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Abstract

The medial axis transform (MAT) of a 3D shape includes the set of centers and radii of the maximally
inscribed spheres, and is a complete shape descriptor that can be used to reconstruct the original shape.
It is a compact representation that jointly describes geometry, topology, and symmetry properties of a
given shape. In this work, we present P2MAT-NET, a neural network which learns the pattern of sparse
point clouds and transform them into spheres approximating MAT. The experimental results illustrate that
P2MAT-NET demonstrates better performance than state-of-the-art methods in computing MAT from point
clouds, in terms of MAT quality to approximate the 3D shapes. The computed MAT can be used as an
intermediate descriptor for downstream applications such as 3D shape recognition from point clouds. Our
results show that it can achieve competitive performance in recognition with state-of-the-art methods.
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1. Introduction

Medial axis transform (MAT) Blum (1967) of a 3D shape, consisting of the maximally inscribed spheres,
is a compact and complete representation of the shape. Each 4D point (center and radius) on MAT, called
medial sphere, denoted as m = (c,r) with ¢ and r the center and the radius respectively, can be associated
with the local thickness, symmetry information and part-structure of the object, so that the original shape
can be reconstructed from them. Due to such compactness and expressiveness, MAT has been widely used
in numerous applications Tagliasacchi et al. (2016) including shape recognition, shape editing, animation
processing, etc. Recently, MAT has proved its excellent capability in shape recognition, even in the case of
low resolution Hu et al. (2019). Researchers have been working on computing MAT from meshes Li et al.
(2015); Pan et al. (2019); Rebain et al. (2019) or dense point clouds Amenta et al. (2001). However, it is
still challenging to compute MAT on surfaces of arbitrary representations, especially sparse point clouds,
limiting its broader adoption in various applications. Although by adding new points to sparse point clouds
Yu et al. (2018b,a); Yifan et al. (2019), one can apply the existing methods to compute MAT by directly
taking the upsampled point clouds as input or the reconstructed mesh from the upsampled point clouds,
we are interested in a more direct way that taking the sparse point clouds as input. To the best of our
knowledge, there are no prior works focusing on computing MAT from sparse point cloud.

As a fundamental shape representation, point cloud benefits from its easy access as the default output
from most 3D shape acquisition devices. Recently, deep neural networks have been proposed to learn
features of point clouds for shape classification and shape segmentation tasks Qi et al. (2017a,b); Li et al.
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(2018b); Wang et al. (2019), shape analysis Guerrero et al. (2018); Ben-Shabat et al. (2019), as well as
shape transformation tasks Berkiten et al. (2017); Tang et al. (2019). Specifically, P2P-NET Yin et al.
(2018) transforms an input point set to an output point set with the same cardinality, e.g., skeletons,
contours, cross sections, etc. This inspires us that neural network transformation is a potential way to
compute a more compact representation of shape from point clouds, especially from sparse and noisy point
cloud, for better approximating the shape.

In this paper, we are interested in exploring how deep neural network can benefit in transforming from
sparse point clouds to MAT of the shape - a problem that has been considered as too challenging to be tackled.
We propose a Point-to-MAT displacement network, called P2MAT-NET, which transforms an input sparse
point cloud to an output set of spheres with the same cardinality by applying point-wise displacement vectors
learned from the points to approximate the medial spheres. Furthermore, we construct the connectivity from
the output spheres of P2MAT-NET, to form a piece-wise linear approximation of MAT, called medial mesh
Sun et al. (2016). Evaluations of P2MAT-NET illustrate that it outperforms state-of-the-art methods for
computing MAT from sparse point clouds, in terms of MAT quality. The computed MAT can be used as an
intermediate descriptor for downstream applications such as 3D shape classification. Our results show that
it can achieve competitive performance in shape classification with state-of-the-art methods.

2. Related Work

2.1. MAT Computation

There has been some existing techniques in computing MAT of 3D objects, as detailed in a recent
survey Tagliasacchi et al. (2016). Here we focus on reviewing the methods that operate on 3D surface
representations, especially point clouds and triangular meshes.

The Voronoi diagram can be used to compute MAT under the assumption that the input sample is
sufficiently dense, and the medial axis is simply the vertices of the Voronoi diagram. Due to the existence
of sliver tetrahedra, of which the centers of their circumspheres are far away from the medial axis, there is
no guarantee that the medial axis could be approximated with a convergence guarantee Amenta and Bern
(1999). Consequently, filtering the Voronoi diagram of the slivers is the most commonly-used method. The
notable Voronoi poles Amenta and Bern (1999) are used to get a subset of Voronoi diagram by increasing
the sampling density to remove as much slivers as possible. There are many methods following up this
approach, such as the Power Crust Amenta et al. (2001), the Medial Meshes Sun et al. (2016) which extends
the Sphere Meshes Thiery et al. (2013) to simplify the meshes of MAT, Q-MAT Li et al. (2015), as well
as its extension Q-MAT+ Pan et al. (2019) which is feature-sensitive by adopting an error-bounded MAT
simplification scheme. These methods suffer from two shortcomings: (1) the input sampling points should
be sufficiently dense; (2) they always need some post-processing for removing the unstable branches of MAT.

Marrying the maximally inscribed definition of medial spheres is an alternative way of the Voronoi method
to compute MAT Ma et al. (2012). LSMAT Rebain et al. (2019) follows this idea by taking a densely sampled
oriented point set as input, and computing the approximation of its signed distance function (SDF) in the
near/far field to obtain an approximated MAT.

Our P2MAT-NET offers a method for computing MAT from sparse point clouds. With the output of
the network taken as the approximated medial spheres, we can construct their connectivity to form a medial
mesh, which can be used for downstream applications such as 3D shape recognition.

