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Abstract
Extracting a faithful and compact representation of an animated surface mesh is an important problem for computer graphics.
However, the surface-based methods have limited approximation power for volume preservation when the animated sequences
are extremely simplified. In this paper, we introduce Deformable Medial Axis Transform (DMAT), which is deformable medial
mesh composed of a set of animated spheres. Starting from extracting an accurate and compact representation of a static MAT
as the template and partitioning the vertices on the input surface as the correspondences for each medial primitive, we present
a correspondence-based approximation method equipped with an As-Rigid-As-Possible (ARAP) deformation energy defined
on medial primitives. As a result, our algorithm produces DMAT with consistent connectivity across the whole sequence,
accurately approximating the input animated surfaces.

CCS Concepts
•Computing methodologies → Volumetric models;

1. Introduction

High-resolution representations for deforming 3D surfaces such
as meshes can be redundant and expensive for storage, streaming,
and processing. Coarse control structures, such as animated skele-
tons [KOF04,HRS10,LD12,LD14], lattice-based Freeform Defor-
mation (FFD) [SP86,HJCW06], deformation cages [JZP∗08], sub-
division surfaces [GB18] and pose signal [CK12], have been used
as alternatives of mesh representations because of their simplicity
and editability.

However, the surface-based animation representations have lim-
ited approximation power for volume preservation when the ani-
mated sequences are extremely coarse. Ideally, the underlying de-
formation structures as well as the geometric details should be cap-
tured from the shape representation for the animated surfaces, and
remain coarse enough for efficient streaming and intuitive edit-
ing of the sequence. For doing this, Thiery et al. [TBE16] inno-
vatively proposed a volumetric structure called Animated Sphere-
Mesh (ASM), for faithful approximation of animated surfaces. It
can be used to rig a single mesh of the original sequence and repro-
duce faithfully the full animation sequence. Similar to the sphere-
mesh, Medial Axis Transform (MAT) of 3D surfaces, first proposed
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by Blum [Blu67], also consists of a piecewise linear interpolation
of spheres. Because medial axis is sensitive to the noise of sur-
faces which leads to numerous unstable spikes, significant efforts
have been made on removing spikes and producing simple and ac-
curate MAT [LWS∗15,YSC∗16]. However, existing MAT methods
are only targeting on representing static shapes, because the MAT
for every single mesh of the dynamic sequence could be quite dif-
ferent from each other.

In this paper, we propose the Deformable Medial Axis Trans-
formation (DMAT) for representing dynamic surfaces, which is a
deformable medial mesh composed of a set of time-varying medial
spheres. Starting from extracting an accurate and compact MAT as
a template for the reference frame, our method partitions the ver-
tices of the input surface as the correspondences for each medial
primitive, and conducts a correspondence-based approximation by
minimizing an As-Rigid-As-Possible (ARAP) deformation energy
defined on medial primitives. Our computed DMAT has consistent
connectivity across the whole animation sequence, and accurately
approximates the input surfaces.

2. Related works

2.1. Animated Mesh Approximation

Similar to ASM [TBE16], we use a sphere-based volumetric rep-
resentation, i.e., dynamic medial mesh, for surface sequence ap-
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proximation in this paper. ASM firstly extracts a dense sphere-
mesh [TGB13] for surface sequence, then rely on a quadric er-
ror metric (QEM) [GMHP97] to define the cost of edge-collapse.
Tkach et al. [TPT16] proposes a use of sphere-meshes as a geomet-
ric representation for real-time generative hand tracking.

The essential idea of example-based rigging methods [KOF04,
ATTS10, HRS10, LD12, LD14] is to perform motion segmentation
on the vertices of the input animation with similar rigid transfor-
mations and fit the subdomains of the motion, then estimate joint
locations and bone sizes using linear or non-linear least squares,
and finally optimize the bone transformations and skinning weights
[JS11, KCvO08, Kv05]. The input animation is then approximated
by linear blending skinning (LBS) [MTLT88]. Most of these meth-
ods are working on the explicit form of animated mesh surface.
Inspired by those methods, we intend to segment the vertices of
the input animation by medial primitives (medial slabs and medial
cones), in which the spheres are considered to have similar rigid
transformation, and capture the deformation of medial axis by the
segmented vertices (we call the grouped vertices correspondences
of medial primitives, see Sec. 4.2 for more details).

To drive the deformation of medial axis while making less dis-
tortion of local medial axis, we will integrate a geometric approach
similar to Lan et al.’s technique [LYHG17]. They adopt an As-
Rigid-As-Possible (ARAP) scheme to initially deform the medial
axis so that its local transform is as-close-as-possible to a rigid
transform, then the deformed medial axis is computed in an iter-
ative way. The ARAP deformation has been widely used in shape
deformation [CGLX17,IMH05,SSP07] by locally deforming shape
primitives.

