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Abstract It is still an interesting and challenging problem
to synthesize a vivid and realistic singing face driven by
music signal. In this paper, we present a method for this task
with natural motions of the lip, facial expression, head pose,
and eye states. Due to the coupling of the mixed information
of human voice and background music in common signals
of music audio, we design a decouple-and-fuse strategy to
tackle the challenge. We first decompose the input music
audio into human voice stream and background music stream.
Due to the implicit and complicated correlation between
the two-stream input signals and the dynamics of the facial
expressions, head motions and eye states, we model their
relationship with an attention scheme, where the effects of the
two streams are fused seamlessly. Furthermore, to improve
the expressiveness of the generated results, we propose to
decompose head movements generation into speed generation
and direction generation, and decompose eye states generation
into the short-time eye blinking generation and the long-time
eye closing generation to model them separately. We also
build a novel SingingFace Dataset to support the training
and evaluation of this task, and to facilitate future works
on this topic. Extensive experiments and user study show
that our proposed method is capable of synthesizing vivid
singing face, which is better than state-of-the-art methods
qualitatively and quantitatively.
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Fig. 1 Problem description. Our goal is to synthesize a vivid
dynamic singing face coherent with the input music audio, which is
mixed with human voice and background music.

1 Introduction
With the advancement of computer vision and computer
graphics, synthesizing vivid and realistic dynamic face is
becoming possible and has been attracting more and more
attention from CV/CG communities. Recent progresses [1–
4, 4–7] show the great potential of this topic in a variety
of applications, such as human-computer interaction [8, 9],
video making [10–13], and news anchor composition[14, 15],
etc.

Despite the recent progresses of dynamic face synthesis [1–
7, 16, 17] and its potential applications [8–15], it is still an
open problem regarding how to synthesize a vivid face as
expressive as possible.

Existing work in the literature focuses on generating co-
herent dynamics of faces according to input speech audio [1–
5, 18–22]. However, in many emotional scenarios, it is re-
quired that the head synthesis is driven by a composite audio
which is coupled with not only speech but also other signals,
e.g., the music audio contains both human voice and back-
ground music signals. Therefore, in this paper, we investigate
the problem of synthesizing a vivid dynamic face which is
not only in-sync but also delivers coherent facial dynamics
with the input music audio, as is illustrated in Fig. 1. This is a
non-trivial task, which can not be handled directly by existing
methods. This is because common music audios are mixed by
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coupled human voice and background music signals, while
most of the existing methods are designed for synthesizing
face according to only the human speech signals, which will
lead to undesired results due to the entanglement of different
audio signals.

To tackle this challenge, we investigate the implicit corre-
lation between the input signals and the facial dynamics. We
treat the input music audio as a mixed signal which includes
a human voice signal and a background music signal. Ac-
cording to previous work [2–5, 20–22] and our observation,
we argue that the lip movement is majorly related to the
voice signal (also called the speech channel), while the head
pose, facial expression, eye states relate to both the voice
signal and background music signal. However, we would
like to ask the questions: Are these subjective observations
true? and How much do the human voice and background
music signals affect the face dynamics? To answer these
questions, we devise a decouple-and-fusion framework for
this task. Firstly, we separate the input music audio into the
human voice channel and the background music channel.
Then we dynamically fuse these two separated signals in a
feature selection fashion by introducing a Attention-based
Modulator. The Attention-based Modulator modulates and
balances the two signals for the downstream generators of
facial expressions, head motions, and eye states.

In the singing scenarios, the motions of the head and eyes
are usually emotional and dramatic, which raises challenges
for generators to learn the more diverse and expressive mo-
tions as compared with the previous talking scenarios. We
propose two ingredients to improve the expressiveness of the
synthesis result. For the movement of the head, we propose
to learn the rhythm of head motion that is decoupled from
the absolute moving velocity, thus factoring off the ambigu-
ity of the mapping between audio and head movement. For
the eye states, we propose to synthesize both eye blinking
and long-time eye closing states, which delivers much more
expressiveness as compared with previous methods.

Besides, to learn the complex and implicit relationship
between the music audio and face dynamics, we build a
SingingFace Dataset from our recordings. The dataset con-
tains over 600 singing videos with synchronous music audio.
To our best knowledge, this is the first dataset regarding face
dynamics and music audio. We believe it will promote future
research on this topic.

In summary, this paper is featured as follows:
• This is the first framework for synthesizing a singing face

video driven by the input music audio mixed with human
voice and background music signals. In the framework,

we introduce the Attention-based Modulator to balance
the effects of the two signals on the head movements,
expressions, and eye states.

• We propose to synthesize the speed and direction of head
movements separately, instead of predicting head pose
directly. The simple-yet-effective modification leads
to more consistent head dynamics in line with music
rhythm. Besides, we propose to decompose the eye states
into eye blinking and long-time eye closing, which is
much more realistic in singing scenarios.

• We build the first dataset which contains expressive
singing face videos with synchronous music audio, and
make it public to facilitate future research on this topic.

2 Related Work
2.1 Audio-driven Talking Face Synthesis

Audio-driven face synthesis has been widely explored. Previ-
ous work [1, 19, 23–25] focuses on establishing the mapping
between facial motion factors and audio features. Brand [23]
uses a Hidden Markov Model (HMM) to predict facial mo-
tions. Ezzat et al. [24] leverage an example-based method
mapping phonemes to mouth shape and texture parameters
in the Principle Component Analysis (PCA) space. Wang et
al. [25] attempt to model a mapping between Mel-Frequency
Cepstral Coefficients (MFCC) and PCA model parameters
via an HMM approach. Benefiting from deep learning tech-
niques, some works have been proposed to generate more
diverse faces in sync with input audio. Shimba et al. [19]
estimate active appearance model (AAM) parameters with
the Long Short-Term Memory (LSTM) network. Cudeiro et
al. [1] employ convolutions to encode speech and decode
facial attributes to animate a 3D template.