2.2. Neural Networks for Processing Point Clouds

With the rapid development of neural networks, there has been quite a few recent approaches in learning
features from 3D point clouds. PointNet Qi et al. (2017a) is the pioneering network that exploits the order
invariance of point permutations and aggregates the per-point features into a global descriptor vector. Its
extensions PointNet++ Qi et al. (2017b) and SO-NET Li et al. (2018a) apply hierarchy to process multi-
scale point features. To overcome the price of lossing information with these symmetric pooling-based
approaches, CNNs Wang et al. (2019); Li et al. (2018b); Wang et al. (2018) and graph convolutions Monti



et al. (2017); Wang et al. (2018) are applied for processing point clouds for the tasks of shape classification
and segmentation via learning the features of point sets.

Besides, there are some prior works focusing on point cloud upsampling. EC-Net Yu et al. (2018a) is a
following work of PU-Net Yu et al. (2018b) which is the pioneer network working on point cloud upsampling.
3PU is a detail-driven deep neural network for point set upsampling.

P2P-NET Yin et al. (2018) is the first deep neural network designed to learn geometric transformations
between point-based representations. Inspired by P2P-NET, we adopt a single directional branch of P2P-
NET to learn the transformation from point clouds to the approximated medial spheres, by proposing a
geometric loss between the supervising spheres and the learned spheres.

3. P2MAT-NET

The transformation from point cloud to medial spheres is difficult to model explicitly. For this reason, we
propose P2MAT-NET, a Point-to-MAT displacement network, to transform an input point cloud & = {p}
to an output set of medial spheres M = {m}, where m = (¢, 7) includes the center ¢ and radius 7 of spheres.
The input and output have the same cardinality |S| = | M|, by applying point-wise displacement vectors
learned from the points to obtain the sphere centers and radii.
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Figure 1: Network architecture of P2MAT-NET.

The architecture of P2MAT-NET is illustrated in Figure.1. The network first learns a multi-scale feature
for each point, using layers of PointNet++ Qi et al. (2017b). As mentioned, MAT of a 3D shape consists
of the maximally inscribed spheres. Local feature embedded in the k-nearest neighbors of each point aren’t
enough for capturing the maximal inscribed sphere, since at least the point on the other side of the shape and
spanning the same sphere should also be captured for mapping to the displacement. The abstract operation
of PointNet++ subsamples the input points and captures the point features at different scales arranged with
ball query that finds all points within a radius to the query point with set abstraction layers (marked with
A in Figure 1). Compared with kNN, ball query’s local neighborhood guarantees a fixed region scale thus
making local region feature more generalizable across space. A hierarchical propagation strategy is adopted
to produce the point-wise multi-scale features with the feature propagation layers (marked with P in Figure
1). The propagation strategy randomly drop out input points with a randomized probability to prevent the
network with training sets of various sparsity and varying uniformity, although there is no mathematical
guarantee that the multi-scale local features captured are consistent with the definition of medial spheres.
The multi-scale feature vectors are then concatenated with point-wise noise vectors. We keep the use of
an independent Gaussian noise vector of length 32 for each noise vector and feed them to a set of fully
connected layers that output displacement vectors Zg = {I,} for each input point in S. The Gaussian noise
vectors provide the system added degrees of freedoms to the displacements, to alleviate the problem that
nearby points in the source shape tend to be mapped to similar displacement vectors due to the abstraction
and propagation operations in PointNet++ Qi et al. (2017b). In the end, the network yields the centers
of the predicted spheres ¢ = p + I, and the magnitudes of the displacements are the corresponding radii
P = L.

Our training set consists of spheres M = {m} computed from the triangle meshes of ModelNet40 Wu
et al. (2015) and the paired point set S sampled from the same meshes. The details for data set preparation
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will be discussed in a later subsection. The P2MAT-NET is trained under a supervised setting. In the
training setting, we define the footprint sphere m = (¢,7) € M of point p € § as:

m = argmin, . yA(p, m), (1)

where A(p,m) is the signed distance from point p to the surface of sphere m = (c,r), i.e., A(p,m) =
Ip—cf—r _

To measure the geometric difference between the predicted spheres M and the target spheres M from
training set, the network is trained with a geometric loss to penalize the mismatch between them. The
geometric loss is computed as the sum of differences by searching the footprint sphere m € M for each
input point:

LM, M) = ) §(m, i), (2)
meM
where d(m, m) measures the distance between the predicted sphere m of point p and its footprint sphere

m:

s(m, 1) = \/|le — &])® + (7 — )2, (3)

Due to the limit of space, we will discuss the selection of the L2 norm for measuring the mismatch
between m and m in the appendix.

The geometric loss L(M, M) is minimized with an Adam optimizer, with the learning rate being set as
le-3 and decays to le-4 at discrete intervals during training.

3.1. Connectivity between Medial Spheres

In this subsection, we propose a strategy for computing the connectivity of medial spheres. We use the
CGAL package “Delaunay Triangulation 3” The CGAL Project (2019) to get the Delaunay Triangulation
of the centers of spheres, and produce the initial connectivity of medial axis, then adaptively remove the
extra edges using the following algorithm:

1. Remove all the invalid edges {e;;} that satisfy the following condition:
lei = ;1> = (ri — ;) < 0. (4)

2. Compute the length I;; of each valid edge e;; connecting medial spheres m; and m;, as the following
tangential length between two spheres:

iy =/ lles = 512 = (rs = )2 5)

3. Compute the average length [ of all remaining valid edges:

r_ Dei lij’ ©)
ne
where F is the remaining valid edge set, and n. is the number of the remaining valid edges.
Remove all the remaining edges that satisfy {;; > wil.
Repeat steps 3~4 with N; number of iterations.
For each sphere m, compute the average length dy, of the incidental edges N'(m).
Remove all the remaining edges that satisfy l;; > wadm, or l;; > wadm;-
Repeat steps 6~7 with Ny number of iterations.
If both the degrees of two medial spheres in edge e;; are larger than a specified maximal degree ¢,
ascendingly sort the incidental edges of medial spheres m; and m; with the length of edge l;;, and
set the standard lengths s; and s; of m; and m; to be the lengths of their ™" incidental edge, finally
remove all the remaining edges with length larger than s; and s;.
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Figure 2: MAT reparation. (a) Illustration of MAT reparation. (b) The surface mesh and (c) the initial MAT spheres computed
by Q-MAT+Pan et al. (2019) are fixed by pushing the extruded spheres into the mesh, and output (d) the repaired spheres for
training.