2.2. Medial Axis Computation

Computing the Voronoi diagram of a set of sampled points on ob-
ject boundary [AB99] is the most commonly-used method for MAT
extraction from a 3D shape, and the medial axis is simply the ver-
tices of the Voronoid diagram. However, the medial axis is sensitive
to the boundary noise of 3D shape, which generates many undesir-
able spikes, making it unsuitable for further practical applications.

To obtain a structually simple and compact medial axis, a series
of criteria are developed to identify and prune the spikes from the
initial medial axis. Angle-based filtering method [AM96, ACK01,
FLM03,DZ02,SFM05] adopts a global threshold, the angle formed
by a point of medial axis with its two closest points on the shape
boundary. A medial point is directly removed if the associated an-
gle is smaller than a user-specified threshold. λ-medial axis method
[CL05, SP08, CCT09] uses the circumradius of closest points of a
medial point as a pruning criterion and removes the medial points
of which the associated circumradius is smaller than a given thresh-
old λ. Scale Axis Transformation (SAT) [MGP10] employs a local
pruning factor s as follows: firstly, enlarges all medial spheres by
the factor s > 1, then removes the medial spheres that are contained
in any other medial sphere, and the final medial axis is obtained by
scaling back the surviving medial spheres by the factor 1/s. Al-
though the methods of using pruning criterion defined on the me-
dial points are highly effective, the simplification quality depends
on the specified threshold or factor. Sun et al. [SCYW15] used an

error metric defined by the one-sided Hausdorff distance from the
original shape to approximate volumes during simplification. Pro-
gressive MAT (PMAT) [FTB13] performs MAT simplification by
collapsing edges of medial axis. The pruning criterion is defined as
the ratio of the edge length to the difference of the medial radii at
the two endpoints of the edge and used as the cost of edge-collapse.
Li et al. [LWS∗15] presented an efficient and effective method,
called Q-MAT by using a quadratic error metric [GMHP97] to mea-
sure the edge-collapse error and the stability ratio to distinguish the
spikes of medial axis. Yan et al. [YSC∗16] proposed a global mea-
sure criterion based on the Erosion Thickness (ET) which performs
very well in differentiating small boundary noises from shape fea-
tures. Note that all these methods are for computing MAT for static
surfaces, instead of dynamic sequences.

3. Deformable Medial Axis Transform

Following the representation in Q-MAT [LWS∗15], we use a non-
manifold mesh M consisting of edges and triangles, called medial
mesh, to approximate the medial axis of a 3D surface S by volu-
metric enveloping.

(a) (b)

Figure 1: (a) A medial cone; (b) a medial slab.

3.1. Medial Mesh and Footprint

In the medial mesh M, a medial vertex is denoted as a medial sphere
m = {c,r}, which contains its center c and radius r. An edge ei j
incident to two medial vertices mi and m j, is defined by linear in-
terpolation m = αmi +(1−α)m j, α ∈ [0,1]. Its enveloping prim-
itive is called a medial cone bounded by two spherical caps and a
truncated cone, as shown in Figure 1(a). Similarly, a triangle fi jk
incident to medial vertices mi, m j and mk, is defined by linear in-
terpolation m = βimi +β jm j +βkmk, βi ∈ [0,1], β j ∈ [0,1−βi],
and βk = 1− βi− β j . Its enveloping primitive is called a medial
slab bounded by three spherical caps, three conical patches, and
two triangles, as shown in Figure 1(b).

For a surface vertex vi and a medial primitive P j, we define the
projection of vi onto P j based on the minimizer of the following
squared distances Ed(m):

Ed(m) =
∥∥(vi− c) ·ni j− r

∥∥2
, (1)

where m = {c,r} is a sphere on the medial primitive, and ni j is the
outward normal of primitive P j at vi, as shown in Figure 2. The
details for computing the outward normal ni j is given in the Sup-
plementary Appendix. The sphere m minimizing Ed(m) is defined
as the footprint of vi on P j .

Without loss of generality, let us consider P j being a medial cone
ekl . In this case, m = αmk +(1−α)ml . By replacing ckl and rkl
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(a) (b) (c)

Figure 2: Footprint and the corresponding outward normal on (a)
medial slab, (b) medial cone, (c) medial sphere. The green out-
ward normal represents the unit vector pointing from the center
(the black point) of the purple footprint to the yellow surface ver-
tex.

into Eq. (1), it becomes a quadratic minimization problem with α∈
[0,1] being the only variable to be solved, and Eq. (1) becomes:

Ed(α) =
∥∥(vi− cl−α(ck− cl)) ·ni j− rl−α(rk− rl)

∥∥2
. (2)

Then α can be solved by dEd (α)/dα = 0. If 0≤ α≤ 1, we call the
footprint to be an inner-footprint. If α < 0 or α > 1, we clamp it
to α = 0 or α = 1, respectively, and call it an outer-footprint, even
though we clamp the footprint to the boundary of the primitive. On
a medial slab, the computation of footprint and the notions of inner-
and outer-footprint are defined similarly.