Several methods [2, 18, 20, 21, 26–32] merely synthesize
facial region texture with lip-synced motions. Among the
above approaches, a broad class of them generate identity-
preserving face with static head pose using GANs [26, 27, 29].
Other methods synthesize lip-synced texture of mouth, then
rewrite the mouth area of source frames according to the input
audio [2, 18, 20, 21, 32] or text [28, 30]. However, due to
the dependence on the original video, they can only generate
limited head poses. To address this problem, Chen et al. [3],
Yi et al. [4] and Zhang et al. [33] estimate head movements
from input audio. Most recently, Zhang et al. [34], Li et
al. [35] and Guo et al. [31] synthesize photo-realistic 3D head
with natural head poses and synchronized lip motions using
popular neural rendering techniques. Wang et al. [36, 37]
even generate photo-realistic faces from one-shot reference
image with natural motions.
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Fig. 2 Framework overview. Taking human voice and background music separated from music audio as input, the Generator module
generates facial driving parameters (expressions, head poses and eye states). Conditioned with fixed parameters (identity, texture, lighting)
extracted from a reference face image and the driving parameters, the Renderer module aims to synthesize a photo-realistic video. Specifically,
eye state parameters are encoded into eye attention maps, and other parameters provide a 3D model guidance to render faces. Finally, an
expressive and rhythmic singing face video is rendered by combining rendered faces with eye attention maps.

2.2 Music-driven Animation

Music-driven human pose animation has been studied for
decades. Early work [38–40] formulate the task as a template
matching problem. Lee et al. [39] and Shiratori et al. [40]
generate dance motion sequences with musical similarity
based on manually defined audio features, while Cardle et
al. [38] edit motions guided by musical features. Due to the
limitations of capacity, these template matching approaches
are not competent to generate diverse and natural dance
motions.

With the great success of deep neural network, more re-
searchers address the music-to-dance as a generation problem
with learning-based techniques. Recent methods employ auto
encoder-decoder [41], LSTM [42–46], GAN [47, 48], and
Transformer [49–51]. Even though some work [47, 52] apply
action units to further explore the correlations between pose
and music, it is still challenging to generate diverse, rhythmic
and expressive dance motion.

It is interesting to note that music-driven singing face syn-
thesis remains a rarely studied open problem. Song2Face [53]
is the only one designed for singing scenarios up to now to the
best of our knowledge. However, it operates on plain human
singing voice, only working well without the disturbance of
background music. The decouple-and-fuse framework pre-
sented in this paper can generate realistic and rhythmical facial
dynamics from mixed music wave. Therefore, the paper will
open novel research directions in the domain of music-guided
person synthesis.

3 Methodology
3.1 Problem Definition

In previous researches [4, 16, 26, 34, 54, 55], given a piece of
speech audio A and a short reference video (or a single face
image) V , the ultimate goal is to generate a realistic talking
face video S synchronized with the input audio A, which can
be represented as:

Fexp,Fpose,Feye = G(E(A)),

S = R(Fexp,Fpose,Feye,V),
(1)

where Fexp, Fpose, Feye denote the facial expression, head
pose, and eye state parameters synthesized by a generator
G, respectively. E refers to an audio feature extractor and
R denotes a rendering network synthesizing photo-realistic
images.

However, directly predicting driving parameters from audio
is not up to music scenarios due to the complicated mutual
influences between human voice containing lyric information
and background music containing melody information. We
propose a decouple-and-fuse strategy to tackle the above prob-
lem, which firstly adopts an audio source separation model O
to decompose music into human voice Av and background
music Ab , then gets encoded lyric feature L and melody
feature M respectively using an attention-assisted two-stream
encoder E. It encodes lyric and melody separately, and mod-
ifies the relative contribution of the two encoded features
on the generation process through an attention mechanism.
Finally a generator G is employed to generate the driving
parameters of a singing face video S from the decoupled
lyric feature and melody feature. The full pipeline can be
formulated as follows:
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Fig. 3 The Architecture of Our Generator. Our generator contains an Encoder and a Decoder. The Encoder consists of a Two-stream
Audio Encoder (TSAE) and an Attention-based Modulator (ATM). The Decoder contains three downstream generators, including Expression
Generation Network (EGN), Pose Generation Network (PGN), and Eye State Generation Network (ESGN).

Av,Ab = O(A),

L,M = E(Av,Ab),

Fexp,Fpose,Feye = G(L,M),

S = R(Fexp,Fpose,Feye,V).

(2)

As illustrated in Fig. 2, our overall framework contains
three components: 1) a driving parameter generator to trans-
late music audio to facial expression, head pose, and eye
states, 2) a reference module extracting fixed parameters
such as face identity given a human face, 3) and a renderer
to synthesize photo-realistic frames conditioned on above
parameters. We employ a conditional-GAN-based method as
our renderer, which is of the same architecture as [34]. To
enhance the expressiveness of singing faces, the generator
G is designed as the following encoder-decoder architecture
as is shown in Fig. 3. The Encoder (Sec. 3.2) consists of
a Two-stream Audio Encoder (TSAE) to encode lyric and
melody separately and an Attention-based Modulator (ATM)
to balance the contribution of different audio features. The
Decoder (Sec. 3.3) contains three downstream generators,
including Expression Generation Network (EGN) for the
generation of facial expression parameters, Pose Generation
Network (PGN) for the generation of head pose dynamics,
and Eye State Generation Network (ESGN) for the genera-
tion of eye state parameters. In the next subsections, we will
introduce the five essential parts respectively and provide the
corresponding learning objective and training strategy.

