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Abstract This paper presents a spectral approach to compress dynamic animation consisting of a sequence of homeomor-

phic manifold meshes. Our new approach directly compresses the field of deformation gradient defined on the surface mesh,

by decomposing it into rigid-body motion (rotation) and non-rigid-body deformation (stretching) through polar decompo-

sition. It is known that the rotation group has the algebraic topology of 3D ring, which is different from other operations

like stretching. Thus we compress these two groups separately, by using Manifold Harmonics Transform to drop out their

high-frequency details. Our experimental result shows that the proposed method achieves a good balance between the

reconstruction quality and the compression ratio. We compare our results quantitatively with other existing approaches on

animation compression, using standard measurement criteria.

Keywords dynamic animation, animation compression, deformation gradient, polar decomposition

1 Introduction

Dynamic mesh animations consist of a (time-series)

sequence of 3D meshes sharing the same connectivity

but having different shapes. For years, people have

been looking for techniques to reduce memory and sto-

rage required for processing detailed mesh animation

data.

In general, compression technologies for mesh ani-

mation could be roughly classified as lossless methods

and lossy methods. Lossless methods preserve all the

original information while lossy methods reduce the size

by dropping less important details of the data. As for

data compression, lossy methods play important roles

due to the nature of large data and in-sensitivity to re-

construction accuracy. In the case of mesh animation

compression, we believe that shape fidelity is more im-

portant than the accuracy of geometric coordinates. To

achieve better visual results, preserving the shape and

deformation of the surface is more vital.

As Sumner and Popović[1] suggested, the deforma-

tion of a surface could be represented as the field of

deformation gradient over the surface. This field, how-

ever, unlike many other fields on surfaces, is defined

per simplex, i.e., triangle rather than vertex. The de-

formation gradient of each simplex could be presented

as a 3×3 transformation matrix. Deformation gradient

contains enough information to describe the deforma-

tion of the whole surface. That is, the compression of

mesh animation could be achieved by compressing its

deformation gradient.

A 3×3 transformation matrix can represent any

linear transform of a specific triangle. With polar

decomposition[2], it can be further decomposed as the

combination of two components: 1) 3-D rotation; and

2) planar stretching. 3-D rotation has a structure of 3-D

torus[3], while the planar deformation has a structure of
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infinite linear space. The field of deformation gradient

can be handled separately for these two components in

the lossy compression process, and thus better control

of loss over both components could be achieved.

In this paper, we propose a spectral animation com-

pression (SAC) approach to perform lossy compression

of mesh animations. Specifically, we use the eigen-

functions of Laplace-Beltrami Operator (LBO) defined

on the surface[4], also called Manifold Harmonics[5], to

compress the two components of deformation gradient

field, respectively. This paper shows the experiments of

our new approach, compared with several existing ani-

mation compression methods, along with data support-

ing the various stages of our algorithm design decisions.

2 Related Work

In the past few years, a great number of algorithms

have been proposed to compress dynamic mesh ani-

mations. Among them, principle component analysis

(PCA) is often used for reducing the dimensions of the

vertex displacement information[6-7]. The PCA bases

need to be compressed because they are needed to re-

store the animation[8]. Moreover, PCA can also be

combined with clustering and segmentation[9], Laplace

deformation[10], or mesh simplification[11] for better

performance in compressing dynamic animations.

Another common class of compression approaches

is predictive methods which encode the residual (diffe-

rence between the actual value and the predicted value)

instead of raw data. With a carefully designed predic-

tor, the residual tends to be small and fits the need

for further quantization and/or entropy encoding. In

terms of animation compression, the predictor could de-

pend on spatial information, temporal information, or

both of them, as in Dynapack[12] and the fine-granular

scalable coding method[13]. Moreover, Khodakovsky

et al.[14] proposed to apply predictive method and

arithmetic encoding on wavelet transform coefficients.

Amjoun and Straβer[15] introduced a new connectivity-

guided predictive scheme to encode the residues in the

local coordinate frames to improve the efficiency of ani-

mation compression. Stefanoski and Ostermann[16] pre-

sented a fast and efficient scalable predictive coding

(SPC) scheme by employing predictive encoding in the

space of rotation-invariant coordinates with respect to

a spatially and temporally scalable decomposition of

dynamic animation. Another series of common com-

pression methods are to combine prediction encoding

with PCA to design predictors more accurately, such

as Connectivity-Driven Dynamic Animation Compres-

sion method (Coddyac)[17] and Geometry-Driven Local

Neighbourhood Based Predictors[18]. Besides the ani-

mation compression methods, some state-of-the-art sin-

gle triangle mesh compression methods are also based

on predictive coding schemes[19-20].