3.2. Correspondence-based Approximation

Inspired by the idea of Animated Sphere-Meshes (ASM) [TBE16],
we approximate an animated mesh sequence by a deformable me-
dial mesh, where each vertex is associated with a time-varying
sphere. For an animated surface sequence {St |t = 0 . . .m} of m
frames, our computed DMAT consists of a medial mesh sequence
{Mt |t = 0 . . .m} which has consistent connectivity.

In Thiery et al.’s Sphere-Meshes [TGB13], they perform edge-
collapses for simplifying the initial sphere-mesh, where a set of
vertices on triangle mesh can be used for approximating one sphere
in the simplified sphere-mesh. Since the enveloping surface C of
medial mesh M can be used to approximate the given surface
S [Ede99], we cast our shape approximation problem into parti-
tioning the given surface based on medial primitives, and approxi-
mating each partitioned region of the animated surface with DMAT
by deforming the corresponding medial spheres. These deformed
spheres, together with their connectivity, result in an animated me-
dial mesh for our DMAT approximation.

We initialize the animated medial mesh with a simplified MAT
M0 for the referenced triangle mesh S0, composed of n me-
dial spheres

{
m0

k |k = 0 . . .n
}

. The computation of M0 will be
discussed in Sec. 4.1. Then we apply a two-stage ICP opti-
mization method for computing the deformed medial spheres{

mt
k|k = 0 . . .n

}
of medial mesh Mt at frame t ∈ [1,m], which will

be discussed in Sec. 4. In this section, we focus on how to use the
partitioned regions for DMAT approximation. In order to simplify
notation, we remove the superscript t for all symbols in later dis-
cussions wherever the context is about a particular frame t in the
animated sequence.

The vertices on the partitioned regions of input surfaces are
called the correspondences of their corresponding medial primi-
tives. We denote them as C j for primitive P j. The detail for group-
ing the correspondences will be discussed in Sec. 4.2.

For each corresponding vertex vi ∈ C j on the surface S, we com-
pute its projected footprint mi j = {ci j,ri j} on medial primitive P j,
and would like to maintain its “relative position” to P j as much as
possible through an energy optimization. Since the footprint is on
medial primitive, it can be represented as follows:

mi j = ∑
ml∈V j

αi jlml , (3)

where V j is the set of medial vertices for medial primitive P j, and
{αi jl} are the barycentric coordinates of mi j. We take the barycen-
tric coordinates {αi jl} as the “relative position” of vi w.r.t. P j. If
we keep their “relative position” to be fixed, i.e., fixing {αi jl}, then
the footprint mi j of each vertex can be simply interpolated from the
medial vertices of this primitive. For each vertex vi ∈ C j, we define
the vector from the center ci j of mi j to vi to be its footprint-ray:
si = vi− ci j.

We consider the first frame (frame 0) to be a reference frame.
When the corresponding set of vertices C j on the surface are de-
formed in a later frame (frame t), we define an As-Rigid-As-
Possible (ARAP) energy for each footprint-ray as the following
squared L2 distance: Qi j = ||R js0

i − si||2, by assuming the primi-
tive P j is undergoing a rotation R j, and s0

i is the footprint-ray in the
reference frame. In this way, the deformed projective spheres mi j
can be used to drive the deformation of medial primitives P j. Thus,
for each medial primitive P j, we can define the ARAP footprint-ray
energy Q j as the following summation:

Q j = ∑
vi∈C j

Qi j

= ∑
vi∈C j

∥∥∥R js0
i − si

∥∥∥2

= ∑
vi∈C j

∥∥∥∥∥R js0
i −vi + ∑

ml∈V j

αi jlcl

∥∥∥∥∥
2

.

(4)

We assume each medial primitive P j has an “ideal” rigid-body
motion with rotation R j and translation t j . Then we can define the
following ARAP medial primitive energy W j as the following sum-
mation:

W j = ∑
ml∈V j

∥∥∥R jc0
l + t j− cl

∥∥∥2
, (5)

where cl is the center position of medial vertex ml at deformed
frame t, c0

l is its position at reference frame.