In this paper, we fix all the parameters in constructing the connectivity of MAT by setting w; = 2.5,
Ny =1, wy = 1.8, N, =5, and ¢ = 8. Note that in step 2, the tangential distance between two spheres
is used for removing the extra edges. This is because MAT approximates the shape with the envelop of
connected spheres. It is different from the use of geometric loss in Eq. 3, where the 4D Euclidean distance
between a predicted sphere and the footprint sphere of the corresponding point is used to penalize the
mismatch between them.

3.2. Dataset Preparation

We prepare the dataset from the meshes of ModelNet40 Wu et al. (2015), and will make them publicly
available. The input of P2MAT-NET are the medial spheres of the MAT objects computed by Q-MAT+
Pan et al. (2019), with the tool provided by the authors. For each shape, the number of spheres includes
2048, 1024, 512 and 256. Note that Q-MAT+ needs densely sampled, closed manifold mesh as the input, but
the majority of 3D models in ModelNet40 do not satisfy these requirements. So we use the repaired mesh
provided by the authors of MAT-Net Hu et al. (2019), and successfully compute 9728 valid MAT objects in
40 categories, about 79.02% of the original ModelNet40. We use 7774 shapes for training and 1954 shapes
for testing. For Q-MAT+ Pan et al. (2019), we use the default setting (0.50, where o is the average SDF
values) to initialize the most important parameter 6, which determines thin parts. The number of valid
MAT objects in our dataset is less than the number of shapes in ModelNet40-MAT Hu et al. (2019), which
is caused by the open mesh in the repaired set, and there could be some extruded spheres or external spheres
in the computed medial meshes. The medial meshes with large spheres outside the surface are excluded
from the dataset. According to the definition of MAT, a medial sphere should not bound any surface point
in it. So we also repaired the MAT objects computed by Q-MAT+ by pushing the extruded spheres back
into the surfaces. As shown in Figure 2(a), the dashed line represents the surface. When an inner most
projecting point q of the sphere center ¢ on the mesh is found, the cyan sphere is updated by reducing its
radius and moving its center along the direction from q to c until the sphere is tangent to the surface mesh,
illustrated as the gray sphere ¢’. The strategy is conducted in an iterative way until the sphere becomes
fully inside the surface, and the iteration number is set to be 2 for all objects. Figure 2(b)-2(d) shows an
example of MAT reparation.

After the medial spheres of MAT objects are computed, the paired point set is sampled from the same
mesh as follows: for each sphere of a shape, the surface vertex with the smallest signed distance to the sphere
is sampled and included into the paired point set. All medial spheres and sampled points are normalized
into a unit ball. Some subsets in ModelNet40 are augmented by random rotation of each paired data to
increase their sizes by 3 to 10 times. To ensure a fair comparison, all compared methods in this paper are
running on the same 79.02% objects of ModelNet40.
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Figure 3: Testing results on different types of shapes with 2048 points as input. (a) The surface mesh, (b) the testing point
cloud, (c) the predicted spheres of P2MAT-NET, (d) the refined predicted spheres with the sphere-bounding strategy, (e) the
refined predicted spheres with both the normal-refinement strategy and the sphere-bounding strategy, (f) ground truth spheres.
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Figure 4: Testing results on different types of shapes with 1024 points as input. (a) the surface mesh, (b) the testing point
cloud, (c) the predicted spheres of P2MAT-NET, (d) the refined predicted spheres with the sphere-bounding strategy, (e) the
refined predicted spheres with both the normal-refinement strategy and the sphere-bounding strategy, (f) ground truth spheres.

4. Experiments and Applications

In this section, we show experiments to demonstrate the capability of P2MAT-NET in learning geometric
transforms from point cloud to the approximated MAT, as well as to apply the predicted MAT for 3D object
classification.

4.1. Evaluation of P2MAT-NET

For our prepared dataset, the network is trained for 200 epoches on a Nvidia Titian XP GPU and it takes
approximately 3~10 hours to finish the training process. The time for training is related to the number of
predicted spheres as well as the number of training sets. During the testing phase, the surface point set (of
sizes 2048, 1024, 512, 256 respectively) is fed to the network in one pass and the predicted sphere set of the
same size is obtained. Note that the network is trained using data with each number of points separately.
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Figure 5: Testing results on different types of shapes with 512 points as input. (a) the surface mesh, (b) the testing point
cloud, (c) the predicted spheres of P2MAT-NET, (d) the refined predicted spheres with the sphere-bounding strategy, (e) refined
predicted spheres with both the normal-refinement strategy and the sphere-bounding strategy, (f) ground truth spheres.

We visualize the results obtained on different types of shapes in Figure 3-5. It can be observed that the
transformation results can capture the principal characteristics of these shapes.

The predicted spheres which are the output of the network could be refined by a strategy similar to the
MAT reparation in our data preparation. We assume that no surface point should be bounded inside any
sphere. For a predicted sphere m, we iteratively find the point q which is bounded by the sphere and is
the farthest point to the surface of m to minify the sphere. We denote m’ = (¢’,7) as the shrunk sphere.
The sphere is shrunk by the following sphere-bounding strategy: firstly shrink the sphere by decreasing its
radius, ¥ = max(7 + A(q,m)/2,0), and use the direction of displacement I, to compute the new center:
c=p+ H}ﬁf’ , where point p is the corresponding point in the input point set. The testing results in the
fourth columns of Figure 3-5 are the refined spheres using this sphere-bounding strategy. Result on the
toilet object in Figure 5 shows that the sphere-bounding strategy could optimize the extruded spheres by
pushing them back to the surface w.r.t. the sampled surface points, to approximate the medial spheres by
the constraint that they should be inside the object.