A different animation compression approach is

based on the idea of skinning mesh techniques. In

animation, the movements of neighbouring primitives

(vertices or triangles) tend to be related rather than in-

dependent. Parts of the mesh that have similar move-

ments are referred to as near-rigid structure in skinning

mesh animation[21]. For instance, Mamou et al.[22] in-

troduced a novel method based on a piecewise affine

predictor coupled with a skinning model and a repre-

sentation of the residuals. Parts of this skinning-based

method[22] are utilized by the frame-based animated

mesh compression (FAMC)[23] as an MPEG-4 standard

(MPEG-4 FAMC). Le and Deng[24] referred to a similar

concept in Smooth Skinning Decomposition with Rigid

Bones (SSDR). Specifying movements of these pieces as

a whole could reduce redundancy greatly. Skinning de-

composition technique is employed during decompres-

sion to provide better fidelity.

To determine the performance of compression meth-

ods, E-RMS[25] and KG-error metric[6] are commonly

used to evaluate errors introduced by compression.

Váša and Skala proposed a new error metric called

spatio-temporal edge difference (STED) to better eval-

uate subjective opinions[26], and also a new framework

by reconfiguring FAMC and Coddyac to optimize the

STED error[27].

Researchers have been looking for spectral geomet-

ric processing methods[28] for surface smoothing[29],

segmentation[30], compression[4], watermarking[31],

quadrangulation[32], matching and retrieval[33], etc.

Manifold Harmonics, defined as the eigen-functions of

LBO, can be computed on triangle mesh surfaces based

on the Discrete Exterior Calculus (DEC) framework[5]

or the Finite Element Method (FEM) framework[33]. It

can be also computed on point-sampled surfaces[34],

which is based on the framework of heat diffusion

kernel[35-36].

3 Spectral Animation Compression

A mesh animation consists of a sequence of triangu-

lar meshes, which are also referred to as frames. Each

frame is slightly deformed from the previous one, while

the connectivity is the same. The canonical way of
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storing mesh animation is keeping the vertex coordi-

nates of each frame separately. The data would have

high redundancy. A more efficient way is keeping the

vertex coordinates for the first frame and incrementally

deforming it to get all following frames.

Intuitively, the deformation of a surface could be

presented as a displacement field over vertices. In this

paper, we take a different approach: we represent de-

formation as the field of deformation gradient[1] defined

over triangles. By compressing the incremental shape

deformations represented as deformation gradients us-

ing the spectral compression techniques[5], the anima-

tion can be compressed to cost less space for storage

and transfer.

In the following parts, a new animation compression

method based on deformation gradient and manifold

harmonics is proposed and explained in details.

3.1 Overall Scheme

Suppose the animation to be compressed consists of

a sequence of homeomorphic manifold surfaces repre-

sented as triangular meshes {M0,M1, · · · ,Mt}, where

t is the total number of frames. Meshes {Mi} are re-

ferred to frames, and M0 is usually the reference frame.

Considering the deformation between adjacent frames

Mi and Mi+1, the deformations of neighbouring primi-

tives (vertices, edges and triangles in our case) are as-

sumed to be closely related. That is, the deformation

field representation has data redundancy, which makes

compression possible.

As shown in Fig.1, the scheme of spectral animation

compression consists of the following steps:

1) Reference frame compression: the first frame M0

is assumed to be compressed using an existing triangu-

lar mesh compression method. Note that the decom-

pressed frame M ′
0, rather than the original M0, is used

in the following steps of compression process. There-

fore, the error will not be accumulated.

2) Deformation compression on {Mi} (1 6 i 6 t):

for each frame Mi, its deformation from the previous

reconstructed frame M ′
i−1 is decomposed into compo-

nents (Subsection 3.3) and analyzed using Manifold

Harmonics (Subsection 3.4). Some detailed informa-

tion is dropped to achieve a balance between compres-

sion ratio and reconstruction accuracy. Quantization

and arithmetic coding are performed to further lower

the data size (Subsection 3.5).