By combining the above two energies, we can define the ARAP
total energy E for the whole medial mesh:

E
({

R j, t j
}
,{ml}

)
= ∑

j

(
Q j +ωW j

)
, (6)

where the variables include the rigid-body motions
{

R j, t j
}

of all
medial primitives

{
P j
}

, and the center positions {cl} of all medial
vertices {ml}. ω is a weighting factor used to balance two energy
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terms. In all of our experiments, we simply set ω = 1. By mini-
mizing this ARAP total energy E, we will be able to solve for the
deformed medial mesh.

We use an alternating optimization strategy for this minimization
problem by iterating the following two steps until convergence: (1)
by fixing all medial vertices {ml}, we can solve for the rigid-body
motion

{
R j, t j

}
of all medial primitives; (2) by fixing

{
R j, t j

}
of

all medial primitives, we can solve for all medial vertices {ml}.

3.3. Enhanced ARAP Energy

The ARAP energy introduced in Eqs. (4)–(6) has two limitations:
(1) the energy E does not depend on the radii of the medial vertices
– in other words, the radii of medial vertices are fixed through-
out the deformation process; (2) the “relative position” of surface
vertex vi w.r.t. medial primitive P j are fixed, i.e., in Eq. (3) the
barycentric coordinates of mi j is fixed, which may not be a reason-
able assumption as the surface undergoes non-rigid deformations.

In order to solve the first limitation, we modify the footprint-ray
energy Qi j as: Qi j = ||R jui jri j− si||2, where ui j is a reference unit
vector initially defined in the s0

i direction, i.e., ui j = s0
i /||s0

i ||, and
ri j is the radius of footprint mi j for projecting vertex vi onto medial
primitive P j. In this way, the ARAP footprint-ray energy Q j can be
modified as:

Q j = ∑
vi∈C j

∥∥∥∥∥R jui j

(
∑

ml∈V j

αi jlrl

)
−vi + ∑

ml∈V j

αi jlcl

∥∥∥∥∥
2

. (7)

By minimizing the ARAP total energy E in Eq. (6), each medial
vertex will try to adjust its radius in order to provide best fitting for
the footprint-ray in Eq. (7).

(a)

(b) (c)

Figure 3: Illustration of footprint-ray matching.

In order to solve the above second limitation, we propose a two-
stage optimization strategy:

• In the first stage, we fix the “relative position” of surface ver-
tex vi w.r.t. medial primitive P j, by using the same barycentric
coordinates {αi jl} computed from the projected sphere m0

i j in
the reference frame, and use ui j = s0

i /||s0
i || for Q j in Eq. (7). In

this stage, we optimize for the rigid-body motions
{

R j, t j
}

of all
medial primitives, and the center positions of all medial vertices
{ml}, as shown in Figure 3(a), we are computing the difference
between the yellow reference ray and the current footprint-ray
(in blue), which is the red ray.

• In the second stage, we relax the “relative position” of surface
vertex vi w.r.t. medial primitive P j, by allowing vi to be re-
grouped to a “best-fit” medial primitive which is the closest me-
dial primitive of vi, and re-evaluating its barycentric coordinates
through re-projection, as shown in Figure 3(b), the difference
changes from the red ray to the green ray. We modify ui j for
Q j in Eq. (7) as: ui j = R−1

j ni j, where R j is the current opti-
mized rotation for medial primitive and ni j is the outward normal
of the current primitive, as shown in Figure 3(c), the difference
switches from the red ray to the dashed red ray. We modify the
alternating optimization strategy by adding one additional step
of re-grouping and re-projection for each vertex.

Even though we use different ui j for these two stages, it is not dif-
ficult to show that the energy Q j is actually consistent. For solving
the minimization problem, we adopt an iterative way for optimizing
the rigid motions

{
R j, t j

}
of medial primitives and the medial ver-

tices {ml}. The details will be discussed in Sec. 4.3. Our alternat-
ing optimization guarantees that the consistent ARAP total energy
E is monotonically minimized, and the approximation accuracy is
further improved, as shown in the examples of Figures 16–17.

4. Algorithm Details

In the previous section, correspondence-based approximation of
medial primitives for extracting the animated medial mesh has been
discussed. We now describe in detail how to compute the reference
medial mesh, partition the vertices on triangle mesh S and use the
partitioned correspondence of medial primitives as well as the cor-
responding projective spheres to deform the medial mesh. The flow
of the approximation algorithm is shown as Figure 4.

4.1. Computation of Medial Mesh in Reference Frame

We compute an initial medial axis from reference frame S0 by
using the method of Amenta and Bern [AB99], and use Q-
MAT [LWS∗15] to remove redundent spikes and simplify it to ob-
tain the medial mesh M0.