If the normal of the point cloud is known a priori, we can refine the predicted spheres by the following
normal-refinement strategy: firstly mark the predicted sphere m when the angle between the normal of
corresponding surface point p and the corresponding displacement I, is smaller than 7/2, denoted as the
normal-displacement condition. Next, find the closest surface point q, which is in the k nearest neighbor set
of p and whose corresponding predicted sphere does not violate the normal-displacement condition, and use
the displacement of q to update m as long as the updated sphere does not violate the normal-displacement
condition. The testing results in the fifth columns of Figure 3 — 5 are the refined spheres using both the
sphere-bounding strategy as well as the normal-refinement strategy. The result on the person object in
Figure 5 demonstrates the effectiveness of the normal-refinement strategy, considering the result of Figure
5(d) and Figure 5(e) on the person object.

According to the definition of MAT, the sphere-bounding strategy should always be used for the post-
processing, while the normal-refinement strategy is only adopted when the normal of the point cloud is a
priori.

Results in Figure 6(a)-6(c) demonstrate that our method could learn MAT from point clouds with
different sizes: 256 / 512 / 1024 / 2048. The training pair of (points, spheres) is sampled from the same



Figure 6: Compute MAT from point clouds with sizes of 256, 512, 1024 and 2048 (from top to bottom). (a) the point clouds,

(b) the ground truth spheres, (c) the refined spheres with sphere-bounding and normal-refinement strategies, (d) the SPR
reconstructed mesh with (a), (e) the result of Q-MAT+ from the surface of (d).

i

QI
-

(et
il '

B
‘ /I
Gl

(a) (b)

Figure 7: Testing results on incomplete point clouds of 2048 points sampled from sub-domains of meshes. (a) and (c) testing
point clouds, (b) and (d) predicted spheres corresponding to (a) and (c) respectively.

shape. To further demonstrate that the network has learned a proper transformation, we test the trained
model on incomplete point clouds (Figure 7), point clouds sampled from simulated scan data (Figure 8), as
well as noisy point clouds (Figure 9). Figure 7 shows the testing results on incomplete and non-uniformly
sampled point clouds sampled from two different meshes in Figure 7(a) and Figure 7(c) and the corresponding
predicted spheres in Figure 7(b) and Figure 7(d) respectively. The incomplete point cloud is sampled by
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Figure 8: Testing results on point clouds with 2048 points sampled from BSR Berger et al. (2013). (a) and (d) the simulated
scan data in BSR, (b) and (e) the testing point clouds sampled from (a) and (d) respectively, (c) and (f) refined predicted
spheres with the sphere-bounding strategy.

(a) (b) (c)

Figure 9: Testing results on noisy point clouds with 2048 points. From left to right, the results (a) without noise, (b) with low
noise level points, (¢) with high noise level points. From top to bottom are the testing point clouds, the predicted spheres and
the refined predicted spheres with the sphere-bounding strategy.

setting the boundary of point clouds and randomly sample 2048 points. Scan data could be noisy and
biased with larger error pointing toward the sensor. To demonstrate that the network could also work on
scan data, we test the trained model on point clouds sampled from the simulated scan data in the benchmark
for surface reconstruction (denoted as “BSR” in the following section) Berger et al. (2013)), as well as noisy
point clouds. Figure 8 shows the results on the 2048 points sampled from BSR. It is noticed that the
simulated scan data could be incomplete, for example the holes in the anchor model as shown in Figure 8(a)
and Figure 8(d). For the noisy point clouds, we first sample the paired point set of the 2048 medial spheres,
and move each point with a random perturbation with a random scale in the interval of [0,0.03] (Figure
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9(b)) or [0,0.06] (Figure 9(c)) along its normal direction. The result shows that our P2MAT-NET is stable
for handling even incomplete or noisy point clouds.

4.2. Computing MAT from Point Clouds

We compare our method with the following two state-of-the-art methods which have been used to com-
pute MAT from point clouds. One is Power Crust Amenta et al. (2001) which is a sampling-based method
and can take point clouds as input and output MAT of the shape. The second method is to firstly recon-
struct the surface from the point cloud, and compute the MAT of the reconstructed mesh. We use Poisson
surface reconstruction method Kazhdan et al. (2006), Screened Poisson surface reconstruction (denoted as
“SPR”) Kazhdan and Hoppe (2013), GR method Lu et al. (2018) which is based on the modified Gauss
formula to get a watertight and smooth surface from the point cloud equipped with normal information and
the VIPSS method Huang et al. (2019) which reconstructs an implicit surface from an un-oriented point
set. When the mesh is reconstructed from the point cloud, we use Q-MAT+ Pan et al. (2019) to obtain
the simplified MAT with 2048 spheres to approximate the shape. However, the VIPSS method Huang et al.
(2019) fails at reconstructing meshes for all the paired point clouds with medial spheres computed with
Q-MAT+ Pan et al. (2019). As demonstrated by the authors, the approach for initializing the optimization
isn’t guaranteed to work for all inputs (particular those exhibiting a varying level of noise and complexity)
Huang et al. (2019). We denote the methods using the Poisson method Kazhdan et al. (2006) and the SPR
method Kazhdan and Hoppe (2013) for mesh reconstruction and then adopting Q-MAT+ Pan et al. (2019)
for MAT computation as “Poisson & Q-MAT+” method and “SPR & Q-MAT+" method in the following
comparison and take point clouds with 2048 points as the input.

(a) () © ()

Figure 10: Comparison with Power Crust on MAT computation with 2048 points as input. (a) The testing point cloud, (b) the
ground truth medial spheres, (c¢) our predicted spheres, (d) our refined predicted spheres with the sphere-bounding strategy,
(e) the computed medial edges of Power Crust, (f) our computed medial edges from spheres in (d), and (g) the ground truth
medial edges.