3) Decompression and reconstruction: using the

previous (reconstructed) frame M ′
i−1 and deformation

description information of the i-th frame from the above

step 2, the animation Mi
′ is recovered with error (Sub-

section 3.6).

The detailed SAC algorithm outline is introduced in

Subsection 3.7. Note that in the proposed method, the

deformation of each frame Mi (P-frame) is computed

from the reconstructed previous frame, except for the

reference frame M0 (I-frame). That is, the decompres-

sion of each frame depends on that of the previous one.

Such a strategy has the following advantages:

1) No Error Accumulation. Our method is designed

as lossy compression for each frame. By choosing the

decompressed previous frame M ′
i−1 as reference shape

for computing the incremental deformation, we essen-

tially eliminate the accumulation of error introduced in

reconstructing each frame, since the error only comes

from the decompression of deformation description.

2) Smaller Chance to Suffer from Extreme Rota-

tions. Here an extreme rotation refers to a rotate an-

gle larger than π/4 and close to π/2. In our method,

Compression

Frame #0 (M0)

Restored
Frame #0 (M0)

Compressed
Frame #0

Deformation
Description #1

Deformation
Description #2

Frame #1 (M1) Frame #2 (M2 )

' 

Restored
Frame #1 (M1)' 

Restored
Frame #2 (M2)' 

Decompression

Fig.1. Scheme of compression and decompression.
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the deformation to be compressed is decomposed as the

combination of rotation and stretching. An extreme ro-

tation may corrupt the continuity of the rotation field

and cause more distortion.

A disadvantage of our method is that it cannot sup-

port random access to the compressed animation. That

is, all frames must be decompressed one by one. Users

cannot access a specified frame directly. To compensate

for the disadvantage, a reference frame (I-frame) could

be chosen after certain number of P-frames. In case

of random access, the users only need to go through a

small set of the reference frames rather than the whole

animation.

3.2 Deformation Gradient

In our method, we choose deformation gradient [1]

as the basic representation of deformations between

frames.

Consider the deformation of a solid M to M̃. Each

point p ∈ M is mapped to point p̃ after deformation.

Denote the coordinates of each point as a column vec-

tor p = (p1, p2, p3)
T. Then the mapping t = (t1, t2, t3)

T

can be defined as:

p̃ = t(p) =











t1(p1, p2, p3)

t2(p1, p2, p3)

t3(p1, p2, p3)











.

The deformation gradient is defined as a second or-

der tensor:

J =
∂t

∂p
=



















∂t1
∂p1

∂t1
∂p2

∂t1
∂p3

∂t2
∂p1

∂t2
∂p2

∂t2
∂p3

∂t3
∂p1

∂t3
∂p2

∂t3
∂p3



















.

At point p, the infinitesimal vector after deformation is

given by dp̃ =
(

∂t
∂p

)

dp.

Here the deformation mapping t : R3 → R
3 maps

each point to a new position. The discrete counter part

of J , denoted as Jj , is defined as a piece-wise constant

function over simplex j (e.g., a tetrahedron). The ten-

sor Jj is referred to as the deformation gradient. For

triangular meshes that consist of triangles rather than

tetrahedrons, the method is to construct a tetrahedron

on each triangle by adding an extra vertex in the nor-

mal direction and compute the deformation gradient for

each triangle[1].

Given the restored frame M ′
i−1 (1 6 i 6 t), and

a desired field of deformation gradient {Jj} between

restored M ′
i−1 and original Mi as input, we are try-

ing to reconstruct a shape M ′
i such that the deforma-

tion between M ′
i−1 and M ′

i is as close to the deforma-

tion between M ′
i−1 and Mi as possible. This process

is achieved by solving the following least-squares opti-

mization problem:

min
v0,··· ,vn−1

m−1
∑

j=0

‖Sj − Jj‖
2
F
, (1)

subject to ṽ0 = v0, (2)

where n is the number of vertices, m is the num-

ber of triangles, and Sj is the deformation gradient

between the j-th pair of triangles in M ′
i−1 and that

in M ′
i . The vertices {v0, · · · ,vn−1} in M ′

i could be

achieved by converting the above minimization prob-

lem into an equivalent linear system and then solv-

ing it efficiently[1]. Note that deformation gradients

are invariant to translation[1]. Therefore, there are in-

finitely many solutions to the optimization problem in

(1), which admit the same minimum: all translations of

one optimal solution are also optimal. Then, the con-

straint in (2) is added to fix the position of one vertex

and makes the solution unique[1].

