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Abstract – Nowadays, the Internet provides a convenient 
medium for sharing complex 3D models online. However, 
transmitting 3D progressive meshes over networks may 
encounter the problem of packets loss that can lead to 
connectivity inconsistency and distortion of the reconstructed 
meshes. In this paper, we combine reliable and unreliable 
channels to reduce both time delay and mesh distortion, and 
we propose an error-concealment scheme for tolerating packet 
loss when the meshes are transmitted over unreliable network 
channels. When the loss of connectivity data occurs, the 
decoder can predict the geometry data and mesh connectivity 
information, and construct an approximation of the original 
mesh. Therefore, the proposed error-concealment scheme can 
significantly reduce the data size required to be transmitted 
over reliable channels. The results show that both the 
computational cost of our error-concealment scheme and the 
distortion introduced by our scheme are small.  
 

1. INTRODUCTION 
The advent and development of the Internet have transformed 
computer networks to a convenient medium for sharing different 
kinds of information, including complex 3D models. Although 
there are many shape representations, we only consider 3D models 
represented as triangle meshes in this paper. Before the progressive 
compression techniques like [1, 2] are proposed, long-time delay is 
a common problem for transmitting detailed 3D meshes with large 
data sizes as the single-resolution techniques [3] need to download 
complete meshes before rendering starts.  
 
Progressive compression techniques solve this problem by sending 
a coarse mesh followed by a sequence of refinements that are a 
series of vertex splits operations as mentioned in [4]. Most of the 
existing progressive compression techniques use TCP, and some 
use UDP but with ineffective data loss handling. Transmitting 
using TCP is reliable but leads longer delay due to the packet 
retransmissions and congestion control mechanisms; hence, it is 
not suitable for real-time applications like 3D games. On the other 
hand, using UDP for streaming is faster but the distortion due to 
the packet loss cannot be avoided. Although hybrid transmission 
techniques have been proposed, there is no efficient solution to 
handle packet loss and balance high band load and time delay. 
 
In this paper, we introduce a recovering approach which focuses on 
dealing with irreversible packet loss during streaming on hybrid 
transmissions to take the advantages of both TCP and UDP. We 
send split bits, triangulation bits and geometric data, which are all 
included in the refinement information, differently. The base mesh 
and the split bits are encoded and transmitted over reliable 
channels, while the triangulation and the geometric data are 
delivered over unreliable channels. Each packet transmitted over 
the unreliable channel contains a vertex index field indicating the 

index of the first vertex in this packet. The decoder uses it to detect 
the vertices when triangulation and geometry data are lost. When 
packet loss occurs on the unreliable channel, we propose a 
prediction method that predicates the geometry data and 
connectivity information. We have included two methods, the 
reliability bit method and the partition method, to limit the 
prediction errors propagation, and restrict the errors in a particular 
partition only. 
 
The proposed approach is robust against the connectivity data loss 
during the streaming, while effectively reducing the transmission 
delay. Our decoding with triangulation prediction is able to 
estimate the geometry data and connectivity information of new 
vertices when the triangulation bits and geometric data are lost. 
Our results show that the distortion of decoded mesh is small and 
limited. 
 

2. RELATED WORKS 
Our work is closely related to the progressive compression 
techniques. Progressive Meshes (PM) [1] uses the simplified base 
mesh and the refinement technique of vertex splitting [4]. However, 
it is limited on the compression ratio as the vertices are removed 
one at a time. Compressed Progressive Meshes (CPM) [2], which 
applies Butterfly subdivision scheme to predict the displacement of 
the new vertex, groups vertex splits into batches. 
  
Al-Regib and Altunbasak suggest a hybrid 3TP protocol [5] to 
control the errors during transmission. Their approach reduces the 
distortion and delay by transmitting only the selected 3D parts by 
TCP and the rest by UDP. Other methods [6, 7] use redundant data 
to tolerate packet loss during transmission over unreliable channels. 
Redundant bits are decided in terms of the importance of the 
transmitted data to the receivers. Obviously, the use of redundant 
data leads to more workload for data transmission. In addition, 
because the data loss during transmission is unpredictable, it is 
hard to guarantee the correctness of decoding. 
 