In Amenta and Bern’s approach [AB99], the initial medial axis
is computed as the dual of Delaunay trianglulation of the sample
points on the surface without any filtering. Each medial sphere
in the initial medial axis is computed from a tetrahedron, the set
of vertices of the tetrahedron are the correspondences of medial
sphere m0

i =
{

c0
i ,r

0
i

}
, denoted as C(m0

i ). Q-MAT follows the
QEM framework [GMHP97] with edge-collapses. For each con-
traction, an edge e0

jk is contracted to a new medial vertex m0
g, and

the correspondences are merged by C(m0
g) = C(m0

j)∪C(m0
k). Note
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Figure 4: Overview of our algorithm. From left to right, the four columns represent triangle meshes of input surfaces, medial primitives of
medial meshes, partitioned correspondences for medial primitives and envelop of computed DMAT. (a) Compute the medial mesh of reference
frame by Q-MAT [LWS∗15]. (b) Partition the correspondences of medial primitives in the reference frame. (c) First-stage optimization for
DMAT. (d) Second-stage optimization by re-grouping the correspondences for medial primitives in DMAT, and (e) optimize DMAT with the
re-grouped correspondences. (f) Output the DMAT results.

that the sampling density of input surface is crucial to the approxi-
mation accuracy of resulting medial axis. The detail for selecting a
proper sampling density will be discussed in Sec. 5.

(a) (b) (c) (d)

Figure 5: Illustration of eliminating wrongly-connected edges. (a)
Illustration of boundary-connected medial sphere in grey which is
generated by the black points. (b) Input triangle mesh. Medial axis
before (c) and after (d) deleting the wrongly-connected edges.

Care must be taken when we use the Delaunay triangulation
based method to extract the initial medial axis, as the bound-
ary spheres could be connected by mistake when the two tetra-
hedra generating the spheres are close to each other while in-
deed they shouldn’t connect with each other. For a medial sphere
m0 = {c0,r0}, if there exists a correspondence v ∈ C(m0) satis-

fying the following condition, we call m0 a boundary-connected
medial sphere: (

v− c0
)
·nv < 0, (8)

where nv in Figure 5(a) is the normal of vertex v. As shown in
Figure 5(c), the medial mesh of Humanoid is wrongly-connected
between the right hand and right leg. It is obvious that it will cause
some topological mistakes if we don’t deal with it, i.e., a circle
loop of the hand and the body. We can delete those edges which
contain at least one boundary-connected medial sphere, as shown
in Figure 5(d).

4.2. Partition of Correspondences

We use the following signed distance d j(vi) from a surface point vi
to medial primitive P j, as a guidance to partition the surface into
independent regions grouped by medial primitives:

d j (vi) =
(
vi− ci j

)
·ni j− ri j, (9)

where mi j = {ci j,ri j} is the footprint of vi, and ni j is the outward
normal of primitive P j at vi. Similar to a Voronoi cell for Euclidean
distance, the correspondences C j stores the closest surface points
for P j based on the above signed distance.

However, different from a Voronoi diagram in Euclidean space,
there are several cases that we need to handle for the partition of
correspondences on surface. Suppose two medial primitives P j and
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Pk are neighbors and share either a cone or a sphere. For a nearby
surface point vi, we would like to decide whether assigning vi to
P j or to Pk.

In the first case, suppose vi has an inner-footprint mi j on P j , and
an inner-footprint mik on Pk. We simply assign vi to the medial
primitive that has smaller signed distance of Eq. (9).

In the second case, suppose vi has an inner-footprint mi j on P j ,
and an outer-footprint mik on Pk. In this case, we simply assign vi
to primitive P j.

(a) (b) (c) (d)

Figure 6: Same footprint on two medial primitives. (a) two cones
share a sphere, (b) two slabs share a cone, (c) A cone and a slab
share a sphere, (d) two slabs share a sphere.

(a) (b)

Figure 7: Boundary planes of (a) medial cone and (b) medial slab.

The third case is when the footprints of vi on both P j and Pk
are the same, i.e., mi j = mik. In this case, both mi j and mik are
outer-footprints. We introduce boundary plane which is the bisect-
ing plane of two connected medial primitives for this case. There
are four sub-cases that need to be considered, as shown in Figure 6:

• Two medial cones share a sphere. For each cone, we can find
its two boundary planes as shown in Figure 7(a). We compare the
signed Euclidean distance from vi to the two boundary planes of
the two connected cones, and assign vi to the cone with smaller
distance.
• Two medial slabs share a cone. For each slab, we can find its

three boundary planes as shown in Figure 7(b). We compare the
signed Euclidean distance from vi to the two boundary planes of
the two connected slabs, and assign vi to the slab with smaller
distance.
• A medial cone and a medial slab share a sphere. We treat this

case as three cones sharing a sphere (two of them are the edges
of the medial slab). We use the above strategy to compare two
groups of cones. When one of the cones in the slab is closer to
vi, we assign vi to the slab, and vice versa.
• Two medial slabs share a sphere. We sum up the two signed

distance between vi and the boundary planes of two cones of
each medial slab, and assign vi to the slab with smaller summed
distance.