Deformation Gradient vs Displacement. The dis-

placement field of vertices is the canonical way to de-

scribe deformation. But in the case of animation com-

pression, the displacement field is not an effective way

compared with deformation gradient. Consider a trian-

gle mesh animation with only rigid-body rotation and

translation. It is easy to see that each triangle has

the same deformation gradient which is the global ro-

tation. Thus the deformation gradient is a constant

field, while the displacement field may be complicated

and hard to compress with acceptable errors. Thus we

choose deformation gradient rather than displacement

for representing the deformation field.

3.3 Analysis of Deformation Gradient Field

As presented in Subsection 3.2, the deformation

gradient defines a 3-by-3 linear transformation matrix

Jj for each triangle j. Any invertible linear trans-

formation matrix like Jj could be decomposed as the

combination of rotation and stretching through polar

decomposition[2]:

Jj = UjPj , (3)
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where Uj ∈ SO(3) (3D rotation group) is a rotation

matrix and Pj = PT
j is a stretching matrix that is

symmetric.

It is known that the rotation matrix group SO(3)

is isomorphic to 3-D ring in 4-D Euclidean space[37].

Therefore, it resembles the topology of 3-D ring.

For the stretching matrix Pj , since it is symmetric,

we can define it as:

Pj =





a d e
d b f
e f c



 . (4)

Denote the set of all 3 × 3 symmetric matrices as S.

Define the maping fS : S → R
6 as

fS(Pj) =
(

a b c d e f
)T

.

Thus we know that S resembles the topology of 6-D Eu-

clidean space R
6, which is different from the topology

of 3-D ring of SO(3).

As described above, the rotation matrix group and

the stretching matrix set resemble different topologies.

Intuitively, rotation towards a fixed direction gets back

periodically, while stretching extends infinitely. To

achieve better control and lower distortion for our spec-

tral compression, the two pieces of information are

handled and compressed separately in the proposed

method. Fig.2 shows the SAC process with polar de-

composition.

Here is an intuitive explanation about the rationa-

lity of polar decomposition in SAC. Firstly, compress-

ing displacement and/or deformation gradient directly

do/does not provide good results, and we observe that

the surface of these results would easily show artifact

like “wrinkle” which suggests the rotation info is not

preserved well all the time, even though the error met-

ric does not look that bad. Then, we understand that

rotation is different from stretching in that rotation in

R
3 has topology of 3-D torus, and thus it is bounded

and never goes to infinity, but stretching may. If we

handle them together, we may easily lose control of ro-

tation information. When rotation gets too many errors

here and there, “wrinkle” happens and hurts the result

a lot. Therefore, if we handle rotation and stretching

separately by utilizing polar decomposition, we have a

“bound” for rotation errors. That is, we may not have

extreme errors of rotation on some triangles that hurts

the result. Experiments testify that it works, as shown

in the comparative results between the spectral com-

pression with and without using polar decomposition

in Subsection 4.2.

3.4 Spectral Compression of Deformation

Field

Several spectral transformation tools, like Manifold

Harmonics[5], have been proposed for manifold surfaces

represented as triangular meshes. By solving gene-

ralized eigen problem defined by the finite element

method (FEM)-based discrete Laplacian operator, a

set of bases called manifold harmonic bases (MHBs)

are constructed. Because the discrete Laplacian opera-

tor retains the property of symmetricity as LBO does,

it could be proved that MHBs are orthogonal to each

other with inner product. Thus MHB could be used to

analyze functions defined over the mesh.

Note that Manifold Harmonics is designed for scalar

functions defined “per-vertex”. All the bases are per-

vertex functions, so are the functions to be analyzed.

But in our scheme, the deformation gradients are piece-

wise constant, i.e., they are defined “per-triangle”.