To evaluate the approximation accuracy, we use the two-sided Hausdorff distance, denoted as €. For the
ground truth MAT and the other methods with computed MAT for mesh approximation, we use the two-
sided Hausdorfl distance in DMAT Yang et al. (2018), between the ground truth mesh and the enveloping
surface of MAT. For fair comparison, only the objects that both the Poisson & Q-MAT+ method and the
SPR & Q-MAT+ method succeed in computing the MAT in the testing set are measured. For the GR
method Lu et al. (2018), we measure the error between the ground truth mesh and the reconstructed mesh.

For the Power Crust method, we set the sampling density constant as 0.6, the parameter deciding
whether to propagate the same label (“inside” or “out-side”) to neighboring poles as 0.4, and multiplier as
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100000. We use the implementation of Power Crust in VTK environment to compute the medial axis from
input point clouds. In Figure 10, the sphere-bounding strategy is applied to refine the output spheres of
P2MAT-NET, and our results are compared with the Power Crust method. It is noticed that there are some
isolated spheres with their centers outside the object in the output medial axis of the Power Crust due to the
sparseness of the point cloud, so we only show their computed medial edges. Besides, the computed edges
in Figure 10(e) have large error with the ground truth. For example, the MAT of the flower pot computed
by the Power Crust method has only a few valid medial edges. The centers of computed medial spheres in
purple are also shown for a clear illustration.

For the Poisson & Q-MAT+ method and the SPR & Q-MAT+ method, we use MeshLab v1.3.2 and
v2016.12 respectively to reconstruct the surface with the default parameters. Since the reconstructed mesh
may not satisfy the strict input requirement of Q-MAT+ Pan et al. (2019), the Poisson & Q-MAT+ method
and the SPR & Q-MAT+ may fail in computing MAT for some objects. The output medial axis with no
edges or faces is marked as invalid, and the Poisson method finally succeed in about 85% of the objects we
used, of which 6549 objects in the training set and 1693 in the testing set, while the SPR method succeed
in about 98% of the objects we used, of which 7625 objects in the training set and 1909 in the testing set.

airplane bathtub  bed desk  guitar chair monitor night. person

GR 2.60 11.34 8.43 1234 1.98 9.13 9.07 6.66 2.19
Poisson & Q-MAT+ 10.63 15.57 16.27 2441 515 21.84 14.40 1452 14.25
SPR & Q-MAT+ 3.50 13.19 12.32  20.85 292 12.01 15.22 12.94 4.46
P2MAT-NET 1.53 4.69 4.60 4.82 2.52 4.03 3.54 6.10 4.74
P2MAT-NET-S 1.28 3.97 3.80 4.67 1.55 2.50 3.26 5.16 4.52
P2MAT-NET-N-S 1.23 3.43 3.65 4.40 1.32 2.53 2.67 4.63 3.00

Table 1: Average Hausdorff errors of different classes of objects reconstructed from 2048 points, normalized with respect to the
diagonal length of the corresponding surface, and represented in percentage. “P2MAT-NET” represents the results computed
with the predicted spheres of P2MAT-NET, “-S” is by applying the sphere-bounding strategy, and “-N” is by applying the
normal-refinement strategy. The best results of each type of objects are in bold font.
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Figure 11: Error distribution of reconstructed mesh or computed MAT for the models of beds in the testing set.

For the GR method, we use the code provided by the authors to reconstruct mesh from the point set.
However, most of the meshes reconstructed with the GR method Lu et al. (2018) could not be used for
computing MAT with Q-MAT+ Pan et al. (2019) because there is no guarantee that they are closed and
manifold.

Table 1 shows the average Hausdorff distance of different types of objects, and it reveals that our methods
have much smaller Hausdorff distance than the Poisson & Q-MAT+ method, the SPR & Q-MAT+ method
on all classes of objects, and the GR method on most classes except person. Note that the Hausdorff
distances are normalized with respect to the diagonal length of the corresponding surface, and represented
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Figure 12: Holes in the our predicted MAT with 2048 points. (a) The ground truth spheres, (b) refined predicted spheres with
both sphere-bounding and normal-refinement strategies, (c) the ground truth edges, (d) our constructed edges from spheres in
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Figure 13: Comparison with the Poisson & Q-MAT+ method and the SPR & Q-MAT+ method with 2048 points as input.
(a) The testing point cloud, (b) the Poisson reconstructed mesh, (c) the result of Q-MAT+ from the surface of (b), (d)
the SPR reconstructed mesh, (e) the result of Q-MAT+ from the surface of (d), (f) the ground truth MAT, (g) the refined
predicted spheres of P2MAT-NET with both the sphere-bounding and normal-refinement strategies, (h) the computed MAT
with connectivity from spheres in (g).

in percentage. Figure 11 illustrates the error distribution of computed MAT for the models of beds in the
testing set. One of the reasons that some objects have large error for our methods is because the connectivity
of the MAT causes some large holes in local domain, as shown in Figure 12. We have also compared the
average Hausdorff distance with these two methods on different resolutions. Due to the limit of space,
please see the results in the appendix for more details. For the Poisson & Q-MAT+ method and the SPR &
Q-MAT+ method, the large error is mainly caused by the poor quality mesh reconstructed from the sparse
point samples, as illustrated in Figure 6 and Figure 13. Figure 14 shows the comparison results with the
GR method.