3.2 Encoder

As mentioned above, lyric and melody entangled in the origi-
nal music wave show a complicated relationship in guiding
the generation process of human face dynamics, making it
difficult for the generation network to synthesize vivid face
dynamics directly from plain music features. To tackle the
problem, we employ a decouple-and-fuse strategy. Specifi-
cally, using a state-of-the-art audio source separation model
Spleeter [56], we decompose the original music into human
voice and background music. Then we encode lyric from
human voice and melody from background music separately
using a two-steam audio encoder. Finally, we adjust them
with attention-based modulators to distribute the relative
contribution of lyric and melody for each specific generation
task.

3.2.1 Audio Feature Extraction
Taking the separated audio wave (human voice or background
music) sampled at 16KHz of T seconds as input, we ex-
tract mel-frequency cepstral coefficients (MFCC) and their
first derivatives with 25ms window size and 10ms window
step, resulting in 26-D audio features of 100 frames per
second. Furthermore, in order to incorporate temporal infor-
mation and match the frequency of video frames (30 fps),
the feature sequence are converted to overlapping windows
of size 39 (corresponding to 390ms ) at 30 fps. Therefore,
the output feature is a three-dimensional array with the size
(30× T, 39, 26).
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3.2.2 Two-stream Audio Encoder (TSAE)
Given the separated human voice feature Av and back-
ground music feature Ab, we adopt a Two-stream Audio
Encoder (TSAE) that consists of two networks AEv and
AEb to encode the MFCC features of human voice avt and
background music abt , separately:

fv
t = AEv(avt ),

f b
t = AEb(abt),

(3)

where AEv and AEb are 1D temporal convolutional neural
networks with residual blocks sharing the same network
structure , and fv

t , f b
t indicate the encoded audio features.

The subscript t indicates time step, and the superscripts v and
b indicate human voice and background music, respectively.
The encoded audio features of the full audio sequence fv and
f b are obtained after stacking the audio features of each time
step.
3.2.3 Attention-based Modulator (ATM)
For a specific downstream generation task, the relative con-
tributions of features representing different specific semantic
information change over time and are even interconnected
with each other. For example, image the head pose dynamics
of a person singing a line of a song. He will prepare to vocal-
ize, then sing, and shut his mouth finally. In the first and third
stages, he rotates his head rhythmically dominated by melody.
But when he vocalizes, melody in background music and
lyric in human voice influence his head movements together.
So the dominant source changes over time and even becomes
ambiguous during vocalization, making the generation task
difficult.

Therefore, in order to generate vivid human face move-
ments, we introduce a channel attention mechanism similar
to the attention mechanism proposed in [57] to determine
the relative contribution between lyric and melody on the
generation result. The only difference is that, to consider
the long-time dependence between the audio features of dif-
ferent time steps, we select a temporal U-net to generate
attention weights instead of using a simple multi layer per-
ceptron (MLP) network. Specifically, given the separately
encoded audio features, we employ an Attention-based Mod-
ulator(ATM) for each generation task to estimate an attention
weight of each feature map in embedding feature fv and fb

to adjust the relative importance between them:

att = σ(U-net(fv ⊕ fb)),

[l,m] = ATM(fv ⊕ fb)

= att⊙ (fv ⊕ fb),

(4)

where l and m denote the final output embedding of lyric and
melody features for the full audio sequence respectively, ⊕
represents the concatenate operation on the feature channel
dimension, and ⊙ indicates the element-wise product. ATM

indicates the Attention-based Modulator implemented using
an temporal u-net network U-net and σ represents the sigmoid
activation function.

As shown in Fig. 3, we employ one ATM to learn the opti-
mal attention weight for each downstream task. Specifically,
we apply a total of three ATMs on fv and vb, to get lexp and
mexp for expression generation task, lpose and mpose for
head pose generation task, and leye and meye for eye state
generation task, respectively.

3.2.4 Subject Style Embedding

Our TSAE, EGN, PGN, and ESGN are conditioned on the
subject code to learn subject-specific styles, adopting a similar
strategy in [1], which encodes each subject in the dataset
using a one-hot subject encoding. At training stage, the subject
encoding is concatenated to each input MFCC feature avt and
abt , and also concatenated to the final output lt and mt of the
ATM.

3.3 Decoder

3.3.1 Expression Generation Network

We employ a simple MLP consisting of two fully connected
layers and one ReLU activation layer to regress facial expres-
sion (including lip motion) parameters from the encoded lyric
and melody features. The process can be formulated as:

f̂t = φexp(l
exp
t ⊕mexp

t ), (5)

where f̂t denotes the predicted facial expression parameter at
time step t andφexp means the MLP for expression generation.

3.3.2 Pose Generation Network

Traditional audio-driven pose generation methods directly
regress head pose parameter sequences from audio features [3,
4, 34], which does not agree with the fact that given a fixed
audio sequence, different people even the same person singing
the same song multiple times can produce mostly different
head pose sequences as shown in Fig. 4.

We find that although the dynamics of head pose vary when
the same person sings the same song multiple times, as shown
in Fig. 4, the speed of head pose keeps similar in line with
the rhythm of the music. Motivated by this, we propose to
generate the moving speed and moving direction of the head
separately, and combine them to generate head pose p ∈ R6

including Euler angles and a 3D translation vector at each
time step.
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Fig. 4 The Euler angle (Ry) dynamics of a person singing the
same song twice. It shows although the head may rotate in opposite
direction, the speed still keeps similar. This observation is also valid
for other head pose parameters.