Thus the original Manifold Harmonics functions cannot

Deformation
Gradients

Low Pass
Compression

Restored Deformation
Gradients

Restored Deformation
Matrix

Low Pass
Compression

Rotation Matrix

Transformation Matrix

Stretching Matrix

Jj

Uj

Pj Pj

Uj

v

v

v

v

v
v

v

v

v

v

v

v

~

~

Jj

~

Fig.2. Spectral compression with polar decomposition.
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be applied as-is, and should be converted to per-triangle

functions at first.

Suppose we have a “per-vertex” function which is

denoted as a column vector fv, one intuitive way to get

its per-triangle form ft is averaging the function values

on the vertices. Thus we have :

ft = Cfv, (5)

fv = (CTC)−1CTft, (6)

where C = {ci,j} is the m-by-n interpolation matrix :

ci,j =











1

3
, if vertex j is contained in triangle i,

0, otherwise.

Here m and n are the number of triangles and vertices,

respectively. Using (5) and (6), any per-vertex function

defined over the mesh surface could be interpolated to

its per-triangle form and vice versa. Thus per-triangle

functions could also be analyzed using Manifold Har-

monics which is designed for per-vertex functions.

For triangle ∀j ∈ M0, consider its correspond-

ing rotation matrix Uj ∈ SO(3). Denote its matrix

logarithm[37] as Aj = logUj where Aj ∈ SO(3) and

Aj = a1e1 + a2e2 + a3e3 (7)

holds, where

e1 =





0 1 0
−1 0 0
0 0 0



 , e2 =





0 0 1
0 0 0
−1 0 0



 ,

e3 =





0 0 0
0 0 1
0 −1 0



 ,

and a1, a2, a3 ∈ R. Thus the rotation matrix field Uj

could be treated as a 3-D vector field (a1, a2, a3)
T after

the logarithm mapping.

According to (4), the stretching matrix field Pj is

guaranteed to be symmetric: PT
j = Pj . Similarly, Pj

could be treated as a 6-D vector field (a, b, c, d, e, f)T

instead.

Altogether, Uj and Pj have nine degrees of freedom

(DoFs) and could be processed as independent scalar

fields. In the case of discrete triangular mesh, each

scalar field is denoted as a column vector. Thus we

have vectors vU,0 · · ·vU,2 and vP,0 · · ·vP,5, where each

vU,p (0 6 p 6 2) and vP,q (0 6 q 6 5) are vectors

of length m, with m being the number of triangles.

With the MHB {Hk} and interpolation equation (6)

presented earlier, we have their corresponding spectral

descriptors:

vU,k,p = 〈Hk, (C
TC)−1CTvU,p〉, (8)

vP,k,q = 〈Hk, (C
TC)−1CTvP,q〉, (9)

where 0 6 k < l, and l is the number of spectral bases

we use. If we use all the spectral bases, then l = n,

where n is the number of vertices. By dropping high

frequency descriptors (i.e., l ≪ n), the compression is

achieved.

3.5 Quantization and Arithmetic Coding

The spectral descriptors obtained from (8) and (9)

are float numbers, which may cost 32 bits (single preci-

sion) or 64 bits (double precision). Quantization could

further reduce the data size while introducing some er-

rors.

The quantization process could reduce the size of a

bunch of data by truncating the data to a desired accu-

racy and mapping them into integers that can be repre-

sented with a limited number of q bits[12]. After quanti-

zation, each spectral descriptor value will be quantized

as an integer number in a range of [0, 2q]. Usually the

corresponding appearance numbers of a large amount of

quantized integers are zero, then some entropy coding

method such as arithmetic coding could be utilized to

compress these integers to further reduce the bite rate

losslessly. Note that the maximum and the minimum

value of the original data also need to be compressed

in order to restore the original data from the quantized

integers during the decompression process. Fig.3 shows

an example of quantization result. After quantization,

there are 65 k possible numbers, but only a small por-

tion of them would really appear.
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In summary, the compressed information in SAC

includes the following parts:

1) the compressed geometry and connectivity of the

first frame M0;

2) the quantized integers of spectral descriptors with

appearance number larger than 0, and the correspond-

ing appearance number;

3) for each frame, the maximum and the minimum

of spectral descriptors, along with bits produced by

arithmetic coding for the quantized spectral descriptors

ṽU,k,p and ṽP,k,q.