MPEG-4 [8] divides the 3D Mesh into disjoint partitions to 
localize the error propagation, which is a similar idea used in our 
method.  
 
In order to know the reliability of transmission channel, some 
works [9, 10] propose methods to detect network conditions first 
and bandwidth available before streaming. In our algorithm, we 
focus on developing a loss data recovering technique which is 
applicable to different compression methods and lossy networks 
conditions.  
 

3. METHODOLOGY 
Our goal is to reduce distortion as much as possible while at the 
same time reducing transmission delay. In this loss tolerance 



scheme, we send encoded data using the hybrid protocols, and we 
propose a mesh prediction method to handle packet loss in 
decompression.   
 
3.1. Scheme Architecture  
The architecture of our loss tolerance scheme is depicted in Figure 
1. Similar to most progressive compression approaches, it consists 
of two parts: encoder and decoder. The details of each part will be 
explained as follows.  
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Figure 1. Architecture of the proposed scheme. 

 
3.2. Compression 
In the encoding process, a 3D mesh is simplified by a compression 
method similar to [2] to get a base mesh and a series of refinements. 
In order to guarantee correct vertex/edge references, the encoder 
encodes the split bits in “decoder indexing” order. 
 
The refinements include split bits, triangulation bits and geometry 
data. Split bits indicate whether vertices will split during decoding 
or not. Triangulation bits provide the connectivity information 
between the new vertices and their neighbors. And geometric data 
includes information that represents the 3D coordinates of vertices. 
In our approach, while the base mesh and the split bits are 
transmitted over the reliable channel, the triangulation bits and the 
geometric data are delivered over the unreliable channel.  
 
Split bits have to work together with triangulation bits when 
vertex-splitting operations are processed in decompression. 
Therefore, whenever packet loss occurs on an unreliable channel, 
we may face connectivity inconsistencies. The loss of the 
geometric data will affect the quality of the decoded mesh and 
introduce distortion.  
 
3.3. Decompression 
At the decoder, the crude model is refined progressively through a 
series of vertex splits, which are the inverse operations of the edge 
collapse described in [4]. See Figure 2 for an example.  

Edge collapse

Vertex split
 

 
Figure 2. Edge collapse and vertex split for triangle mesh 
simplification and reconstruction.  
 
After decoding split bits, the regular decoding can be applied if the 
triangulation bits are correctly received at the end user. Otherwise, 
we predict the triangulation. The triangulation prediction consists 
of the following steps: predict the coordinates of the new vertex 
iteratively by its neighbor vertices; find the connectivity of new 
vertex with the neighbors; mark all new vertices as unreliable for 
further refinements.  
 
3.3.1 Iterative Prediction of New Vertex Coordinates 
We employ a point-based approach to estimate the coordinates of 
the new vertex. The advantages of our method are: 1) By 
calculating the coordinates of the new vertex iteratively, we can 
obtain the “best-effort” guess based on the neighbor vertices. 2) 
Since the vertices closer to the new vertex play a more important 
role in evaluating the coordinates of the new vertex, we propose a 
weight assignment operator that gives higher weights to the 
vertices closer to the new vertex. The summation of the weights 
remains unity. 
 
From the split bit, we can get the split vertex and its neighbors. 
Initially, we set the coordinates of the new vertex the same as the 
split vertex. After that, we start the iteration process: 

• Find the least square best fitting plane of the split vertex, 
the new vertex and the neighbors; project those 
corresponding vertices onto this plane.  

• In the best fitting plane, find the nearest neighbors of the 
new vertex. We start with the split vertex and find the 
next nearest neighbor clockwise. 

• For each of the nearest neighbor, assign a weight using 
the equation (1). Our method satisfies: 1) The summation 
of the weights is unity and 2) The neighbors closer to the 
new vertex have higher weights. 
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• Iteratively repeat the above processes until get a 
threshold.  

 
At the encoder, there are two widely used metrics for selecting the 
edge for collapsing: shortest edge and minimum geometry change. 
For both of the metrics, the neighbors that are closer to the 
removed vertex play a much more important role in evaluating the 
coordinates of the new vertex. Therefore, by assigning larger 
weights to these neighbors during the iterations, we can obtain the 
“best-effort” guess on the new vertex coordinates.  
 
