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Abstract
Superpixels have been widely used as a preprocessing step in various computer vision tasks. Spatial compactness and color
homogeneity are the two key factors determining the quality of the superpixel representation. In this paper, these two objectives are
considered separately and anisotropic superpixels are generated to better adapt to local image content. We develop a unimodular
Gaussian generative model to guide the color homogeneity within a superpixel by learning local pixel color variations. It turns
out maximizing the log-likelihood of our generative model is equivalent to solving a Centroidal Voronoi Tessellation (CVT)
problem. Moreover, we provide the theoretical guarantee that the CVT result is invariant to affine illumination change, which
makes our anisotropic superpixel generation algorithm well suited for image/video analysis in varying illumination environment.
The effectiveness of our method in image/video superpixel generation is demonstrated through the comparison with other
state-of-the-art methods.

1. Introduction

Images can be compactly represented by a collection of percep-
tually meaningful over-segments. This higher-level representation
can greatly reduce the computation complexity. Compared with
the multi-resolution representation, it captures structure boundaries
and provides better support for region-based features [WZG∗13].
Thus, superpixels have been widely used as a preprocessing step
in various computer vision tasks, such as segmentation [FH04,
LSK∗09, ASS∗12], object tracking [YLY14], stereo 3D reconstruc-
tion [MK10] and interactive image cutout [LSTS04].

Video over-segmentation generalizes the clustering from spatial
pixels to spatio-temporal pixels. It is a challenging task since the
temporal dimension can introduce camera-motion, object occlusion,
non-rigid deformation, changes in scale, perspective and illumina-
tion [GCS12]. Compared with image over-segmentation, a good
video superpixel representation consider additional metrics, such
as spatio-temporal coherence [XC12, CWFI13] and video length
scalability [GKHE10].

We discuss the generation of superpixels with spatial compactness
and color homogeneity. In this paper, these two objectives are con-
sidered separately and anisotropic superpixels are generated to better
adapt to local image contents. We develop an unimodular Gaussian
generative model to guide the color homogeneity within a super-
pixel by learning local pixel color variations. It turns out maximizing
the log-likelihood of our generative model is equivalent to solving
an Centroidal Voronoi Tessellation (CVT) problem. Moreover, we
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provide the theoretical guarantee that the CVT result is invariant
to affine illumination change, which makes our anisotropic super-
pixel generation algorithm well suited for image/video analysis in
varying illumination environment. The effectiveness of our method
in image/video superpixel generation is demonstrated through the
comparison with other state-of-the-art methods.

2. Existing Works

Image Superpixels: Image superpixel generation algorithms can
be coarsely divided into graph-based methods and clustering-based
methods.

Treating image pixels as individual nodes, graph-based methods
use probabilistic connections to model the probability of node’s
hidden object class. Naturally, the superpixel generation is to find a
partition minimizing a well defined graph partition cost. The widely
used methods include Nyström normalized cut [SM00, FBCM04],
the Felzenszwalb-Huttenlocher method [FH04], Superpixel Lat-
tices [MPW∗08] and Weighed Aggregation [SBB00, SGS∗06].

For the clustering-based methods, usually a criteria is defined to
measure the appropriateness of grouping pixels into a cluster. The
clustering is iteratively refined until energy convergence. Existing ap-
proaches include Meanshift [FH75, CM02], Turbopixels [LSK∗09],
Simple Linear Iterative Clustering (SLIC) [ASS∗12], Structure Sen-
sitive Superpixels (SSS) [WZG∗13] and Manifold SLIC [YJLH16].
We consider our method as one of the clustering-based methods.

Video Superpixels: With the temporal dimension intro-
duced, video over-segmentation is a natural extension of im-
age over-segmentation. Depending on the scalability of video
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Figure 1: An illustration of superpixels obtained by FH [FH04], SLIC [ASS∗12], Manifold SLIC [YJLH16] and our method. We notice FH
superpixels lack spatial compactness. Compared with SLIC and Manifold SLIC, our result provides better boundary adherence. Also the
small toys are nicely captured by our method. See Sec. 6.1 for detailed comparison on segmentation error, boundary recall and achievable
segmentation accuracy.

length [GKHE10], video superpixel generation algorithms can be
classified into offline algorithms and streaming algorithms.

