
Loss Tolerance Scheme for 3D Progressive Meshes
Streaming over Networks

Hui Li1, Ziying Tang2, Xiaohu Guo2, B.Prabhakaran2

1Ask.com, USA Email: huili.michael@gmail.com
2Department of Computer Science, University of Texas at Dallas, USA

Emails: {zxt061000, xguo, praba}@utdallas.edu

Abstract – Nowadays, the Internet provides a convenient
medium for sharing complex 3D models online. However,
transmitting 3D progressive meshes over networks may
encounter the problem of packets loss that can lead to
connectivity inconsistency and distortion of the reconstructed
meshes. In this paper, we combine reliable and unreliable
channels to reduce both time delay and mesh distortion, and
we propose an error-concealment scheme for tolerating packet
loss when the meshes are transmitted over unreliable network
channels. When the loss of connectivity data occurs, the
decoder can predict the geometry data and mesh connectivity
information, and construct an approximation of the original
mesh. Therefore, the proposed error-concealment scheme can
significantly reduce the data size required to be transmitted
over reliable channels. The results show that both the
computational cost of our error-concealment scheme and the
distortion introduced by our scheme are small.

1. INTRODUCTION
The advent and development of the Internet have transformed
computer networks to a convenient medium for sharing different
kinds of information, including complex 3D models. Although
there are many shape representations, we only consider 3D models
represented as triangle meshes in this paper. Before the progressive
compression techniques like [1, 2] are proposed, long-time delay is
a common problem for transmitting detailed 3D meshes with large
data sizes as the single-resolution techniques [3] need to download
complete meshes before rendering starts.

Progressive compression techniques solve this problem by sending
a coarse mesh followed by a sequence of refinements that are a
series of vertex splits operations as mentioned in [4]. Most of the
existing progressive compression techniques use TCP, and some
use UDP but with ineffective data loss handling. Transmitting
using TCP is reliable but leads longer delay due to the packet
retransmissions and congestion control mechanisms; hence, it is
not suitable for real-time applications like 3D games. On the other
hand, using UDP for streaming is faster but the distortion due to
the packet loss cannot be avoided. Although hybrid transmission
techniques have been proposed, there is no efficient solution to
handle packet loss and balance high band load and time delay.

In this paper, we introduce a recovering approach which focuses on
dealing with irreversible packet loss during streaming on hybrid
transmissions to take the advantages of both TCP and UDP. We
send split bits, triangulation bits and geometric data, which are all
included in the refinement information, differently. The base mesh
and the split bits are encoded and transmitted over reliable
channels, while the triangulation and the geometric data are
delivered over unreliable channels. Each packet transmitted over
the unreliable channel contains a vertex index field indicating the

index of the first vertex in this packet. The decoder uses it to detect
the vertices when triangulation and geometry data are lost. When
packet loss occurs on the unreliable channel, we propose a
prediction method that predicates the geometry data and
connectivity information. We have included two methods, the
reliability bit method and the partition method, to limit the
prediction errors propagation, and restrict the errors in a particular
partition only.

The proposed approach is robust against the connectivity data loss
during the streaming, while effectively reducing the transmission
delay. Our decoding with triangulation prediction is able to
estimate the geometry data and connectivity information of new
vertices when the triangulation bits and geometric data are lost.
Our results show that the distortion of decoded mesh is small and
limited.

2. RELATED WORKS
Our work is closely related to the progressive compression
techniques. Progressive Meshes (PM) [1] uses the simplified base
mesh and the refinement technique of vertex splitting [4]. However,
it is limited on the compression ratio as the vertices are removed
one at a time. Compressed Progressive Meshes (CPM) [2], which
applies Butterfly subdivision scheme to predict the displacement of
the new vertex, groups vertex splits into batches.

Al-Regib and Altunbasak suggest a hybrid 3TP protocol [5] to
control the errors during transmission. Their approach reduces the
distortion and delay by transmitting only the selected 3D parts by
TCP and the rest by UDP. Other methods [6, 7] use redundant data
to tolerate packet loss during transmission over unreliable channels.
Redundant bits are decided in terms of the importance of the
transmitted data to the receivers. Obviously, the use of redundant
data leads to more workload for data transmission. In addition,
because the data loss during transmission is unpredictable, it is
hard to guarantee the correctness of decoding.

MPEG-4 [8] divides the 3D Mesh into disjoint partitions to
localize the error propagation, which is a similar idea used in our
method.

In order to know the reliability of transmission channel, some
works [9, 10] propose methods to detect network conditions first
and bandwidth available before streaming. In our algorithm, we
focus on developing a loss data recovering technique which is
applicable to different compression methods and lossy networks
conditions.

3. METHODOLOGY
Our goal is to reduce distortion as much as possible while at the
same time reducing transmission delay. In this loss tolerance

scheme, we send encoded data using the hybrid protocols, and we
propose a mesh prediction method to handle packet loss in
decompression.