3.6 Decompression and Reconstruction

Let ṽU,k,p, ṽP,k,q be the restored spectral descrip-

tors, and ṽU,p, ṽP,q be the restored vector fields of

{Ũj} and {P̃j}, which denote the restored rotation and

stretching matrices for the deformation gradients {J̃j}.

During the decompression and reconstruction process,

ṽU,k,p, ṽP,k,q should be restored at first by decompress-

ing their quantized data of vU,k,p and vP,k,q using the

appropriate decoding method. The vector fields could

be restored as

ṽU,p = C

l
∑

k=1

ṽU,k,pHk, (10)

ṽP,q = C

l
∑

k=1

ṽP,k,qHk. (11)

Then, the deformation gradient J̃j can be easily

achieved by J̃j = ŨjP̃j .

With restored deformation gradients {J̃j}, the op-

timization problem in (2) is like this now:

min
v0,··· ,vn−1

m−1
∑

j=0

∥

∥

∥Sj − J̃j

∥

∥

∥

2

F
,

subject to ṽ0 = v0.

The vertices {v0, · · · ,vn−1} could be calculated by con-

verting the above minimization problem into the follow-

ing linear system[1]:

AX = f , (12)

where X is the column vector of vertex coordinates,

matrix A and vector f are calculated from the mesh

connectivity and deformation gradients.

3.7 Algorithm Outline

Given the original animation {M0,M1, · · · ,Mt},

the SAC outline can be summarized as:

1) compressM0 using some lossless single mesh com-

pression method, and then decompress it to get restored

frame M0
′;

2) compute Manifold Harmonics bases {Hk} using

the method in [5];

3) for the i-th frame (1 6 i 6 t), given M ′
i−1 and

Mi, we can compress Mi and restore M ′
i like this:

a) compute the deformation gradient {Jj} using the

method in [1], where Jj is the deformation gradient be-

tween the j-th pair of triangles in Mi and M ′
i−1;

b) run polar decomposition on each Jj via (3) to

get rotation matrix Uj and stretching matrix Pj ;

c) run matrix logarithm on each Uj via (7) and pack

the result as vectors vU,p, and then pack the six relative

values in each Pq as vectors vP,q. Then, the spectral de-

scriptors vU,k,p and vP,k,q for each base Hk (0 6 k < l)

can be obtained via (8) and (9) respectively. The high

frequency descriptors with basis larger than threshold

l will be dropped;

d) compress vU,k,p and vP,k,q using quantization and

some entropy coding method such as arithmetic coding;

e) decompress the spectral descriptors to get ṽU,k,p

and ṽP,k,q, and then restore the vector fields ṽU,p and

ṽP,q via (10) and (11), respectively. Then, the defor-

mation gradient J̃j can be restored by J̃j = ŨjP̃j ;

f) reconstruct the vertex coordinates of M ′
i by solv-

ing the linear system in (12) through the method in [1];

then the restored M ′
i is achieved.

Besides the first step to compress and decompress

M0, step 2 and steps 3).a)∼3).d) belong to compression

process, while steps 3).e)∼3).f) belong to decompres-

sion process.

4 Experiments

Experiments are conducted to evaluate SAC using

models listed in Table 1 and Fig.4. The Cloth model

showing a piece of falling cloth is selected as a repre-

sentative bone-less animation where bone structure is

difficult to be defined. The Horse-Collapse model from

[24] presents a horse-shaped surface collapsing on itself

that undergoes sophisticated soft tissue deformations.

The Vase model contains a bouncing and rolling vase

with only rigid-body rotations and translations. In our

experiments, 18-bit quantization is used by default un-

less otherwise specified.

Most parts of our implementation are written in

C++ and CUDA. Miscellaneous codes are implemented

in Python and Shell Script. Table 1 lists the time

cost of our implementation on a desktop computer with

Intelr Xeonr E5645 CPU with 2.40 GHz, 16 GB RAM
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Table 1. Experimental Datasets and Time Cost in Seconds

Animation t n m T2 T3a T3b T3c T3d T3e T3f Ttotal

Cloth 199 05 525 10 752 0.140 1 0.002 3 0.042 0 0.143 6 0.008 9 0.066 1 0.079 1 0.482 1

Horse-Collapse 053 08 431 16 843 0.188 0 0.003 3 0.030 1 0.104 5 0.011 3 0.101 1 0.117 1 0.555 4