Offline video superpixel algorithms require the video to be avail-
able in advance and short enough to fit in memory. To enforce
the locality of superpixel boundaries over different frames, a pop-
ular approach [XC12] is to use volumetric representation along
different frames. Due to the fact that object with non-negligible mo-
tion may contradict with the neighborhood definition of volumetric
data, it has been noticed [GKHE10] that this technique does not
improve the long-term spatio-temporal coherence. Thus, many algo-
rithms [GKHE10,CWFI13] treat the temporal dimension differently
and infer pixel correspondences across frames. Then the nodes in
the 3D graph are connected by the inferred flow vectors with robust
long-term correspondences.

To achieve video length scalability [GKHE10], streaming algo-
rithms usually apply a window range and their results are the ap-
proximation of their corresponding offline algorithms. Our method
is a streaming algorithm since it process the video frame by frame.
To avoid unstable segmentation results when frames are treated inde-
pendently, we optimize the superpixels of each frame from the final
result of its previous frame. Due to the affine illumination invariant
property in Sec. 4.4, our over-segments are optimized mainly to
accommodate local structure motions.

CVT on Superpixel Generation: CVT [DFG99] has been a
widely used tool to generate isotropic tessellations on surfaces.
Its application on image processing was introduced by Du et
al. [DGJW06]. SLIC [ASS∗12] extends the concept of Voronoi
cells to superpixels. More specifically, SLIC computes the CVT on
the image manifold in a Euclidean space with location and color
information combined. Even though SLIC produces uniform super-
pixels, it is observed that [WZG∗13] image representation quality
could be improved by adapting superpixel densities according to im-
age contents. Thus, SSS [WZG∗13] and Manifold SLIC [YJLH16]
generate structure sensitive superpixels, whose size are carefully
adapted w.r.t. local color variation.

3. Preliminaries

Since our work is closely related to SLIC [ASS∗12] and Maha-
lanobis CVT (MCVT) [RA15], we briefly introduce these works
before our anisotropic superpixels.

3.1. SLIC

For a pixel x = (u,v) in 2D image I, SLIC represents its color
in CIELAB space c(x) = (l(x),a(x),b(x)). The distance of two
pixels is measured as the normalized Euclidean distance inR5 with
location and CIELAB color information combined, i.e.,

d(x1,x2) =
√

(dx/Ns)2 +dc/Nc)2, (1)

where Ns and Nc are two constants to balance the inconsistency
of spatial and color proximity. dx and dc are the spatial and color
Euclidean distances respectively:

dx = ||x1−x2||2 ,

dc = ||c(x1)− c(x2)||2 .

Starting from k evenly sampled cluster center {xi}k
i=1, SLIC

uses the classic k-means algorithm to optimize the partition based
on the distance measure of Eq. 1. Mathematically speaking, SLIC
is an application of CVT on superpixel generation. Denote the
corresponding 5D point of each pixel x as p = (x/

√
Ns,c(x)/

√
Nc),

SLIC partitions the image I by the Voronoi cells {Ci}k
i=1 when

centroids coincide with sites. As discussed by Du et al. [DFG99], it
is the minimizer of the following CVT energy function:

E({Ci}k
i=1) =

k

∑
i=1

∑
p∈Ci

||p− p̄(Ci)||2 ,

where p̄(C) is the centroid of the cell: p̄(C) = ∑
p∈C

p/ |C|.

SLIC generates uniform and isotropic partitions due to its
CVT nature. SLIC has been extended to adaptive partitions by
SSS [WZG∗13] and Manifold SLIC [YJLH16]. It is well known that
image has an anisotropic nature of its contents. As its consequence,
anisotropic diffusion [Wei96] has been proven to be an effective
technique to reduce image noise without removing significant parts.
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Thus, our idea is to provide an anisotropic superpixel representation
where the anisotropy of each Voronoi cell is adapted according to
local image contents.

3.2. MCVT

For surface segmentation with anisotropic Voronoi cells, Richter
and Alexa [RA15] propose MCVT to learn the local distance metric
from the embedding of the surface. MCVT adopts a variant of the
Anisotropic CVT (ACVT) energy [DW05] and the metric itself is
part of the unknowns to be optimized.