4.3. Medial Mesh Deformation

As mentioned in Sec. 3.2 and 3.3, we apply a two-stage optimiza-
tion method for computing the deformed medial mesh.

For minimizing our ARAP total energy E of Eq. (6), the opti-
mal translation can be simply obtained as the barycenter of medial
primitive:

t j =
∑ml∈V j

cl∣∣V j
∣∣ , (10)

where V j is the set of medial vertices for primitive P j, and
∣∣V j
∣∣ is

its number of medial vertices.

Then we fix the translation
{

t j
}

and medial vertices {ml} to
compute the optimal rotation

{
R j
}

. This least-square rigid motion
problem [Sor17] can be solved by using Singular Value Decom-
position (SVD). The details on solving the optimal rigid motion{

R j, t j
}

are discussed in the Supplementary Appendix.

After getting the rotation and translation {R j, t j} for medial
primitives, we can solve for all medial vertices {ml} by minimizing
E in Eq. (6) with fixed {R j, t j}, which results in a quadratic opti-
mization problem and can be easily solved by a linear system. The
detail on optimizing the medial spheres is discussed in the Supple-
mentary Appendix. In the first stage of optimization, we fix all radii
{rl} and solve for the centers {cl} of all medial vertices only. We
perform N1 number of iterations of computing {R j, t j} and {cl} in
the first stage.

In the second stage, both the centers and radii are optimized.
Note that the radii solved in the second stage could be negative,
so we restrict the radii to be nonnegative. Besides, we bound the
spheres’ radii to avoid overly-large spheres. This upper bound Rl is
set by the maximum radius of all projective spheres of the adjacent
medial primitivesN (ml) of medial vertex ml :

Rl = max
vi∈C j ,P j∈N (ml)

ri j, (11)

where ri j is the radius of the projective sphere mi j of surface vertex
vi on primitive P j. After solving the medial vertices {ml} for the
second stage, we check the solved radii: if it is out of the bound,
then we clamp it to be either 0 or Rl respectively.

In the second stage of optimization, we also perform re-grouping
and re-projection for all surface vertices after solving for both
{R j, t j} for medial primitives and {cl ,rl} for medial vertices, be-
fore entering the next round of iteration. We perform N2 number
of re-grouping and re-projection in the second stage. After each
re-reprojection, we perform N3 number of iterations of comput-
ing {R j, t j} and {ml}. In all of our experiments, we set N1 = 10,
N2 = 8 and N3 = 5.

5. Results

We have implemented our DMAT algorithm in C++ and conducted
the experiments on an Intel(R) Core(TM) i7-6700 CPU running
at 3.10GHz with 8GB of main memory. By using the CGAL pack-
age “Delaunay Triangulation 3”, reference medial mesh is extracted
and simplified with Q-MAT [LWS∗15], and correspondences of the
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Table 1: Approximation accuracy for our DMAT compared with ASM [TBE16]. #S / #E / #T: number of medial vertices (spheres), edges
without incidental triangles, and triangles in the output medial mesh. The comparison is based on the same number of medial vertices
(spheres). HD, M12, and M21 are evaluated across all frames of the animation sequences. Note: largest errors of each animation are in
bold font.

DMAT ASM
Input Anim. #S #E #T HD M12 M21 #S #E #T HD M12 M21

Hand 34 18 17 3.873% 0.304% 0.404% 34 8 43 7.393% 0.534% 0.565%

Cat poses 85 17 77 2.760% 0.231% 0.272% 85 4 145 5.430% 0.368% 0.666%

Horse-gallop 46 30 13 2.372% 0.287% 0.286% 46 14 51 2.853% 0.343% 0.416%

Flamingo poses 20 21 0 2.637% 0.386% 0.491% 20 8 10 3.267% 0.543% 0.723%

Samba 38 21 16 2.731% 0.354% 0.338% 38 11 40 5.582% 0.405% 0.531%

Jump 10 11 0 8.407% 2.044% 1.855% 10 6 2 9.127% 1.774% 1.476%

Horse-collapse 46 28 14 4.286% 0.503% 0.699% 46 14 51 6.527% 0.689% 1.167%

simplified medial spheres are used for computing the correspon-
dences of its neighboring medial primitives, then the two-stage op-
timization is applied to compute the deformable medial mesh for
approximating the input surface sequences.

Figure 8: Comparison with ASM on Hand anim. with 34 spheres.