3.3.2. New Vertex Connectivity Construction 
After guessing the coordinates of the new vertices, we need to 
predict how to construct new triangles among new vertices, split 
vertices and their neighbors.  
 
For each neighbor vertex, we need to decide if it should connect 
with the split vertex, or the new vertex, or both the split and the 
new vertices, after splitting operation. We first order the neighbors 
clockwise, then for each neighbor, we calculate the distance to the 
split vertex and to the new vertex separately. If the neighbor is 
closer to the split vertex, we mark it “old”. Otherwise, we mark it 
“new”. The marking results have three possibilities: 

• Two connected neighbor vertices are marked “old”. They 
form a triangle with the split vertex after the split. 

• Two connected neighbor vertices are marked “new”. 
They form a triangle with the new vertex after the split. 

• Two connected neighbor vertices, one is marked “old” 
and the other is marked as “new”. 

  
In case three, the two neighbor vertices, the split vertex and the 
new vertex form a quadrilateral which is a hole on the refined 
mesh. To get ride of the hole, we need to determine which one is 
the vertex on the cut-edge. To keep degrees between the new 
vertex and the split vertex close, if the current degree of the new 
vertex is less than that of the split vertex, we change both vertices 
to “new”; otherwise, we change them to “old”. The vertex whose 
mark is changed is called “tip vertex” which is the vertex on the 
cut-edge. For each tip vertex found, we insert a new triangle 
consisting of the split vertex, the new vertex and the tip vertex into 
the mesh. An example of our new vertex connectivity construction 
is described in Figure 3. s is the split vertex, and nv is the new 
vertex. o vertices are those neighbors marked “old” and n vertices 
represent neighbors marked “new”. t vertices are tip vertices 
mentioned in case three.   

    
Figure 3. New vertex connectivity reconstruction. 

  
3.3.3. Control Error Propagation  
In the last step of our prediction method, we mark those predicted 
new vertices as unreliable. The prediction on geometric data and 

necessary to control the propagation of errors which are brought by 
prediction. Since it is very difficult to ensure that the prediction 
error will not be propagated to other regions of the mesh, we have 
included two simple methods to control the error propagation. 

• Tracking vertices with predicted coordinates so that

connectivity is an approximation of the original mesh. It becomes 

 the 

• lize the 

 
 order to prevent the decoder from using the transmitted 

esides using the reliability bit, a mesh partition method is also 

4. RESULTS 
We assume a network w ket loss ratio l, which is 

 Bunny Horse 

subsequent triangulation information is not used. 
Partitioning the 3D mesh before encoding to loca
prediction errors within the partition. 

In
triangulation bits on the predicted vertices, we use one bit (called 
“reliability bit”) per vertex to indicate whether this vertex is 
predicted or not. After each prediction, we mark all the new 
vertices as unreliable and any subsequent vertex split having 
incidence on the unreliable vertices do not use the transmitted 
triangulation bits. Instead, our scheme is applied. Doing so 
improves the robustness of the decoder since the loss-sensitive 
connectivity data is only used for the part of the mesh that is 
consistent with the encoder. 
 
B
applied to localize the propagation of prediction errors. Before 
streaming, the original 3D mesh is divided into some disjoint 
partitions. Each partition is simplified individually. Note that the 
vertices on the partition boundary remain in the base mesh and are 
not simplified during the encoding. In this way, we guarantee that 
both encoder and decoder have the same view of the partitions and 
partition boundaries. It seems that a large number of partitions can 
help localize the prediction error. However, a large number of 
partitions may reduce the compression ratio since the number of 
vertices that can be simplified becomes smaller. Therefore, there is 
a tradeoff between the compression ratio and robustness of the 
error-concealment scheme. For the details of the partition method, 
please refer to [10].  
 

ith random pac
between 0.04 and 0.12 based on the real networks. Each refinement 
reduces 5% triangles from the current mesh. We choose to 
implement the proposed error-concealment mechanism based on 
CPM [2], although our error-concealment scheme is generically 
applicable to different progressive representations. To explain our 
results, we use the Stanford “Bunny” model and the Cyberware 
“Horse” models with size and vertex number shown in Table 1.  
 