Table 2 shows the average Hausdorff errors of our predicted MAT in different resolutions. These results
demonstrate that our network is able to learn proper transformations and obtain MAT with small errors
even from sparse point clouds.
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Figure 14: Comparison with the GR method on mesh reconstruction with 2048 points as input. (a) The testing point cloud,
(b) the surface mesh, (c) reconstructed mesh with the GR method, (d) the refined predicted spheres with sphere-bounding
strategy, (e) the computed MAT with connectivity from spheres in (d).

airplane bed chair sofa guitar monitor person
g | 342/ 1.22  6.25/2.47 440 /1.84 5.12 /250 2.16/0.92 4.15/1.73 4.67 /231
< 5.20 /439 13.06 /12.80 11.45/7.26 7.60/6.07 4.00 /244 10.98 /6.24 6.78 /5.13
o~ | 248 /1.03 511 /213 338 /162 424 /216 1.71/078 3.19/1.54 3.20/1.94
1310 /2.85 10.69 /586 892 /550 6.03 /575 3.12/2.03 9.28 /473 4.65/4.90
§ 1.81/0.88 3.99 /1.80 246 /131 352/193 128 /0.69 2.50/1.42 2.32/1.89
— 1210 /164 8.04 /5.27 5.52 /3.74 475 /479 1.86 /1.7 5.51/4.17 3.28/4.05
% | 1.07/038 200/1.14 1.23 /0.68 252/0.98 0.65/034 1.17/0.70 1.74/1.43
S| 0.98 /117 250 / 3.61 1.78 /243 249 /395 1.04/1.29 1.98 /265 205/ 2097

Table 2: Average Hausdorff errors of different classes of objects, learning from point clouds with different sizes (256,512,1024
and 2048). For each size, the two lines represent the errors of MATSs from (1st line) ground truth, (2nd line) our method of
P2MAT-NET-N-S, respectively. “# / #” represent the errors of “Surface to MAT / MAT to Surface”.

4.8. 8D Shape Classification from Point Clouds

The computed MAT can be used as an intermediate descriptor for downstream applications such as 3D
shape classification from point clouds. In this section, we use the computed MAT of the 79.02% objects in
ModelNet40 in shape classification task by using MAT-Net Hu et al. (2019). We generate MAT for those
point clouds in the testing set, and use the sphere-bounding and normal-refinement strategies to optimize
the predicted spheres, then construct the connectivity of MAT with the default parameters. Here we denote
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our method as “Ours w/ MAT-Net”.

We compare our method with state-of-the-art methods: PointNet Qi et al. (2017a), PointNet++ Qi et al.
(2017b), PointCNN Li et al. (2018b), O-CNN Wang et al. (2017) and DGCNN Wang et al. (2019). We use
the codes of these methods provided by their authors on Github. For PointNet, PointNet++, PointCNN
and DGCNN, we use the same point sets as ours. The grouping method of PointNet++ is multi-scale
grouping(MSG). The PointCNN is trained on the same setting of network structure and hyper parameters
configured in modelnet_x3_14. For O-CNN, we generate the octree data with the original meshes with the
default octree depth 6. The resolution of leaf octants is 643.

Method Rep. #In  Acc. | #In Acc. | #In  Acc. | #In  Acc.
O-CNN(6) octree 64>  89.5 | - - - - - -
PointNet Xyz 256 86.1 | 512 86.9 | 1024 87.8 | 2048 87.3
PointNet++(MSG) Xyz 256 86.1 | 512 87.1 | 1024 88.3 | 2048 88.8
xyz+normal | 256 87.1 | 512 88.9 | 1024 90.4 | 2048 90.2
PointCNN xyz+normal | 256 87.8 | 512 88.3 | 1024 89.8 | 2048 91.3
DGCNN xyz+normal | 256 87.8 | 512 88.3 | 1024 89.9 | 2048 -
Ours w/ MAT-Net(sphere) XyZTr 256  90.8 | 512 91.2 | 1024 91.0 | 2048 91.2
Ours w/ MAT-Net(3 features) || xyzr 256 91.8 | 512 91.7 | 1024 90.9 | 2048 91.0

Table 3: Object classification accuracy on the same 79.02% objects of ModelNet40 dataset. “#In” represents the number of
point cloud except that it is the resolution of leaf octants for O-CNN. “Acc.” represents the overall accuracy.

Table 3 compares the classification performance of different methods. The object classification results
of all methods are computed without voting. “MAT-Net (3 features)” in the table represents using the
spheres, the Edge Index Matrix, and the Edge Mask Matrix computed by the K nearest neighbors (K = 16)
of spheres by using MAT-Net Hu et al. (2019). We can see that even using only the spheres, MAT-Net
(spheres) can get an accuracy better than PointNet, PointNet++, O-CNN and DGCNN with different sizes
of point cloud. The results of PointNet, PointNet++ and DGCNN are not as good as the results reported
in the corresponding papers Qi et al. (2017a,b), which may be caused by the non-uniformly and sparsely
sampled point sets that we use. Compared with using only the spheres, adding the local edge features to
MAT-Net does not improve the overall accuracy when using 1024 or 2048 spheres for each shape, because
of the redundant information residing in the topology of high resolution MAT, as compared to the best
classification results of using 256 spheres in MAT-Net Hu et al. (2019). This further proves the competitive
advantage of MAT by using less information in shape classification tasks.

5. Discussion and Future Work

In this paper, we propose a neural network, namely P2MAT-NET, to transform sparse point clouds to
spheres approximating MAT of the 3D shape. To the best of our knowledge, this is the first method that
can compute MAT from point clouds of such sparsity, i.e., only 256 / 512 / 1024 / 2048 points for each
object. P2MAT-NET is effective in learning the pattern of point cloud, and stable even for transforming
incomplete or noisy point clouds. Despite the fundamental breakthrough, there are still several limitations
in our current method, which we plan to address in the future.

Firstly, although our P2MAT-NET demonstrates the best performance in computing MAT from point
clouds, the way for constructing the connectivity of MAT is only a simple attempt. There is no guarantee
that our connectivity construction can either re-produce or converge to the ground truth. We would like to
explore this challenging geometric and topological problem in the future.

Secondly, MAT is naturally a very compact representation of the surface, and it does not need to have
the same cardinality as the number of sampling points on surfaces. As shown in MAT-Net Hu et al. (2019),
MAT with 256 spheres can already provide very good classification accuracy for 3D shapes. How to learn
medial spheres of less cardinality than the size of point set, instead of through the one-to-one displacement,
is another interesting topic for the future.
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Appendix A. Data Augmentation Factor

Some subsets in ModelNet40 are augmented by random rotation of each paired data to increase their
sizes by 3 to 10 times. Table A.4 shows the augmentation factors for each subset of ModelNet40.