We use the two-sided Hausdorff distance error, denoted HD, to
evaluate the approximation accuracy of the extracted DMAT in this
section. For a medial mesh, we use H12 and M12 to denote the
maximum and mean of the minimum Euclidean distances from the
vertices on the input mesh to the surface reconstructed from medial
mesh, and use H21 and M21 to denote the maximum and mean of
the minimum Euclidean distances from a set of densely-sampled
points on the reconstructed surface to the input surface mesh. And
the Hausdorff distance HD is defined by: HD = max(H12,H21).
Note that H12, M12, H21 and M21 are normalized with respect to
the diagonal length of the corresponding surface.

We report the distances to input animated surfaces in Table 1, and
compare our method with ASM [TBE16]. For the ASM method,
we use the results provided on the author’s website. Table 1 shows
that our dynamic medial mesh tends to be structurally cleaner than

Figure 9: Comparison with ASM on Cat anim. with 85 spheres.

Figure 10: Comparison with ASM on Horse-gallop anim. with 46
spheres.

ASM results for all the sequences, which means there are less prim-
itives in the structure when using the same number of spheres.
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Figure 11: Comparison with ASM on Samba anim. with 38 spheres.

(a)

(b)

Figure 12: Samba anim. approximated with dynamic medial mesh
with 22, 38 and 76 spheres. (a) reference medial mesh. (b) de-
formed mesh and the extracted medial meshes.

(a) (b)

(c) (d)

Figure 13: Upsampling triangle mesh of the Hand. Initial mesh (a)
with 7929 vertices and its related medial mesh (b), and the upsam-
pled mesh (c) with 31710 vertices and its related medial mesh (d).

Figure 14: DMAT extraction result on Cat anim. with 85, 200, 300
and 400 spheres, represented as S85, S200, S300 and S400 respec-
tively.

Figure 15: DMAT extraction result on Flamingo anim. with 46,
100, 200 and 400 spheres, represented as S46, S100, S200 and S400
respectively.
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Figure 16: Comparison on the results of the first (ST1) and the
second (ST2) stage on Flamingo anim. with 100 spheres.

Figure 17: Comparison on the results of the first (ST1) and the
second (ST2) stage on Hand anim. with 34 spheres.

The results illustrate that our DMAT tends to better approximate
“volume-preserving” animations, such as the Hand, Cat, Horse-
gallop and Flamingo sequences, as shown in Figures 8–10, espe-
cially the middle and ring finger of the hand, belly of the cat and
right rear leg of the horse, or animated surfaces with large tubular
parts, such as the sweep of the Samba sequence as shown in Fig-
ure 11. Our DMAT reconstruction errors for the Samba, Hand and
Cat sequences are only around halves of ASM’s errors, when ap-
proximating with 38, 34 and 85 spheres respectively. Our DMAT
tends to have smaller Hausdorff errors as well as smaller mean dis-
tances if more primitives are required in order to capture the geo-
metric details of the shape. Figure 12 illustrates that our method can
work well on the Samba sequence which is a “volume-preserving”
sequence with large tubular parts when setting an appropriate num-
ber of spheres for Q-MAT-based simplification of the reference me-
dial mesh. When the number is 38 or 76, the dynamic medial mesh
captures not only the structure of arms and legs, but also the fine
details of the dress. However, the structure of the reference medial
mesh is bad when it is extremely coarse with 22 medial spheres,
where the extracted medial meshes are not able to capture the fine
details of the dress or the head any more. The Jump sequence is
of the same case that the extracted DMAT has large errors due to
insufficient number of spheres.

As shown in Figure 13, the sampling density of the input sur-
face mesh is crucial to the DMAT approximation result, and we
choose it as follows: a) compute the simplified MAT by Q-MAT,
b) compute the error εv of each vertex v in the reference frame as:
εv =

∣∣d j (v)
∣∣. c) upsample the input mesh at the region where εv

is greater than a given threshold λ, d) iteratively apply a), b) and
c) until all errors are below threshold λ. When we use the same
number of spheres (34 for this case) for the dynamic medial mesh
extraction, it is obvious that upsampling the input surface meshes
decreases the errors. We also experiment on using another frame
other than the first frame as the reference frame and compare the
reconstruction errors with the result of using the first frame as a ref-
erence. The results shows the reconstruction errors are not directly
affected by the reference surface, but related to the reference me-
dial mesh. Due to the page limit, we put the result and discussion
in the Supplementary Appendix.

Figures 14–15 show that our DMAT method can be used on a
much denser reference medial mesh, to better capture small fea-
tures of the surface with more medial spheres and primitives. While
increasing the number of spheres in the structure, the errors will de-
crease on volume-preserving domains of the input surface.

To validate the effectiveness of the second optimization stage,
we compare the results of the first and the second stage, as shown
in Figures 16–17. We also plot the curves of energy w.r.t. itera-
tions in our two stage optimizations, to illustrate the convergence of
our alternating energy minimization strategy. For the second stage,
“re-grouping” includes re-grouping the correspondences and re-
projecting them onto their corresponding medial primitives, while
“deformation” represents iteratively optimizing {R j, t j} and {ml}.
It shows that the second stage of our optimization method further
decreases the energy monotonically.

