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Supplementary Appendix

1. Computation of Outward Normal

In this section, we will discuss on the computation of the outward
normal ni j of medial primitive P j at the surface vertex vi.

If the medial primitive P j is a medial cone ekl , we denote dc to
be the center direction form ck to cl , that is:

dc = (cl− ck)/‖cl− ck‖, (1)

and dr to be the radius gradient from mk to ml , that is:

dr = (rl− rk)/‖cl− ck‖. (2)

As shown in Figure 1, v′i is the perpendicular projection of vi on
line ckcl (the orange point in Figure 1), then the outward normal of
P j at vi is a unit vector ni j that satisfies:

ni j ·dc =−dr. (3)

Figure 1: The illustration of outward normal of a cone at surface
vertex.

Without loss of generality, let us consider that vi is not on the
line ckcl , and it can be represented as follows:

ni j = α
(v′i−vi)∥∥v′i−vi

∥∥ +βdc, (4)

where α and β are scalars to be determined. Combining Eq. (3) and
Eq. (4) with a unit vector condition for ni j, we could solve ni j as
follows:

ni j =
(v′i−vi)∥∥v′i−vi

∥∥√1−dr
2−dc ·dr. (5)

Then a footprint mi j =
(
ci j,ri j

)
of vi on P j could be computed

by this outward normal ni j. Please refer Sec. 3.1 for the computa-
tion of mi j . If the footprint is an inner-footprint, we take the com-
puted vector as the outward normal of P j at vi. If the footprint mi j

is an outer-footprint and getting clamped to the boundary sphere of
either mk or ml , the outward normal could be computed as follows:

ni j =
vi− ci j∥∥vi− ci j

∥∥ . (6)

If the medial primitive P j is a medial slab fklt , we denote ng
j , g ∈

{1,2} to be the normals of the two triangles bounding the medial
slab. The outward normal can be selected by the minimizer of the
following absolute distance Fd(n):

Fd(n) = ‖(vi− ck) ·n‖ , n ∈
{

ng
j |g = 1,2

}
, (7)

where ck is the center of any one medial sphere mk on the triangle
of the slab. Then we will use the selected normal from {ng

j |g= 1,2}
for computing a footprint mi j of vi on fklt .

If the footprint is an inner-footprint on fklt , we take the selected
normal as the outward normal at vi. Otherwise, we will compute an
outer-footprint on the boundary cones as follows: we firstly com-
pute the outward normals of the three boundary cones ekl , elt , ekt
at the vertex vi, and select the inner-footprint with smallest squared
distance Ed defined in Sec. 3.1 and the corresponding outward nor-
mal for vi. If there is no inner-footprint on all of the three boundary
cones, we will select from the three medial spheres mk, ml , mt with
the smallest Ed and use the formula in Eq. (6).

2. Optimization of Rigid Motion

In this section, we will discuss on the optimization of the rigid mo-
tion

{
R j, t j

}
of medial primitive P j in the following total energy

E:

E
({

R j, t j
}
,{ml}

)
= ∑

j

(
Q j +ωW j

)
. (8)

In our ARAP total energy E of Eq. (8), only W j involves the
translation t j of medial primitive P j , thus the optimal translation t j
could be computed by:

∂W j

∂t j
= 0⇔ ∑

ml∈V j

(
R jc0

l + t j− cl

)
= 0. (9)

To make the optimal translation t j independent with R j, we set
that each medial primitive has its local coordinate system with ori-
gin on the center of the primitive. Then it satisfies the following
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condition:

∑
ml∈V j

(
R jc0

l

)
= 0, (10)

and the optimal translation t j at transformed frame could be com-
puted as:

t j =
∑ml∈V j

cl∣∣V j
∣∣ . (11)

In the total energy E of Eq. (8), the rotation R j of each medial
primitive P j only depends on its corresponding terms Q j +ωW j,
which can be expanded as:

Q j +ωW j = ∑
vi∈C j

(
A−2

(
R jui jri j

)> (vi− ci j
))

+ω ∑
ml∈V j

(
B−2

(
R jc0

l
)> (cl− t j

))
,

(12)

where:

A =
(
ui jri j

)> (ui jri j
)
+
(
vi− ci j

)> (vi− ci j
)
,

B =
(

c0
l

)>(
c0

l

)
+
(
cl− t j

)> (cl− t j
)
.

(13)

This least-square rigid motion problem is equivalent to maximiz-
ing the following energy Fj:

Fj

= ∑
vi∈C j

((
R jui jri j

)> (vi− ci j
))

+ω ∑
ml∈V j

((
R jc0

l
)> (cl− t j

))

= trace

(
∑

vi∈C j

((
ui jri j

)>R>j
(
vi− ci j

)))

+ trace

(
ω ∑

ml∈V j

((
c0

l
)>R>j

(
cl− t j

)))

= trace

(
R>j ∑

vi∈C j

((
vi− ci j

)(
ui jri j

)>))

+ trace

(
R>j
(

ω ∑
ml∈V j

((
cl− t j

)(
c0

l
)>)))

.