Moving Speed Generation: At the first stage, we use
an MLP network φspeed to predict the speed of head pose
parameters according to the encoded audio features at current
time t:

ŝt = ABS(φspeed(l
pose
t ⊕mpose

t )), (6)

where lpose and mpose are the lyric and melody embedding
features for pose generation, ŝt ∈ R6 is the output head speed
at time step t. As ŝt can not be negative, we apply absolute
function ABS to the output of φspeed.

Moving Direction Generation: We use an LSTM network
followed by a fully connected layer φdirec to generate the
direction of head movements from the encoded audio features
concatenated with the previous head pose and moving velocity
at the last time step:

v̂t−1 = p̂t−1 − p̂t−2,

ot, ct = LSTM(lposet ⊕mpose
t ⊕ p̂t−1 ⊕ v̂t−1, ct−1),

d̂t = tanh(φdirec(ot)),

(7)

where p̂t−1, p̂t−2 ∈ R6 indicate the generated head pose
parameters represented by Euler angles and 3D translation
parameters, v̂t−1 ∈ R6 is the predicted head pose veloc-
ity, ct−1 and ct are the cell states, ot means the output of
LSTM network, d̂t ∈ R6 is the predicted moving direction,
respectively at the corresponding time step.

Head Pose Generation: Finally, the pose pt at time step t

can be directly calculated by: p̂t = p̂t−1 + ŝt × d̂t.

3.3.3 Eye State Generation Network

Traditional methods usually generate only random eye blinks
from audio features [34] or noise inputs [54], ignoring some
long-time eye closing phenomena in singing scenarios, e.g.,
people may close their eyes for a long time while singing the
climax of the song. We decompose the generation process of
eye states into random eye blinking generation and long-time
eye closing state generation. Human blinks occur randomly

and can be sampled from experimental predefined random
distributions, but for long-time eye closing state generation,
it should be learned from data.

Random Eye Blinking Generation: The normal blinks of
human show regularity regarding the average human eye blink-
ing rate and the average inter-blink duration [34]. Accordingly,
we uniformly sample the blink interval Bi ∼ U(ai, bi) and
blink duration Bd ∼ U(ad, bd) with the empirical param-
eters ai = 1.2s, bi = 2.0s, ad = 0.10s, bd = 0.45s. Then
we generate the eye state of blink dynamics êblink ∈ {0, 1}
according to Bi and Bd.

Long-time Eye Closing State Generation: We employ
an MLP network φeye to generate the eye state êlongt at time
step t:

êlongt = φeye(leyet ⊕meye
t ). (8)

We combine the êblinkt and êlongt to get the composite
dynamics of eye states êt:

êt =

{
êlongt , if êlongt > 0,

êblinkt , otherwise .
(9)

Finally, we apply a temporal gaussian filter on êt to get
more smooth eye state dynamics.

3.4 Learning Objective

We supervise our generator with the following loss functions:

LReg = Lexp + Lpose + Leye + Latt, (10)

where Lexp, Lpose and Leye are the losses for facial expres-
sion, head pose, and eye states, respectively. Latt is the loss
term for pushing ATM to select useful feature channels. Each
loss term is formulated as:

Lexp = w1LMSE(f , f̂) + w2LV EL(f , f̂),

Lpose = w3LMMD(p, p̂)

+ w4LL1(ABS(v), ABS(v̂)),

Leye = w5LL1
(elong, êlong)

+ w6LMMD(elong, êlong),

Latt = ||attexp||1 + ||attpose||1 + ||atteye||1,

(11)

where w1, w2, w3, w4, w5, w6 are balancing weights. f , p,
v, elong are vectors containing the time serial ground truth
parameters of facial expression, head pose, head moving
velocity and long-time closing eye state parameters (note
that we only learn long-time closing eye dynamics from
data), ranging from t = 1, 2, ..., T . f̂ , p̂, v̂, êlong are the
corresponding predicted vectors. attexp, attpose, atteye are
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the predicted attention matrices for tasks of facial expression
generation, head pose generation, and eye state generation,
respectively. ABS(x) denotes taking absolute values for
each elements. We only supervise the absolute speed of
generated head pose dynamics here, guiding the network
to generate more rhythmical head pose dynamics aligned
with music. LMSE(x, x̂) = 1

T ∥x − x̂∥22 is an L2 norm
loss term, LL1(x, x̂) = 1

T ∥x − x̂∥11 is an L1 norm loss.
LV EL(x, x̂) =

1
T−1

∑T−1
t=1 ∥(xt−xt−1)− (x̂t− x̂t−1)∥22 is

the velocity loss term, and LMMD[58] is the maximum mean
discrepancy loss to match all orders of statistics between the
prediction and ground-truth. Here we use x to represent the
ground-truth, while using x̂ for the predicted values. In our
experiments, we empirically set w1 = 5, w2 = 50, w4 = 10,
w5 = 5, and set other weights to 1.0.

Furthermore, in order to improve the diversity of generation
results, we use an adversarial loss to fool the discriminator
D, which is defined as :

LAdv = argmin
G

max
D

Ep,elong,a[logD(p, elong,a)]

+ Ea,p0 [log(1−D(G(a, p0),a))].
(12)

The total loss function in training phase is:

L = λ1LReg + λ2LAdv. (13)

4 Experiments
4.1 Implementation Details

Our method is implemented with PyTorch, and all the experi-
ments are conducted on two NVIDIA RTX 3090 GPUs. For
network training, we randomly sample the frame sequence
with a sliding window of 128 frames. We adopt Adam op-
timizer during training, with a learning rate of 0.0001 for
50 epochs. Linear learning rate decay is adopted for the last
60% epochs. The hyperparameters in Eq. (13) are λ1 = 1

and λ2 = 0.1, respectively. To get vivid and photo-realistic
visualization results, we train a rendering-to-video network
by following FACIAL [34].