3.1. Scheme Architecture
The architecture of our loss tolerance scheme is depicted in Figure
1. Similar to most progressive compression approaches, it consists
of two parts: encoder and decoder. The details of each part will be
explained as follows.

Mesh simplification
(PM,CPM..)

Split bit encoding

3D viewer

Split bit decoding

Regular
decoder

Triangulation
prediction

Encoder Decoder

Reliable: base model + split bits

Unreliable: triangulation bits + geometric data

Reliable?

Y N

Mesh simplification
(PM,CPM..)

Split bit encoding

3D viewer

Split bit decoding

Regular
decoder

Triangulation
prediction

Encoder Decoder

Reliable: base model + split bits

Unreliable: triangulation bits + geometric data

Reliable?

Y N

Figure 1. Architecture of the proposed scheme.

3.2. Compression
In the encoding process, a 3D mesh is simplified by a compression
method similar to [2] to get a base mesh and a series of refinements.
In order to guarantee correct vertex/edge references, the encoder
encodes the split bits in “decoder indexing” order.

The refinements include split bits, triangulation bits and geometry
data. Split bits indicate whether vertices will split during decoding
or not. Triangulation bits provide the connectivity information
between the new vertices and their neighbors. And geometric data
includes information that represents the 3D coordinates of vertices.
In our approach, while the base mesh and the split bits are
transmitted over the reliable channel, the triangulation bits and the
geometric data are delivered over the unreliable channel.

Split bits have to work together with triangulation bits when
vertex-splitting operations are processed in decompression.
Therefore, whenever packet loss occurs on an unreliable channel,
we may face connectivity inconsistencies. The loss of the
geometric data will affect the quality of the decoded mesh and
introduce distortion.

3.3. Decompression
At the decoder, the crude model is refined progressively through a
series of vertex splits, which are the inverse operations of the edge
collapse described in [4]. See Figure 2 for an example.

Edge collapse

Vertex split

Figure 2. Edge collapse and vertex split for triangle mesh
simplification and reconstruction.

After decoding split bits, the regular decoding can be applied if the
triangulation bits are correctly received at the end user. Otherwise,
we predict the triangulation. The triangulation prediction consists
of the following steps: predict the coordinates of the new vertex
iteratively by its neighbor vertices; find the connectivity of new
vertex with the neighbors; mark all new vertices as unreliable for
further refinements.

3.3.1 Iterative Prediction of New Vertex Coordinates
We employ a point-based approach to estimate the coordinates of
the new vertex. The advantages of our method are: 1) By
calculating the coordinates of the new vertex iteratively, we can
obtain the “best-effort” guess based on the neighbor vertices. 2)
Since the vertices closer to the new vertex play a more important
role in evaluating the coordinates of the new vertex, we propose a
weight assignment operator that gives higher weights to the
vertices closer to the new vertex. The summation of the weights
remains unity.

From the split bit, we can get the split vertex and its neighbors.
Initially, we set the coordinates of the new vertex the same as the
split vertex. After that, we start the iteration process:

• Find the least square best fitting plane of the split vertex,
the new vertex and the neighbors; project those
corresponding vertices onto this plane.

• In the best fitting plane, find the nearest neighbors of the
new vertex. We start with the split vertex and find the
next nearest neighbor clockwise.

• For each of the nearest neighbor, assign a weight using
the equation (1). Our method satisfies: 1) The summation
of the weights is unity and 2) The neighbors closer to the
new vertex have higher weights.

1 w'(i)w(i)
n

−
= (1)

where id
w'(i)

D
= and

0

n

i
i

D d
=

=∑
Note is the distance between the neighbor vertex i and

the new vertex, and

id

0
1

n

i
i

w'
=

=∑
• Compute the weighted center of those nearest neighbors

after assigning different weights, and assign it to the new
vertex. The equation (2) explains how to get the
weighted center.

 (2)
0

n

i
i

V w(i)
=

= ∑ V

• Iteratively repeat the above processes until get a
threshold.

At the encoder, there are two widely used metrics for selecting the
edge for collapsing: shortest edge and minimum geometry change.
For both of the metrics, the neighbors that are closer to the
removed vertex play a much more important role in evaluating the
coordinates of the new vertex. Therefore, by assigning larger
weights to these neighbors during the iterations, we can obtain the
“best-effort” guess on the new vertex coordinates.

3.3.2. New Vertex Connectivity Construction
After guessing the coordinates of the new vertices, we need to
predict how to construct new triangles among new vertices, split
vertices and their neighbors.