Table 2 lists the timings of our DMAT computation on various
models. It is clear that our method is fast in the first stage, while
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Table 2: Timings for our DMAT approximation algorithm. #V / #F: number of vertices and frames in the input mesh sequence. #S: number
of spheres in the output medial mesh. The initialization time (Init.) includes the time for initialization of rotation and translation of medial
primitives while excluding the time of computing the reference medial mesh. GCT: total time of grouping the correspondences of medial
primitives. RTT: total time of optimizing the rotation and translation of medial primitives. MST: total time of optimizing the medial spheres
in both stages.

Input Anim. Init. Stage 1 Stage 2 Total GCT RTT MST
(#V /#F) (#S) (s) (s) (s) (s) (s) (s) (s)

Samba(9971/175) 38 0.976 13.766 152.720 167.462 76.627 11.921 57.430
Jump(10002/150) 10 1.048 10.269 83.638 94.955 32.212 10.392 40.591

Flamingo poses(26398/10) 46 0.225 2.418 22.526 25.169 9.395 2.466 9.852
Horse-collapse(8431/48) 46 0.314 3.479 36.641 40.434 16.594 3.115 15.822
Horse-gallop(8431/48) 46 0.324 3.993 38.850 43.167 15.568 3.625 17.874
Horse-gallop(8431/48) 100 0.371 5.018 62.936 68.325 26.269 4.047 28.604
Horse-gallop(8431/48) 200 0.449 6.874 116.681 124.004 44.385 4.265 66.309
Horse-gallop(8431/48) 400 0.640 15.531 295.720 311.891 74.688 6.389 217.486

Hand(7929/44) 34 0.259 3.412 37.030 40.701 18.831 2.844 14.042
Hand(31710/44) 34 1.085 12.634 143.967 157.686 77.069 12.346 49.977

Cat poses(28822/10) 85 0.231 3.568 39.354 43.153 24.585 2.698 11.161
Cat poses(115282/10) 85 1.000 12.454 149.643 163.097 89.814 10.136 43.726

the second stage takes much more time, and most the time (more
than 80%) is spent on the re-grouping of correspondences and op-
timizing the medial spheres, which causes that our method is much
slower than ASM [TBE16]. For example, the time for computing
the animated sphere-mesh on the Horse-gallop for ASM is 5.394
seconds while it takes 43.167 seconds for computing dynamic me-
dial mesh with the same number of spheres. In our method, the
time for re-grouping the correspondence is related to the number
of spheres, the sampling density of input animation, as well as the
number of iterations. The time for optimizing the medial spheres
is relevant to the number of medial spheres as well as the num-
ber of iterations. Note that increasing the number of iterations for
the second stage will decrease the reconstruction errors of the dy-
namic medial mesh and increase the time of optimization. A bal-
ance should be found between the approximation accuracy of dy-
namic medial mesh and the efficiency of approximation by select-
ing a proper number of iterations.

Figure 18: Comparision with ASM on Horse-collapse anim. with
46 spheres.

6. Discussion and Future Work

Compared with ASM [TBE16], our DMAT can extract a more
accurate and structurally-cleaner medial mesh on “volume-
preserving” animated surfaces. However, our current method would
fail on mesh collapsing sequences. Figure 18 shows that when
working on the Horse-collapse case, our DMAT method fails to
compute a plausible dynamic medial mesh and a consistent medial
axis won’t be able to approximate animation with severe volume
change. In the future, we would like to consider optimizing the con-
nectivity of medial mesh, instead of keeping the connectivity fixed
as in our current work, to better reconstruct the collapsing surfaces.
Also, we would like to explore the solutions for animation approxi-
mation with other volumetric meshes. Besides, our approach relies
on the correspondences of medial axis. Once the topology of the
input surface has changed, we won’t be able to approximate the
animation with current ARAP energy. Therefore, we would like to
handle this issue in the future.

Our DMAT method for approximating the input sequence is slow
due to its two-stage optimization framework. Since the computa-
tion of nearest medial primitive for each surface point is indepen-
dent to the computation for other points, GPU-based parallel com-
puting methods could be designed on the grouping of correspon-
dences to speed up our second stage of optimization. In addition,
we can incorporate a GPU-based iterative solver for sparse linear
system to speed up the optimization of medial spheres.

Finally, since our medial mesh is concise and accurate, it has
potential to serve as a volumetric structure for other applications
such as collision detection, motion modeling, and motion analysis,
etc. We would like to investigate those potentials in our future work.
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