4.2 Dataset Organization

As mentioned above, popular conventional datasets only con-
tain talking face videos that lack expressiveness. To overcome
this, we build a new dataset called SingingFace. SingingFace
includes more than 600 singing videos with 6 human subjects.
Our supplementary video shows the learned style of different
subjects when training across all the 6 human subjects.

Video Collection: We organize our dataset by recording
singing videos ourselves. Specifically, we collect the singing
audio set first, then the face region of the person singing the

song with music played simultaneously is recorded. Finally,
we automatically align each video to the corresponding music
audio using SyncNet [59] to ensure audio-visual synchro-
nization.

Audio Separation: We use a state-of-the-art audio source
separation model Spleeter [56] to extract the human voice
as lyric information and the background music as melody
information, respectively.

3D Face Reconstruction: To automatically extract face
expression parameters and head poses from a singing video,
we adopt Deep3DFace [60] to extract face parameters
[α, β, δ, γ, p], where α ∈ R80, β ∈ R64, δ ∈ R80 are the cor-
responding coefficient vectors for geometry, expression and
texture. γ ∈ R27 is the spherical harmonics (SH) illumination
coefficients. The 3D face pose p = [R; t] is represented by
rotation R ∈ SO(3) and translation t ∈ R3. The PCA basis
of geometry, texture, and expression are adopted from the
Basel Face Model [61] and FaceWareHouse [62].

Eye State Extraction: We employ a state-of-the-art facial
analysis system OpenFace [63] to extract action unit AU45r
as the eye blink parameters. Note that we observed that the
distribution of the extracted AU45r values for different people
varies much, so we apply min-max normalization on AU45r
for each video individually. Then we apply a time length
threshold τ = 0.5s to detect the short-time blinking and
long-time eye closing states separately.

Data Statistics: We collect over 600 Chinese and English
singing videos totaling 40 hours with 30 FPS. Each video
contains one person singing a whole song and the average
length of videos is about 4 minutes. Each video has a stable
camera location and appropriate lighting conditions. We
randomly split out 90% of the videos for training and 10%
for testing.

4.3 Ablation Study

To verify the effectiveness of the key ingredients in our pro-
posed method, i.e., 1) the audio separation step and two-stream
audio encoder (TSAE), 2) the attention modulator (ATM),
and 3) the head pose generation network (PGN), we study the
following variants of our method:

• Single-Stream: no audio source separation; a single
stream audio encoder is employed to encode the MFCC
feature of the mixed audio wave; no ATM; and replace
our PGN with an MLP network.

• Two-Stream: equipped with audio source separation
and TSAE; no ATM; and replace our PGN with an MLP
network.
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Table 1 Ablation Study.

Method Lip Sync Pose Realism Eye Realism
AVC↑ LMD↓ CCA↑ Rough↓ CCA↑

Single-Stream 1.17 1.31 0.22 0.24 0.06
Two-Stream 1.73 1.17 0.25 0.18 0.07
With-ATM 1.87 1.10 0.29 0.07 0.11
Ours 1.90 1.08 0.33 0.06 0.12

• With-ATM: equipped with audio source separation,
TSAE and ATM, and replace our PGN with an MLP
network.

• Ours: equipped with audio source separation, TSAE,
ATM, and our proposed PGN.

Fig. 5 Qualitative Result of Ablation Study. It shows a) the
generated frames and b) pitch (red), yaw (blue), and roll (green) of
head pose dynamics. In a), the mouth generated by Single-stream still
keeps open during silence (red box) while others keep closed (green
box). In b), our generated head pose dynamics are smoother than
others. And the turn of dominant varying angle (shown as green
curve) occurs nearly at the same time with ground truth, meaning
that our generated head dynamics have more similar rhythm to the
ground truth recorded by a performer.

We compare the above variants using the splitted test set of
SingingFace. We evaluate the Audio-Visual Confidence (AVC)
scores proposed in [59], and Landmark Distance (LMD) in-
troduced in [64] for lip synchronization comparison. However,
to the best of our knowledge, there are no clear metrics for
evaluating the realism of generated head pose and eye closing
dynamics for now, which is a subjective task and is an open
question to the public. Following Zhang et al.[65], we employ
Canonical Correlation Analysis (CCA) on the generated head

Fig. 6 Attention Weight Visualization. The brighter white repre-
sents higher weights. The horizontal direction is along the time, and
the vertical direction is along the feature dimension.

pose parameters sequences and eye state sequences with the
ground truth and compute the Canonical Correlation as the
evaluation metric for perceptual realism. Note that to empha-
size the evaluation for the rhythm of the head pose dynamics
that should be in line with music, we apply Canonical Corre-
lation Analysis on the moving speed of generated head pose
sequences instead of head pose parameters themselves. We
also compute the second derivative based roughness (Rough)
of the generated Euler angles defined in Eq. (14) for head
motion smooth evaluation:

Rough(R) =
1

T

∑T

t=1
R′′(t)2 (14)

where R
′′
(t) denotes the second derivatives of head rotation

angles at time step t. The quantitative results of ablation study
are summarized in Tab. 1.