Dance 200 07 061 14 118 0.161 8 0.003 0 0.062 4 0.210 6 0.009 2 0.085 1 0.121 9 0.654 1

Humanoid 153 07 646 15 288 0.202 5 0.003 3 0.022 4 0.106 4 0.008 8 0.093 6 0.097 0 0.534 0

Dolphin 100 06 179 12 278 0.198 6 0.002 7 0.045 2 0.157 3 0.008 6 0.075 7 0.096 8 0.584 9

Jump 221 15 826 31 648 0.655 9 0.006 9 0.135 5 0.483 3 0.008 7 0.191 4 0.299 1 1.780 8

Vase 070 02 502 05 008 0.055 2 0.001 2 0.022 6 0.081 8 0.008 9 0.032 7 0.035 4 0.237 8

Note: t denotes the number of frames, n is the number of vertices, m is the number of triangles, T2, T3a, T3b, T3c, T3d, T3e, T3f denote
the average time cost of step 2 and steps 3).a) ∼ 3).f) for each frame in the SAC algorithm outline, respectively, and Ttotal denotes the
total average time cost for each frame.

and NVIDIA GeForce GTX 770 GPU with 4 GB video

memory. All the models are compressed using 100 spec-

tral bases. The time cost of step 1 in the algorithm

outline, i.e., compressing and decompressing the first

frame, is not listed in Table 1, since it is very small

and can be ignored compared to the cost in other steps.

Note that the most time-consuming steps are step 2 and

step 3).c), i.e., computing Manifold Harmonics bases

and running matrix logarithm on rotation matrix.

(a) (b) (c) (d)

(e) (f) (g)

Fig.4. Models used in experiments. (a) Cloth. (b) Horse-
Collapse. (c) Dance. (d) Humanoid. (e) Dolphin. (f) Jump. (g)
Vase.

4.1 Metrics

The following metrics are chosen to evaluate the er-

ror introduced by compression:

1) The spatial-temporal edge difference (STED) in-

troduced by Váša and Skala[26]:

STED =
√

STED2
s + c2 × STED2

t ,

where STEDs is the spatial error, STEDt is the tem-

poral error, and c is a relating constant. In our experi-

ments, the values of all constants in (13) are the same

as those used in [26].

2) The KG Error introduced by Karni and

Gotsman[6]:

KGerror = 100
‖A− Â‖

‖A−E(A)‖
,

where ‖.‖ is the Frobenius norm, A is a 3n× t matrix

containing the geometry of the original sequence, Â is

the same animation after compression, and E(A) is an

average matrix in which the i-th column is defined by

(X̄i(1 · · · 1), Ȳi(1 · · · 1), Z̄i(1 · · · 1))
T,

with X̄i, Ȳi and Z̄i being the mean values of the coor-

dinate sets of each frame i.

The size of data after compression is characterized

by bit per vertex per frame (bpvf).

4.2 Justification of Polar Decomposition

In the proposed method, the deformation gradient

Jj is decomposed into rotation matrix Uj and stretch-

ing matrix Pj that would be compressed separately.

This is to gain better control on two components that

have very different characteristics. Fig.5 shows the

bpvf-error results of SAC with or without polar de-

composition. We can see that the polar decomposi-

tion clearly reduces the KG-error, which measures the

discrepancy between absolute coordinate values of two

animations. This means polar decomposition restores

the rotation and stretching features very well. However,

the two curves under STED are very close when bpvf is

large. The reason is that STED measures the difference

between the corresponding edge lengths of animations,

which is a local property independent of absolute po-

sition. Therefore, even though SAC without polar de-

composition does not restore the rotation information
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well, the STED errors may still be very close to those

with polar decomposition.
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Fig.5. SAC results with and without polar decomposition on
the model Horse-Collapse.

4.3 Performance for Different Animations

The results of SAC on all experimental models are

shown in Fig.6. Please note that the errors on the

model Vase are almost zero, since Vase contains only

rigid-body rotation and translation, which means the

deformation gradient fields are constant for each tri-

angle in this model and can be restored by SAC very

well. Meanwhile, the animations featuring smooth de-

formation like Cloth and Dolphin tend to have better

performance than skeleton-driven animations such as

Dance and Jump.