For each neighbor vertex, we need to decide if it should connect
with the split vertex, or the new vertex, or both the split and the
new vertices, after splitting operation. We first order the neighbors
clockwise, then for each neighbor, we calculate the distance to the
split vertex and to the new vertex separately. If the neighbor is
closer to the split vertex, we mark it “old”. Otherwise, we mark it
“new”. The marking results have three possibilities:

• Two connected neighbor vertices are marked “old”. They
form a triangle with the split vertex after the split.

• Two connected neighbor vertices are marked “new”.
They form a triangle with the new vertex after the split.

• Two connected neighbor vertices, one is marked “old”
and the other is marked as “new”.

In case three, the two neighbor vertices, the split vertex and the
new vertex form a quadrilateral which is a hole on the refined
mesh. To get ride of the hole, we need to determine which one is
the vertex on the cut-edge. To keep degrees between the new
vertex and the split vertex close, if the current degree of the new
vertex is less than that of the split vertex, we change both vertices
to “new”; otherwise, we change them to “old”. The vertex whose
mark is changed is called “tip vertex” which is the vertex on the
cut-edge. For each tip vertex found, we insert a new triangle
consisting of the split vertex, the new vertex and the tip vertex into
the mesh. An example of our new vertex connectivity construction
is described in Figure 3. s is the split vertex, and nv is the new
vertex. o vertices are those neighbors marked “old” and n vertices
represent neighbors marked “new”. t vertices are tip vertices
mentioned in case three.

Figure 3. New vertex connectivity reconstruction.

3.3.3. Control Error Propagation
In the last step of our prediction method, we mark those predicted
new vertices as unreliable. The prediction on geometric data and

necessary to control the propagation of errors which are brought by
prediction. Since it is very difficult to ensure that the prediction
error will not be propagated to other regions of the mesh, we have
included two simple methods to control the error propagation.

• Tracking vertices with predicted coordinates so that

connectivity is an approximation of the original mesh. It becomes

 the

• lize the

 order to prevent the decoder from using the transmitted

esides using the reliability bit, a mesh partition method is also

4. RESULTS
We assume a network w ket loss ratio l, which is

 Bunny Horse

subsequent triangulation information is not used.
Partitioning the 3D mesh before encoding to loca
prediction errors within the partition.

In
triangulation bits on the predicted vertices, we use one bit (called
“reliability bit”) per vertex to indicate whether this vertex is
predicted or not. After each prediction, we mark all the new
vertices as unreliable and any subsequent vertex split having
incidence on the unreliable vertices do not use the transmitted
triangulation bits. Instead, our scheme is applied. Doing so
improves the robustness of the decoder since the loss-sensitive
connectivity data is only used for the part of the mesh that is
consistent with the encoder.

B
applied to localize the propagation of prediction errors. Before
streaming, the original 3D mesh is divided into some disjoint
partitions. Each partition is simplified individually. Note that the
vertices on the partition boundary remain in the base mesh and are
not simplified during the encoding. In this way, we guarantee that
both encoder and decoder have the same view of the partitions and
partition boundaries. It seems that a large number of partitions can
help localize the prediction error. However, a large number of
partitions may reduce the compression ratio since the number of
vertices that can be simplified becomes smaller. Therefore, there is
a tradeoff between the compression ratio and robustness of the
error-concealment scheme. For the details of the partition method,
please refer to [10].

ith random pac
between 0.04 and 0.12 based on the real networks. Each refinement
reduces 5% triangles from the current mesh. We choose to
implement the proposed error-concealment mechanism based on
CPM [2], although our error-concealment scheme is generically
applicable to different progressive representations. To explain our
results, we use the Stanford “Bunny” model and the Cyberware
“Horse” models with size and vertex number shown in Table 1.

Vertices 34834 48485
Size(MB) 3.25 4.74

s

nv

o
o

o

t

n
t

n n

Ta mpre tion.

 our experiments, we record the accuracy and the computational

ur testing results in Table 2 show that the proposed triangulation

prediction depends on the local mesh geometry characteristics.

ble 1. Unco ssed model informa

In
cost (overhead) of our prediction method. The decoded mesh
quality is represented by the distortion values. The Hausdorff
Distance measured with Metro [11] is used here to represent the
distortion between the decoded meshes with and without loss.

O
prediction has a much higher accuracy than “random pick”, which
is O(1/m), where m is the valence of the split vertex. There is no
much difference as loss ratio changes because the geometry

 l Bunny Horse

0.04 0.59 0.57
0 .08 0.59 0.56
0.12 0.59 0.56

Table 2. The accuracy of the sed sche er Bunny and
Horse models w fferent lo s l.

erhead(ms)

 propo me ov
ith di ss ratio

Mesh l Ov
Bunny 0.04

0.08
2.5

0.12
3.5
4.05

Horse 0.04
0.08
0.12

2.78
3.60
3.89

Table 3. The decoding time (the propo heme over
Bunny and Horse models wit rent loss on Pentium IV

ws the computational cost of two models. As the loss
tio increases, the decoding time increases as well. The overhead

ms) of sed sc
h diffe ratios l

machines.