Vertices 34834 48485 
Size(MB) 3.25 4.74 
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 our experiments, we record the accuracy and the computational 

ur testing results in Table 2 show that the proposed triangulation 

prediction depends on the local mesh geometry characteristics. 

ble 1. Unco ssed model informa

In
cost (overhead) of our prediction method. The decoded mesh 
quality is represented by the distortion values. The Hausdorff 
Distance measured with Metro [11] is used here to represent the 
distortion between the decoded meshes with and without loss.  
 
O
prediction has a much higher accuracy than “random pick”, which 
is O(1/m), where m is the valence of the split vertex. There is no 
much difference as loss ratio changes because the geometry 



 
 l Bunny Horse 

0.04 0.59 0.57 
0  .08 0.59 0.56 
0.12 0.59 0.56 

Table 2. The accuracy of the sed sche er Bunny and 
Horse models w fferent lo s l.  

erhead(ms) 

 propo me ov
ith di ss ratio

 
Mesh l Ov
Bunny 0.04 

0.08 
2.5 

0.12 
3.5 
4.05 

Horse 0.04 
0.08 
0.12 

2.78 
3.60 
3.89 

Table 3. The decoding time (  the propo heme over 
Bunny and Horse models wit rent loss  on Pentium IV 

ws the computational cost of two models. As the loss 
tio increases, the decoding time increases as well. The overhead 

ms) of sed sc
h diffe ratios l

machines. 
 
Table 3 sho
ra
can be ignored compared with the RTT(s) saved on reliable 
channel transmission on Pentium IV machines. In addition, this 
overhead can be significantly reduced if the hardware is more 
powerful. Distortions of the two models under different loss ratios 
are listed in Table 4 and Table 5 separately; besides, we compare 
decoded model without loss and with loss and prediction. The 
distortion is denoted as the percentage of whole model size. Note 
that the distortion is small indicating that the distortion is 
dominated by the simplification error. Therefore, the prediction 
error is localized and not propagated to other parts of the mesh.  
 

Refinement l=0.04 l=0.08 l=0.12 
2 0.00333 

0.003442 
0.00333 

0.003442 
0.00333 

0.003442 4 
6 
8 

0.004758 
0.004758 

0.004758 
0.004758 

0.004758 
0.004758 

Table 4. D ortion (i e) of  ov ss 
ratios l. 

inement l=0.04 l=0.08 l=0.12 

ist n percentag  the Bunny er different lo

 
Ref

10 0.003136 
0.004767 

0.003136 
0.004767 

0.003136 
0.004767 20 

30 0.004767 0.004767 0.004767 
Table 5. D rtion (i e) of  ove loss 
ratios l. 

5. CONCLUSION 
 this paper, we propose a loss tolerance scheme that deals with 

packet loss on the unr  transmit 3D triangle 
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eliable channel. We

meshes under hybrid protocols by sending the base model and the 
split bits over reliable channels, and sending triangular bits and the 
geometry data over unreliable channels. Whenever the 
triangulation bits are lost, we apply the triangulation prediction 
method to estimate the coordinates of the new vertices and re-
construct their connectivity with their neighbors. 
 
Compared with [1, 2], our scheme is capable of
lo

to the usage of hybrid protocol. Therefore, it is suitable for real-
time 3D streaming applications like online games. This scheme is a 
generic solution to different compression methods. Moreover, as 
shown in the result, the accuracy is higher than that by random 
pick, and the computational cost for predicting new vertices is 
small and can be ignored. The distortion is caused mainly by the 
simplification operations, not by the triangulation prediction.  
 
The connectivity prediction of decompression session does
a
future, we will investigate more connectivity prediction techniques. 
The connectivity data is important for vertex splitting operations, 
so its streaming over reliable channels and the statistical 
performance analysis by balancing the higher band load and time 
delay is a research direction in our future work. In addition, our 
algorithm assumes that reliable channel is available which is 
maybe not suitable for general cases. Therefore, using only 
unreliable channels will be considered. 
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