Effectiveness of Two Stream Design: As mentioned above,
lyric and melody information are entangled together in plain
music waves, making it difficult to learn facial dynamics
in line with the music. It’s verified that, by separating hu-
man voice and background music from plain music waves
and encoding the features separately, our two-stream design
greatly reduces the complexity of the lip synchronization task,
thus leading to a better synchronization result. As shown in
Fig. 5, if we just learn singing facial dynamics from plain
music (Single-stream), the generated mouth movements are
severely disrupted by the background music (e.g., the mouth
still keeps open during silence). On the contrary, the other
variants that apply our two-stream design perform correctly.
On the other hand, after applying source separation and
our TSAE(Two-stream), all of the evaluation metrics have
been improved a lot compared with Single-stream shown in
Tab.1. This improvement can be more clearly seen in our
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supplementary video.
Effectiveness of Attention-based Modulator: Our

Attention-based Modulator automatically assigns optimal
attention weights on different features at each time step for
each downstream generation task. It allows our model to
extract as much useful information as possible from the en-
tangled audio features for each specific downstream task
and eliminate the interference sources. This is verified from
the experimental results that our ATM variant outperforms
Two-stream on all of the evaluation metrics summarized in
Tab. 1.

Effectiveness of Pose Generation Network: Compared
with simple MLP networks, the head pose dynamics gen-
erated by our PGN show superior perceptual results. The
improvement comes from that our PGN decompose head pose
sequence generation task into moving speed generation and
moving direction generation. Firstly, the network is able to
concentrate on the generation of moving speed which is more
related to the rhythm of music, resulting in more rhythmical
head pose dynamics that are in line with the music. This is
verified in Tab. 1, that our method outperforms others a lot
on the CCA metric of head pose. Then, the LSTM module
for moving direction generation is able to consider not only
the current audio features but also the generated head moving
history, resulting in the more smooth and spontaneous head
moving curves. As shown in Fig. 5, the visualization of pose
rotation curves generated by our method (Ours) are smooth
and resemble closely the ground truth. Specifically, the turn
of the dominant varying angle (shown as green curve) of our
generated head occurs nearly at the same time with ground
truth. It’s recommended to check our supplementary video to
compare the difference more clearly.

Analysis of Attention Weight: To further investigate the
role of the Attention Modulator (ATM), we visualize the
predicted attention weights for synthesis tasks of facial ex-
pression, head movement, and eye state. As shown in the case
illustrated in Fig. 6, it can be observed that:

• When there is background music only and no human
voice, the ATM pays more emphasis on the stream of
background music (melody feature), as shown in the
earlier part of the music (See Region I).

• When there is both background music and human voice,
in the tasks of face expression and head pose, the ATM
modulates the weights between two streams to pursue
more expressive results (See Region II). From the
numerical viewpoint, the weights of the human voice are
higher than that of background music. In this case, the
human voice dominates the generation of face expression

and head pose.
• When there is both background music and human voice,

both the human voice and background music affect the
long-time eye closing state, simultaneously (See Region
III) or separately (See Regions IV and V).

4.4 Comparisons with State-of-the-art Methods
4.4.1 Compared State-of-the-art Methods
Most previous state-of-the-art methods are designed for talk-
ing scenarios and trained on talking datasets such as Vox-
celeb2 [67] and LRS2 [68]. For a fair comparison, we select
and retrain the methods whose training code are open to the
public on our SingingFace dataset. The selected compared
state-of-the-art methods are as follows:

• ATVG [26] is one 2D-based cascade GAN approach to
generate a talking face video that is robust to different
facial characteristics, by taking an audio sequence and a
target image as input.

• Yi et al. [4] utilize 3D face model information to synthe-
size photo-realistic talking face videos with personalized
pose dynamics.

• LiveSpeechPortraits (LSP) [66] presents a live system
utilizing 2D landmarks to generate personalized photo-
realistic talking-head animation in real time.

• FACIAL [34] integrates implicit attribute learning to
synthesize 3D face animation with realistic motions of
lips, head poses, and eye blinks.

We also report the qualitative comparison results with
Song2Face [53], which is the only one method designed for
singing scenarios up to now to the best of our knowledge.
Song2Face maps each human voice segment to facial ex-
pression and head rotation parameters, and uses an adaptive
filter network to incorporate information from neighboring
frames for temporal stability. It should be note that Song2Face
only models with single driving source (plain human singing
voice) as input, while ours supports multiple driving sources,
e.g. human voices and background music, and focuses on
how to collaborate with different driving sources to generate
more realistic head movements. In addition, eye states are
dealt with as a part of facial expression for Song2Face, while
ours decompose the generation of eye states as an individual
generation task. Since the implementation of Song2Face is un-
available, quantitative evaluation with Song2Face is absence
in this paper. It’s recommended to see our supplementary
video for better comparison.
4.4.2 Qualitative Comparison
Fig. 7 and Fig. 8 shows the visual comparison with other
state-of-the-art methods. We show the summary of qualitative
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Fig. 7 Visual Comparison with State-of-the-art Methods. a) and c) are the generated video frames. b) and d) are the corresponding
tracemaps of facial landmarks across multiple frames. From the tracemaps, we can see our method generates the most diverse head pose
dynamics.

comparison results in this section.

So
ng

2F
ac

e
[5

3]
O

ur
s

Fig. 8 Visual Comparison with Song2Face. Our method can
generate photo-realistic frames, diverse head pose and natural eye
closing dynamics, which is infeasible for Song2Face [53].

Realism on Pose Dynamics: As shown in supplementary
material, ATVG [26] only generates talking face videos with
a fully static head pose, which is against the human common
sense. Yi et al. [4] generate photo-realistic videos but the
talking faces usually show subtle movements due to the super-
vision pipeline. In addition, the generated head pose dynamics
behave discontinuously because of the background matching
trick used in [4], which matches short-term generated head
poses to one same target frame when the target frames are
scarce in the target video. LiveSpeechPortraits [66] generates
smooth but relatively small head movements. The generated
head pose also shows a weak correlation with the rhythm of the
music. FACIAL [34] and Song2Face [53] can generate more
natural head pose dynamics than other compared state-of-art
methods, but they still show only a few variations in head

movement patterns over a long period of time. Our method
can generate the most realistic head pose crediting to our
pose generation method. To be specifically, for example, the
head rotates quickly and dramatically during dense syllables,
while slowly during pronouncing long syllables. Readers are
recommended to watch the supplementary video to see the
vivid visual results more clearly.