4.4 Comparison with CoDDyaC

We compare our method with CoDDyaC[17]. Figs.7

and 8 show the bpvf-error curves on three animations:

Vase (only rigid-body rotation and translation) and

Cloth (elastic rolling and bouncing transformation).
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As shown in Fig.7, SAC performs better than CoD-

DyaC in that the errors of SAC are one order of mag-

nitude smaller than those of CoDDyaC, which means

SAC is better in restoring rigid-body transformations.

Note that both KG and STED errors of SAC are almost

constant under different bpvfs corresponding to differ-

ent base numbers (actually these small errors are nu-

merical errors during computation). The reason is that

the deformation between frames in Vase is composed

of only rotation and translation. Then, after polar de-

composition, each rotation vector field for each frame

is constant field, while each stretching matrix is iden-

tity matrix, theoretically. Therefore, only one basis is

enough to present the rigid-body motion.

Fig.8 shows that SAC’s errors are more than CoD-

DyaC’s errors under low bit rate, but will be the same

as or less than CoDDyac’s errors with bpvf equal to 1.0

or more, since when bpvf is too small, the correspond-

ing base number in SAC is not enough to describe the

deformation between frames.

4.5 Effect of Arithmetic Coding

In this subsection, we will firstly analyze the effect

of arithmetic coding on compression process. As shown

in Fig.3, the distribution of numbers after quantization

is uneven. Thus entropy coding like arithmetic cod-

ing could achieve further compression. As shown in

Fig.9, arithmetic coding could reduce the bit rate for

the Jump model by about a third, without introducing

any error.
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During arithmetic coding, different quantization bit

values should be selected at first. A small bit value

will save a large storage amount, but will also bring in

errors for restored spectral descriptors. Fig.10 shows

the influence of different quantization bit values on the

KG error result of SAC on the model Vase. It can be

easily seen from the figure that the error under 18-bit

quantization is enough for arithmetic coding in SAC.
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5 Discussions

5.1 Excessive DoFs for Stretching

In our current work, we use six DoFs to represent

the stretching information of each triangle. It is a bit

awkward because the addition of the extra vertex in

normal direction does not really introduce any stretch-

ing information, and the planar stretching has only

three DoFs.

To see this fact, we can align the normal vector

vn − v0 of a triangle to the z-axis and then decompose

the stretching matrix as: P = RT
nzSRnz , where Rnz is

a rotation matrix satisfying Rnz(vn − v0) = (0, 0, 1)T.

It is not difficult to show that:

S =









a b 0

b c 0

0 0 1









, (13)

which means that S is essentially a stretching matrix

in the xy-plane, and has only three DoFs. It should

be noted that the rotation matrix Rnz encodes the re-

maining three DoFs.

Therefore, the question is: can we store only the

three DoFs information of S, by figuring out an implicit

way to compute Rnz? Assuming that P is continuous

over the surface, if we want to get a continuous field

of S, we need to implicitly define a continuous field of

Rnz on the triangles of the surface. This amounts to

the problem of defining a continuous field of orthogo-

nal vector-pairs on the surface, i.e., defining the x- and

y-directions of the local coordinate system for each tri-

angle in its tangential space. Such smooth vector fields

on the surface will inevitably have singularities. In our

future work, we would like to investigate such an ap-

proach, and see how the singularities (discontinuities)

of Rnz affect the performance of spectral compression.

5.2 Limitations and Future Work

Recall that SAC is proposed based on the assump-

tion that deformation is continuous. But this may not

hold true for some animations like the Origami defor-

mation. In these cases, the topology of the mesh surface

may remain intact, while the different sides of the fold-

ing edge may undergo very different transformations,

which violates the continuity assumption. This may

create large errors of the deformation gradients near

the folding edge, and thus cause dramatic errors in sur-

rounding vertices, e.g., the armpit of the running horse

model undergoes folding/unfolding deformation in cer-

tain frames. The error of deformation gradient near

it would accumulate through several straight unfold-

ing/folding frames until getting large enough to cause

significant reconstruction errors. In such a case, using

more spectral bases would reduce such an error, at the

cost of a higher bit rate.

Another limitation is that the proposed method is

performing only spatial compression. In other words,

it is only trying to eliminate spatial data redundancy

inside each frame, rather than redundancy between

frames. Methods to target both spatial and temporal

redundancies would be our future research directions.
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