

(18)

The Hessian matrix of Em(βi, βj) is:

H(Em) =

 ∂2Em

∂β2
i

∂2Em

∂βi∂βj

∂2Em

∂βj∂βi

∂2Em

∂β2
j


= 2

(
Ai+Ak−2Bik Ak+Bij−Bik−Bjk

Ak+Bij−Bik−Bjk Aj+Ak−2Bjk

)
.

(19)

Let us denote:

H11 = Ai +Ak − 2Bik,

H12 = Ak +Bij −Bik −Bjk,

H22 = Aj +Ak − 2Bjk.

(20)

Since two Euclidean vectors v and w satisfy the law of
cosines:

(v − w)T (v − w) = vT v + wTw − 2vTw, (21)

we can rewrite H11, H12, and H22 as:

H11 = (ci − ck)
T (ci − ck)− (ri − rk)

2,

H12 = (ci − ck)
T (cj − ck)− (ri − rk)(rj − rk),

H22 = (cj − ck)
T (cj − ck)− (rj − rk)

2.

(22)

If we denote the 4-dimensional vectors vi and vj in Minkowski
space as:

vi = [(ci − ck)
T , (ri − rk)]

T ,

vj = [(cj − ck)
T , (rj − rk)]

T ,
(23)

then H11, H12, and H22 can be written using Minkowski
inner product g(·, ·) as:

H11 = g(vi, vi),

H12 = g(vi, vj),

H22 = g(vj , vj).

(24)

As shown in Figure 3 of the paper, as long as the two spheres
mi and mk are not arranged as “one inside another”, then
we can guarantee H11 > 0. Similarly H22 > 0 also holds for
general valid configurations of mj and mk.

Since both g(vi, vi) > 0 and g(vj , vj) > 0, i.e., vi and
vj are spacelike vectors in Minkowski space, they satisfy the
usual Cauchy-Schwarz inequality (see Formula 3 of [14]):

g(vi, vi)g(vj , vj) ≥ g(vi, vj)
2, (25)

with equality holds when vi and vj are co-linear. For a general
medial slab, vi and vj will not be co-linear, thus we have
g(vi, vi)g(vj , vj)− g(vi, vj)2 > 0.

Thus the determinant of Hessian H(Em) is positive:

|H(Em)| = 2(H11H22 −H2
12) > 0, (26)

The scalar function Em will have a unique global mini-
mum, and thus the footprint sphere can be solved from min-
imizing Eq. (17) with [∂Em

∂βi
, ∂Em

∂βj
] = [0, 0].

B Minimizing ARAP Deformation Energy

For our medial mesh Ms, the ARAP deformation energy is
defined as:

Ed({Rj , tj}, {c̃i}) =
∑
i

n∑
j∈N (i)

∥Rjc
0
ij + tj − c̃i∥2, (27)

where N (i) denotes the set of indices of medial primitives
{Cj |j ∈ N (i)} which are connected with the medial sphere
mi. Rj and tj are the rotation matrix and translation vector
for medial primitive Cj . c̃i is the deformed position of the
medial sphere mi, and c0ij is its corresponding center position
in Cj at the rest pose.

Each medial primitive has its local coordinate system
with origin on the center of the primitive. So the transla-
tion vector can be simply: tj = 1

3
(c̃i + c̃j + c̃k) for triangle

fijk, and tj = 1
2
(c̃i + c̃j) for edge eij on the medial mesh.

To minimize Ed in Eq. (27), the rotation matrix Rj of all
primitives and the medial sphere central positions c̃i need to
be solved in turn iteratively.

In each iteration, if we first fix the value of c̃i, we can
minimize Ed and solve the rotation matrices Rj as follows.
Let us denote c̃ij = c̃i − tj , for each primitive j ∈ N (i).
Then:

Ed =
∑
i

n∑
j∈N (i)

∥Rjc
0
ij + tj − c̃i∥2

=
∑
j

∑
i∈V (j)

∥Rjc
0
ij − c̃ij∥2

=
∑
j

∑
i∈V (j)

(c0ij
T
c0ij − 2c0ij

T
RT

j c̃ij + c̃Tij c̃ij),

(28)

where V (j) is the set of vertices for primitive j. Since c0ij
T c0ij

and c̃Tij c̃ij are fixed for now, minimizing Ed is equivalent to
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maximizing the following Fd:

Fd =
∑
j

∑
i∈V (j)

(c0ij
T
RT

j c̃ij)

= trace(
∑
j

∑
i∈V (j)

(c0ij
T
RT

j c̃ij))

=
∑
j

∑
i∈V (j)

trace(c0ij
T
RT

j c̃ij)

=
∑
j

∑
i∈V (j)

trace(RT
j c̃ijc

0
ij

T
)

=
∑
j

trace(RT
j

∑
i∈V (j)

c̃ijc
0
ij

T
)

=
∑
j

trace(RT
j Aj)

=
∑
j

F j
d ,

(29)

where the matrix Aj =
∑

i∈V (j)

c̃ijc0ij
T , and F j

d = trace(RT
j Aj).

Since each Rj is independent of each other, we can maxi-

mize each F j
d individually. We decompose Aj using Singular

Value Decomposition (SVD): Aj = UjDjVT
j . Then F j

d =

trace(RT
j UjDjVT

j ) = trace(VT
j RT

j UjDj). Since Dj is a di-

agonal matrix, the trace achieves maximum when VT
j RT

j Uj

is an identity matrix. So Rj can be solved as:

Rj = UjV
T
j . (30)

After getting the rotation matrices for primitives, we can
assume Rj to be fixed, and minimize Ed by solving for medial
sphere center positions c̃i. They can be simply solved as:

c̃i =
1

|N (i)|
∑

j∈N (i)

(Rjc
0
ij + tj), (31)

where |N (i)| is the number of primitives that are connected
to medial sphere i.

It should be noted that in each iteration, we compute
the optimal Rj and c̃i in turn, and each of these steps will
decrease the energy Ed until converged.