Realism on Eye States: The generation methods for eye
states between the compared methods are various. ATVG
and Yi et al. do not involve generating eye state parameters,
therefore they do not produce any eye closing dynamics. For
Song2Face and FACIAL, they learn random blink dynamics
from data. However, Song2Face only performs well on plain
human singing voice (no background music), and FACIAL
only generates open eyes during inference, failing to generate
spontaneous eye closing dynamics due to the complex en-
tanglement between short random blinks and long-time eye
closing states in SingingFace dataset. LiveSpeechPortraits
directly sample random blink dynamics from target video
and our method synthesizes random blinks from pre-defined
random distributions, both of which show realistic random
blink results. Moreover, as shown in Fig. 9, our method can
also generate long-time eye closing dynamics (>0.5s) during
voice based on the rhythm and emotion in the music, which
further enhances the sense of realism.

4.4.3 Quantitative Evaluation

We use the same test set of music with the ablation study
to compare our method with state-of-the-art counterparts.
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Table 2 Comparisons with State-of-the-art Methods
Method Mixed Wave Separated Wave blinks/s blink dur.(s) CPBD↑AVC↑ LMD↓ CCA(pose)↑ CCA(eye)↑ AVC↑ LMD↓ CCA(pose)↑ CCA(eye)↑
ATVG[26] 0.27 1.46 — — 0.34 1.40 — — — — 0.11
Yi et al.[4] 1.23 1.48 0.18 — 1.45 1.44 0.19 — — — 0.29
LiveSpeechPortraits[66] 0.31 1.43 0.32 — 0.35 1.42 0.32 — — — 0.20
FACIAL[34] 1.49 1.29 0.25 0.08 1.61 1.23 0.26 0.08 — — 0.31
Ground Truth 3.00 — — — 3.00 — — — 0.35 0.23 0.37
Ours 1.69 1.17 0.26 0.18 1.90 1.08 0.33 0.12 0.38 0.26 0.34

Table 3 Results of User Study.
Method Lip Head Eye Conformity

ATVG[26] 1.24 1.24 1.20 1.19
Yi et al.[4] 2.13 1.54 1.51 1.70

LiveSpeechPortraits[66] 1.86 2.13 2.23 2.26
FACIAL[34] 3.51 3.53 2.71 3.56

Ours 4.29 4.38 4.11 4.45

To clear out the effectiveness of the audio source separation
model used in our method, we report the compared results on
both mixed signals and separated signals (human voice and
background music). Our method gets superior results on the
most of metrics in the both cases. The results are summarized
in Tab. 2.

Lip-sync metric: Similar to the ablation study, we evaluate
the Landmark Distance Metric [64] and Audio-Visual Confi-
dence score [59] to compare the lip synchronization of our
method with the state-of-the-art methods. Tab. 2 shows that
in both mixed and separated scenarios, our method beats all
counterparts. It also shows that it is beneficial to separate the
human voice from the plain music wave for mouth movement
generation. Note that separated singing voice is given as input
to the pre-trained lip-sync evaluation model during evaluation
to ensure the pre-trained model performs correctly.

Pose Realism: In the evaluation of the realism of pose
dynamics between different methods, we measure Canonical
Correlation between predicted pose parameter sequences and
ground-truth following with [65]. Similarly, to emphasize
the evaluation of the rhythm of the synthesized head pose
sequences, we apply Canonical Correlation Analysis to the
speed of the head movement. Tab. 2 shows that our method
generates more realistic and rhythmic pose dynamics.

Eye Realism: We measure Canonical Correlation between
predicted eye state parameter sequences and ground-truth
following with [65] to evaluate the realism of long-time eye
closing dynamics. For random blinking evaluation, we count
the average blinking frequency (blinks/s) and intra-blink
duration (s) of generated singing face videos, and compare
them with ground truth. As shown in Tab. 2, these two
statistics of our method are similar to the ground truth, falling
within a reasonable range.

Sharpness metric: Cumulative probability blur detec-

tion (CPBD) is evaluated to measure the generated frame
sharpness of different methods. Our implementation of ren-
derer module generates the most sharpness facial texture
according to Tab. 2. However, as shown in our supplementary
video, the generated texture of mouth region when opening
mouth wide and the generated texture of eyelid when closing
eyes look a little blur. The blur texture should come from the
data scarcity of open mouth and closed eyes. It should be
easy to improve the texture, simply by training the renderer
with more data, or replacing the renderer with a few-shot face
generator.

Tab. 2 shows the effectiveness of the audio source separation
step for the singing face generation task, that almost all the
evaluation metrics improve after decoupling human voice
and background music. It also shows the superiority of our
method, which generates the most realistic singing face videos
and behaves better on all the evaluation metrics.

Fig. 9 Distribution of Eye Closing Duration. Our method is able
to generate realistic closed eye duration of similar distribution with
the real videos.