Fac. | airplane bathtub bed bench  bottle bookshelf bowl car night. cone
T v v v
3

5 v v
10 i v i i

Fac. cup curtain desk door  dresser flower. piano guitar keyboard lamp
1
3 Vv

5 v v VAR
L VAR, v v Y

Fac. | laptop mantel monitor chair  person glass. plant  radio range. sink
1 v Vv
3 v

5 v
10 v v A v v v

Fac. sofa stairs stool table tent tv stand  toilet vase  wardrobe xbox
1 v v
3 v

10 A v v Vv Vv v

Table A.4: Augmentation factors for each subset in ModelNet40.

Appendix B. Selection of the Geometric Loss

We use the L2 norm of predicted sphere m of input point p and its footprint sphere m to measure the
mismatch between them, other than the L1 norm between them. That’s because that when using the L2
norm, the corresponding Hausdorff errors of computed MATSs are smaller than using the L1 norm, as shown
in Table B.5. “# / # 7 represent the errors of “P2MAT-NET” and “P2MAT-NET-N-S”.
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airplane chair
L1 norm 1.83 / 1.59 3.44 / 3.18
L2 norm 1.53 / 1.23 4.00 / 2.53

Table B.5: Average Hausdorff errors with different geometric loss on 2048 spheres.

Appendix C. Results on Computing MAT from Point Cloud

In this section, we show more results of P2MAT-NET for computing MAT from point cloud of different
sizes (256, 512, 1024 and 2048 respectively), and more comparison results with the Power Crust method,
the Poisson & Q-MAT+ method, the SPR & Q-MAT+ method and the QR method.

Appendiz C.1. On the Size of Point Cloud

We test P2MAT-NET on point clouds with sizes of 256, 512, 1024 and 2048 respectively. Figure C.15—
C.18 demonstrate that P2MAT-NET is able to learn proper transformations and obtain MAT even from
sparse point clouds.

(a) b (© (@)

Figure C.15: More testing results on different types of shapes with 256 points as input. (a) The surface mesh, (b) testing
point cloud, (c¢) the refined predicted spheres with both the normal-refinement strategy and the sphere-bounding strategy, (d)
ground truth spheres.

Appendiz C.2. Comparison with Power Crust

We compare our method with Power Crust, which is a sampling-based method, on point cloud of size
2048. Taking the point cloud as the input of P2MAT-NET, we predict spheres with the same cardinality
and refine them with the sphere-bounding strategy. Figure C.19 illustrates the comparison result on a guitar
object. As mentioned, Power Crust could generate many isolated large spheres outside the object. Due to
the limit of paper length, we show the result in this supplementary document. For a complete show of the
computed MAT with Power Crust, Figure 19(c) and 19(d) are rendered in a different view from the other
sub-figures. By comparing the result in Figure 19(d) and Figure 19(g), it is noticed that there are some
isolated spheres with their centers outside the object. Besides, the computed edges in Figure 19(i) have
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(a) (b) (c) (d)

Figure C.16: More testing results on different types of shapes with 512 points as input. (a) The surface mesh, (b) testing
point cloud, (c) the refined predicted spheres with both the normal-refinement strategy and the sphere-bounding strategy, (d)
ground truth spheres.

large error with the ground truth. Figure C.20 shows more comparison results of the Power Crust and our
method. Typically, for the result on the plant object in Figure C.20, quite a few edges of medial axis are
computed. The centers of the computed spheres by Power Crust on the plant object and the lamp object
are also illustrated in Figure 21(d) for a clear observation on the constructed edges of MAT by Power Crust.

Appendiz C.3. Comparison with Poisson € Q-MAT+ Method and SPR & Q-MAT+

The Poisson & Q-MAT+ method or the SPR & Q-MAT+ is taken as a way for computing MAT from
point cloud by computing MAT from the reconstructed surface mesh of the object. By assuming that the
normals of point cloud is a priori, the Poisson Surface Reconstruction method is firstly used to reconstruct
the surface mesh from the point cloud, and Q-MAT+ is then applied on the reconstructed surface mesh
to compute the corresponding approximated MAT in the Poisson & Q-MAT+ method or in the SPR &
Q-MAT+. For fair comparison, we take the same point set of size 2048 as input, the predicted spheres
from P2MAT-NET are refined by both the normal-refinement and sphere-bounding strategies. Figure C.21
compares the results on the Poisson & Q-MAT+ method, the SPR & Q-MAT+ method and our P2MAT-
NET-N-S method. It is noticed that the poor reconstructed mesh of the input point cloud leads to the poor
MAT approximation of the input point cloud, even when the ground truth normal of the point cloud is given
and used in the reconstruction of mesh. Table C.6 shows the comparison on the average Hausdorff errors of
the Poisson & Q-MAT+, the SPR & Q-MAT+ method and our our P2MAT-NET-N-S method on point set
with 256 and 2048 points.

Appendiz C.4. Comparison with the GR method

The GR method could reconstruct meshes from the sparse point clouds. We use the two-sided Hausdorff
distance to evaluate the reconstruction accuracy. Figure C.22 compares the results on the GR method and
our method.
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Figure C.17: More testing results on different types of shapes with 1024 points as input. (a) The surface mesh, (b) testing
point cloud, (c) the refined predicted spheres with both the normal-refinement strategy and the sphere-bounding strategy, (d)
ground truth spheres.