Table 3 sho
ra
can be ignored compared with the RTT(s) saved on reliable
channel transmission on Pentium IV machines. In addition, this
overhead can be significantly reduced if the hardware is more
powerful. Distortions of the two models under different loss ratios
are listed in Table 4 and Table 5 separately; besides, we compare
decoded model without loss and with loss and prediction. The
distortion is denoted as the percentage of whole model size. Note
that the distortion is small indicating that the distortion is
dominated by the simplification error. Therefore, the prediction
error is localized and not propagated to other parts of the mesh.

Refinement l=0.04 l=0.08 l=0.12
2 0.00333

0.003442
0.00333

0.003442
0.00333

0.003442 4
6
8

0.004758
0.004758

0.004758
0.004758

0.004758
0.004758

Table 4. D ortion (i e) of ov ss
ratios l.

inement l=0.04 l=0.08 l=0.12

ist n percentag the Bunny er different lo

Ref

10 0.003136
0.004767

0.003136
0.004767

0.003136
0.004767 20

30 0.004767 0.004767 0.004767
Table 5. D rtion (i e) of ove loss
ratios l.

5. CONCLUSION
 this paper, we propose a loss tolerance scheme that deals with

packet loss on the unr transmit 3D triangle

 dealing with the
ss of connectivity data, and the transmission time is reduced due

 not
lways generate correct results in some degenerate cases. In the

ES
] H. Hoppe, “Progressive meshes,” in Proceedings of

SIGGRAPH’96, 1996.

ssignac, “Compressed progressive meshes,”
 IEEE Trans. Visual. Comput. Graphics, vol. 6, pp. 79–93, 2000.

IGGRAPH’95, 1995.

ose, T. Duchamp, J. McDonald, and W.
tuetzle, “Mesh optimization,” in Proceedings of. SIGGRAPH '93,

nd Y. Altunbasak, “3TP: An application-layer
rotocol for streaming 3D graphics,” in Proceedings of ICME,

an, S. Kumar, J. Li, and C. Kuo, “Robust encoding of 3D
esh using data partitioning,” in Proceedings of the 1999 IEEE

Regib and Y. Altunbasak, “An unequal error protection
ethod for packet loss resilient 3D mesh transmission,” in

n, S. Jung, and Y. Seo, “Results
f CE M5 error resilient 3d mesh coding,” ISO/IEC JTC 1/SC

., ALTUNBASAK, Y., AND ROSSIGNAC, J.
005. Error-resilient transmission of 3D models. ACM Trans.

ing 3D progressive meshes over lossy
etworks,” PhD Thesis, Fall 2007, University of Texas at Dallas.

rror on simplified surfaces,” in Computer Graphics Forum, vol.

isto n percentag the Horse r different

In
eliable channel. We

meshes under hybrid protocols by sending the base model and the
split bits over reliable channels, and sending triangular bits and the
geometry data over unreliable channels. Whenever the
triangulation bits are lost, we apply the triangulation prediction
method to estimate the coordinates of the new vertices and re-
construct their connectivity with their neighbors.

Compared with [1, 2], our scheme is capable of
lo

to the usage of hybrid protocol. Therefore, it is suitable for real-
time 3D streaming applications like online games. This scheme is a
generic solution to different compression methods. Moreover, as
shown in the result, the accuracy is higher than that by random
pick, and the computational cost for predicting new vertices is
small and can be ignored. The distortion is caused mainly by the
simplification operations, not by the triangulation prediction.

The connectivity prediction of decompression session does
a
future, we will investigate more connectivity prediction techniques.
The connectivity data is important for vertex splitting operations,
so its streaming over reliable channels and the statistical
performance analysis by balancing the higher band load and time
delay is a research direction in our future work. In addition, our
algorithm assumes that reliable channel is available which is
maybe not suitable for general cases. Therefore, using only
unreliable channels will be considered.

6. REFERENC
[1

[2] R.Pajarola and J.Ro
in

[3] M.Deering, “Geometry compression,” in Proceedings of
S

[4] H. Hoppe, T. DeR
S
pp. 19-26, 1993.

[5] G.Al-Regib a
p
2003.

[6] Z. Y
m
International Symposium on Circuits and Systems, vol. 4, 1999, pp.
495–498.

[7] G. Al-
m
Proceedings of INFOCOM, 2002.

[8] E. Jang, S. Kim, M.Song, M.Ha
o
29/WG 11, 1998.

[9] AL-REGIB, G
2
Graph. 24, 182–208.

[10] H. Li, “Stream
N

[11] P.Cignoni, C.Rocchini, and R. Scopigno, “Metro: measuring
e
17, 1998.