4.5 User Study

We invite 15 volunteers to evaluate our method and previous
works. The volunteers are a group of college students with
gender balance, no previous face synthesis study experience,
but are informed of the study’s purpose, the standard for
evaluation, and the number of compared video groups be-
fore making evaluations. The volunteers are asked to make
evaluations of videos group by group. In each group, 5 syn-
thesized videos of compared methods are shown in order.
There are 5 video groups in total. During evaluating each
group, the volunteers were asked to watch all the videos of
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the group, then to score the videos at once based on the
following criteria: 1) audio-visual synchronization, 2) natural
head motion, 3) realistic eye state, 4) conformity with music.
The evaluation scores include 1(very bad), 2(bad), 3(normal),
4(good), 5(very good). Finally we calculate the average scores
for each method. As summarized in Tab. 3, our method has
the superior visual realism than previous methods.

5 Discussion
Limitation and Future Work: The proposed method
achieves more expressive results against previous methods.
However, as shown in the supplementary video, under chaotic
environments, our method fails like previous methods, which
is because the adopted audio separator can not distinguish
different human voices. On the other hand, this paper focuses
on the synthesis of the head region, leaving the dynamics
of the upper torso unsolved. We should note that it is more
challenging to generate a realistic and expressive virtual hu-
man with dynamics of the upper torso and even the full body.
This will be the direction of our future efforts. Moreover, our
method just learns the implicit context from input audio, and
it’s indeed a interesting improvement direction to incorporate
semantics from lyrics of songs.

Ethics Statement: The work itself does not uniquely raise
any new ethical challenges. However, we must acknowledge
that the topic of image/video synthesis has been receiving
many ethical concerns. These kinds of algorithms are vulner-
able to malicious use, such as potentially misused to produce
misleading information or violate the portrait right. There-
fore, we appeal the research community and potential users
to explore the techniques responsibly.

Appendix

Here we elaborate on more technical details of our proposed
pipeline, including our Encoder, Decoder, and Discriminator.
Note that we sample batches of data with frame window length
of T = 128 frames and batch size of 64 during training.

The Architecture of Encoder

The Architecture of TSAE: Our Two-Stream Audio Encoder
(TSAE) is composed of two Single-Stream Audio Encoder
(AE) with the same structure but without sharing parameters.
The Single-Stream Audio Encoder is a 1D convolutional
neural network with residual blocks typically used for time
series classification [69]. The detailed architecture of our
Single-Stream AE is shown in Tab. 4.

The Architecture of ATM: Our Attention-based Modula-
tor (ATM) is a simple unet-based 1D convolutional neural net-
work (CNN), taking encoded audio features l⊕m ∈ RT×256

Table 4 The Architecture of Audio Encoder.
Type Downsample Output Activation
Input — 26x39 —

Conv1D False 32x39 ReLU
ResidualBlock False 32x39 ReLU
ResidualBlock True 64x20 ReLU
ResidualBlock False 64x20 ReLU
ResidualBlock True 128x10 ReLU
ResidualBlock False 128x10 ReLU
ResidualBlock True 256x5 ReLU
ResidualBlock False 256x5 ReLU
ResidualBlock True 512x3 ReLU

Flatten — 1536 —
FC — 768 ReLU
FC — 256 ReLU

Fig. 10 The detailed U-net structure used in our Attention-
based Modulator.

as input, computing and applying attention values on the
audio features, which is similar with the channel-attention
mechanism proposed in [57] for CNN. The U-net structure of
our ATM is summarized in Fig. 10, and the total architecture
of our ATM is summarized in Tab. 5. Note that we adopt one
ATM for each generation task with the same structure but
without sharing parameters.

Table 5 Detailed Structure of ATM. Note that we treat the last
channel of input as the feature channel, so the convolution and
deconvolution operations are operated over the last dimension of
input, and the Multiply in the table means att⊙ (fv ⊕ fb).

Type Activation Output Output Annotation
Input — 128× 256 fv ⊕ fb

Transpose — 256× 128 —
U-net — 256× 128 —
FC Sigmoid 256× 128 —
Transpose — 128× 256 att
Multiply — 128× 256 l⊕m

The Architecture of Decoder

All the MLP networks in our Decoder consist of two fully
connected (FC) layers with ReLU as the activation function.



MusicFace: Music-driven Expressive Singing Face Synthesis 13

Table 6 The Architecture of Discriminator.
Type Kernel Stride Output Activation
Input — — 128× 85 —
Transpose — — 85× 128 —
Conv1D 3 2 32× 64 LeakyReLU
Conv1D 3 2 64× 32 —
BN1D — — 64× 32 LeakyReLU
Conv1D 3 2 128× 16 —
BN1D — — 128× 16 LeakyReLU
Conv1D 3 2 224× 8 —
BN1D — — 224× 8 LeakyReLU
Conv1D 3 2 224× 8 LeakyReLU
BN1D 3 2 224× 8 LeakyReLU
Conv1D 3 1 1× 8 —

The first FC layer in the MLP contains 128 nodes, while the
node number of the second FC layer is determined by the
task (64 for expression generation, 6 for head pose generation,
and 1 for eye state generation). The input channel of the
LSTM in our Pose Generation Network (PGN) is 268 (128
for lposet , 128 for mpose

t , 6 for pt−1 and 6 for vt−1), and the
output channel is 128.

The Architecture of Discriminator

Our Discriminator is a simple CNN implemented with
Conv1D, BatchNorm1D, and LeakyReLU layers. Taking
concatenated audio MFCC features and generated parame-
ters (59 channels in total, including 26 for the human voice,
26 for background music, 6 for head pose sequence, and
1 for eye state sequence) of a time window T = 128, the
Discriminator predicts whether the input head pose and eye
state sequence are real or generated. Note that we train our
Discriminator using LSGAN[70] for training stability. The
structure of our Discriminator is summarized in Tab. 6.

Availability of data and materials

Song2Face has been opened to public and it’s encouraged to
apply for data according to the guide of official website①.
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