Figure C.18: More testing results on different types of shapes with 2048 points as input. (a) The surface mesh, (b) the testing
point cloud, (c) the refined predicted spheres with both the normal-refinement strategy and the sphere-bounding strategy, (d)
ground truth spheres.
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Figure C.19: Comparison with Power Crust on MAT computation on guitar with 2048 points as input. (a) The testing point
cloud, (b) the ground truth medial spheres, (c) the spheres computed by the Power Crust method with (d) the centers of the
spheres, (e) our refined predicted spheres with the sphere-bounding strategy, (f) the centers of ground truth spheres, (g) partial
of the centers of spheres computed by Power Crust, (h) the ground truth medial edges, (i) the computed medial edges of Power
Crust, and (j) our computed medial edges from spheres in (c).

airplane bed chair sofa guitar monitor
© 2397 /780 16.95/16.24 2898 /19.11 15.49 /10.43 33.15/8.19 1943 /16.52
2| 12.83 /23.05 13.81 /19.26 18.39 /27.46 10.37 /889 559 /10.86 12.49 /23.35
520 /439 13.06 / 12.80 11.45 / 7.26 7.60 / 6.07 4.00 /244 1098 / 6.24
w | 10.49 /445 11.66 / 13.27 19.07 / 11.27  8.53 / 6.71 445 /398  8.67 / 12.55
§ 2.95 / 2.75 6.00 / 11.78  5.52 / 10.44 5.13 / 5.01 245 /221 411/ 15.14
0.98 / 1.17 2.50 / 3.61 1.78 / 2.43 2.49 / 3.95 1.04 / 1.29 1.98 / 2.65

Table C.6: Average Hausdorfl errors of different classes of objects, learning from point clouds with different sizes (256,/2048).
For each size, the three lines represent the errors of MATS from (1st line) the Poisson & Q-MAT+ method, (2nd line) the SPR
& Q-MAT+ method, (3rd line) our method of P2MAT-NET-N-S, respectively. “# / #” represent the errors of “Surface to
MAT / MAT to Surface”.

Appendix D. Comparison on Average Accuracy of Object Classes

The computed MAT from the point cloud can be used as an intermediate descriptor for downstream
applications, 3D shape classification in our experiments, by using MAT-Net. In this section, we compare
our methods “Ours w/ MAT-Net (sphere)” which uses only the refined predicted spheres and “Ours w/
MAT-Net (3 features)” which uses both the spheres and the topolofy information of MATSs, with the state-
of-the-art symmetric pooling-based approaches processing features of point clouds. Table D.7-D.10 report
the average accuracy of those object classes with significant differences in classification accuracy, with point
clouds of different sizes (256, 512, 1024 and 2048 respectively).
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Method avg.class bathtub ward. radio cone person dresser desk

PointNet++ 79.2 0.79 0.73 055 0.82 081 0.80 0.71
PointCNN 78.0 0.45 0.67 0.55 0.64 0.88 0.76 0.63
DGCNN 79.9 0.76 0.73 0.60 0.82 0.88 0.73 0.81
Ours w/ MAT-Net(sphere) 85.0 0.86 093 065 073 1.00 0.74 0.79
Ours w/ MAT-Net(3 features) 86.5 0.90 0.73 0.75 0.73 1.00 0.74  0.81

Table D.7: The classification accuracy of those object classes with significant differences in accuracy with 256 points (spheres).

Method avg.class bathtub bench cone person stairs stool  tv.

PointNet+-+ 79.5 0.79 0.75 0.82 0.69 0.56  0.75 0.85
PointCNN 81.2 0.55 0.75 0.73 0.94 0.88 0.69 0.80
DGCNN 79.3 0.76 0.75 0.82 0.88 0.63 0.81 0.80
Ours w/ MAT-Net(sphere) 84.9 0.83 081 073 088 0.94 0.81 0.93
Ours w/ MAT-Net(3 features) 85.2 0.76 0.81 0.82 094 088 0.81 0.85

Table D.8: The classification accuracy of those object classes with significant differences in accuracy with 512 points (spheres).

Method avg.class bathtub bottle cone night. range. table stool
PointNet++ 83.9 0.90 0.95 064 0.65 0.93 0.86 0.81
PointCNN 83.6 0.62 091 0.73 0.78 0.88 0.79 0.75
DGCNN 79.9 0.76 0.95 0.73 0.69 0.91 0.85 0.81
Ours w/ MAT-Net(sphere) 83.1 0.83 095 0.82 0.82 096 0.92 0.75
Ours w/ MAT-Net(3 features) 83.8 0.79 098 073 0.71 091 0.92 0.88

Table D.9: The classification accuracy of those object classes with significant differences in accuracy with 1024 points (spheres).

Method avg.class bathtub bench cup night. person range. table
PointNet++ 83.8 0.76 0.81 0.50 0.59 0.81 0.93 0.86
PointCNN 85.5 0.79 0.81 050 0.71 0.94 0.86 0.81
Ours w/ MAT-Net(sphere) 85.6 0.76 0.69 0.58 0.89 0.81 0.94 0.77
Ours w/ MAT-Net(3 features) 83.5 0.83 0.56 042 0.85 0.88 0.93  0.87

Table D.10: The classification accuracy of those object classes with significant differences in accuracy with 2048 points (spheres).
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Figure C.20: More comparison results with the Power Crust method on MAT computation with 2048 points as input. (a) The
testing point cloud, (b) the ground truth medial spheres, (c) our refined predicted spheres with the sphere-bounding strategy,
(d) the computed medial edges of Power Crust, (e) the ground truth medial edges, (f) our computed medial edges from spheres
in (c).
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Figure C.21: More comparison results with the Poisson & Q-MAT+ method and the SPR & Q-MAT+ method with 2048
points as input. (a) The testing point cloud, (b) the Poisson reconstructed mesh, (c) the result of Q-MAT+ from the surface
of (b), (d) the SPR reconstructed mesh, (e) the result of Q-MAT+ from the surface of (d), (f) the ground truth MAT, (g) the
refined predicted spheres of P2MAT-NET with both the sphere-bounding and normal-refinement strategies, (h) the computed
MAT with connectivity from spheres in (g).

€=2025 €=0937

€ =197 € =0.60

Figure C.22: More comparison results with the GR method on mesh reconstruction with 2048 points as input. (a) The
testing point cloud, (b) the surface mesh, (c) reconstructed mesh with the GR method, (d) the refined predicted spheres with
sphere-bounding strategy, (e) the computed MAT with connectivity from spheres in (d).
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