(14)

This maximization problem could be solved by decompositing
the following matrix:

D j = ∑
vi∈C j

(
vi− ci j

)(
ui jri j

)>
+ω ∑

ml∈V j

(
cl− t j

)(
c0

l
)>

, (15)

using Singular Value Decomposition (SVD): D j = U jS jV>j . Then
the optimal rotation R j can be obtained by:

R j = U jV>j . (16)

Note that we need to check whether R j = U jV>j is a rotation.

When det
(

U jV>j
)
= −1, it contains reflection, and we reformu-

late R j as:

R j = U j

1
1
−1

V>j . (17)

3. Optimization of Medial Spheres

In this section, we will discuss on the optimization of medial mesh
with N medial spheres by minimizing the following expanded total
energy E in both optimization stage:

E ({ml}) = ∑
l

∑
j∈N(l)

(
Q j +ωW j

)
, (18)

where N(l) restores the neighboring medial primitives of medial
sphere ml = {cl ,rl}, cl is the center position of medial vertex ml
at deformed frame t, and denote c0

l the center position of it at ref-
erence frame.

Denote X ∈ Rn as the unknowns for both optimization stage.
To solve the minimization problem, we set the gradient w.r.t. the
unknowns X to zero. Doing so for the centers X yields:

0 =
∂E
∂X

= ∑
l

∑
j∈N(l)

(
∂Q j

∂X
+ω

∂W j

∂X

)
. (19)

In the first optimization stage, we fix the radii of medial spheres

and set X =
(

c>1 ,c>2 , ...,c>N
)>
∈ R3N, then Eq. (19) becomes:

0 =

((
∂E
c1

)>
,

(
∂E
c2

)>
, ...,

(
∂E
cN

)>)>
(20)

with

∂Q j

∂cl
= ∑

vi∈C j

2αi jl

(
R jui j ∑

mk∈V j

(
αi jkrk

)

−vi + ∑
mk∈V j

(
αi jkck

)) (21)

and

∂W j

∂cl
=−2

(
R jc0

l + t j

)
+2cl , (22)

where C j and V j restores the correspondences and medial spheres

of medial primitive P j respectively. By replacing ∂Q j
∂cl

and ∂Wj
∂cl

into
Eq. (20), it becomes a linear problem of X, and Eq. (20) could be
rewritten as:

A3N×3NX3N×1 = b3N×1. (23)

In all our experiments, A is invertible, and X could be easily
solved by: X = A−1b.

In the second optimization stage, we optimize both
the centers and the radii of medial spheres and set
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X =
(

c>1 ,r1,c>2 ,r2, ...,c>N ,rN

)>
∈ R4N, then Eq. (19) becomes:

0 =

((
∂E
c1

)>
,

∂E
r1

,

(
∂E
c2

)>
,

∂E
r2

, ...,

(
∂E
cN

)>
,

∂E
rN

)>
(24)

with

∂E
∂rl

= ∑
j∈N(l)

∑
vi∈C j

2αi jl

((
R jui j

)> (R jui j
)(

∑
mk∈V j

αi jkrk

)
+

(
−vi + ∑

mk∈V j

αi jkck

)> (
R jui j

))
.

(25)

Similar to the first optimization stage, by replacing ∂Q j
∂cl

, ∂Wj
∂cl

and
∂E
∂rl

into Eq. (24), it becomes a linear problem of X, and Eq. (24)
could be rewritten as:

A4N×4NX4N×1 = b4N×1. (26)

Note that for any surface point vi ∈ C j, when medial prim-
itive P j is a neighboring medial primitive of sphere, say ml ,
and the corresponding barycentric coordinate αi jl satisfies: αi jl ≡
0, then the matrix A isn’t invertible because the gradient ∂E

∂X
is linearly independent with the radius rl of ml . For solv-
ing this problem, we remove the unknown rl from X, and
keep it unchanged in the corresponding iteration, i.e., X =(

c>1 ,r1, · · · ,c>l ,c>l+1,rl+1, · · · ,c>N ,rN

)>
∈ R4N−1. Assume that

there are K spheres satisfy the condition, then X ∈ R4N−K . Sim-
ilar to the first stage, X could be solved by: X = A−1b.

4. Selection of Reference Frame

Figure 2 shows the comparison of reconstruction errors on the
Horse-gallop sequence when we use frame 0 and frame 18 as the
reference frame. Some of the frames have larger errors when using
frame 18 than using frame 0, while the errors of the other frames
are smaller. And the domains with large errors are basically the do-
mains with severe volume change while the consistent medial mesh
is not able to capture the large deformation. Besides, when we use
frame 18 as the reference frame, the reconstruction error of frame
18 is larger than many other frames while it is the closest mesh
of the reference frame in the sequence. This means that the recon-
struction errors are not directly affected by the reference surface
but the reference medial mesh.

Figure 2: Distances of selecting different reference frame.
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