MCVT models the energy of each cell as the integral of distances
from an observation point to all the points w.r.t. a metric to be
optimized:

EMCVT(C) = min
p̂,M=M>,|M|=1

∫∫
C

(p− p̂)>M(p− p̂)dp, (2)

where the unknowns p̂ and M are the observation point and metric
correspondingly; p refers to all the points in the cell. Note MCVT
constrains the determinant of the metric to unity to avoid the trivial
zero matrix being the optimized metric.

Considering a fixed cell C, it is shown the observation point
minimizing Eq. 2 is the centroid. Meanwhile, the optimal metric
is the inverse covariance matrix normalized to have unit determi-
nant [RA15]:

p̂ = p̄(C),

M = |U(C)|
1
d U−1(C),

(3)

where U(C) is the covariance matrix; |U(C)| is its determinant and
d is the matrix dimension which guarantees |M|= 1.

This solution is a continuous analogy to the Mahalanobis distance
up to scale. It is pointed out [CGL∗15] that the optimized metric
in Eq. 3 provides the optimal anisotropy for surface approximation.
Substituting the learned metric into Eq. 2, the energy of the cell can
be concisely represented as:

EMCVT(C) = |U(C)|
1
d .

4. Anisotropic Superpixels

In this section, we formally describe our anisotropic superpixels in
an energy optimization framework. The optimization method and
implementation details are introduced in Sec. 5.

4.1. Problem Formulation via Energy Optimization

Given a 2D image I with domain Ω, we denote a tessellation of I
with k disjoint partitions as a k-partition P = {Ci}k

i=1, which satis-
fies Ci∩C j = ∅ for i 6= j, and ∪iCi = Ω. Clearly, not all k-partitions
are suitable to serve as superpixel representations. Our goal is to de-
fine an energy function E(P) to identify the inappropriateness. We
expect the minimizer of the energy function E(P) to characterize
the following desired properties for each partition region Ci.

i Connectedness: Ci is a simply connected region.
ii Compactness: For non-boundary/non-feature regions, Ci exhibits

regular shape pattern rather than being bad-shaped.

iii Content Awareness: The anisotropy and size of Ci should be
adaptive to local image contents.

iv Boundary Preservation: The shape of Ci should be adapted ac-
cordingly to preserve object boundaries if necessary.

To let a k-partition P be a good superpixel representation, we
have two expectations: spatial compactness and color homogeneity.
More specifically, these two expectations are conflicting by them-
selves. i.e., properties i and ii require the spatial compactness of
each partition region regardless of image contents. On the contrary,
properties iii and iv care its color homogeneity and encourage the
necessary sacrifice on the region’s shape.

Pixels carry two kinds of information: location and color.
SLIC [ASS∗12] adopts the normalized Euclidean distance in R5

by assuming location and color are homogeneous dimensions. It
is worth noting that due to the heterogeneity of location and color,
structure sensitive superpixels [WZG∗13] incorporates a dedicated
density function to capture the change of image structures.

From our point of view, decoupling location with color informa-
tion clarifies their difference in essence. We introduce two different
energy terms to measure the spatial compactness and color homo-
geneity, respectively:

E(P) = Ecolor(P)+Espatial(P)

=
k

∑
i=1

Ecolor(Ci)+λEspatial(Ci),
(4)

where λ is a constant balancing the relative importance of the expec-
tations.

4.2. Unimodular Gaussian Generative Model

In this section, we propose a unimodular Gaussian generative model
to measure the possibility of observing a specific pixel color in
a meaningful over-segment C. The color homogeneity energy is
defined in Sec. 4.3 based on this model.

We start by introducing Gaussian generative model to superpixel
generation. For each meaningful over-segment C, it is associated a
color proxy θ with two hidden parameters to be optimized θ= (c̄,∆),
i.e., c̄ is the unbiased over-segment color, ∆ is a d × d symmetry
positive definite matrix describing the variation of the generated
pixel color. Here d is the dimension of the color space. Typically we
consider d = 3 for RGB images.

The probability density function (PDF) of θ to generate random
variable c is modeled by the multivariate Gaussian distribution:

p(c|θ) = 1

(2π)
d
2 |∆|

1
2

exp(−d(c,θ)
2

),

where d(c,θ) is the bias between a random generated pixel color c
and the color proxy θ:

d(c,θ) = (c− c̄)>∆
−1(c− c̄). (5)

It is possible that ∆ can be overfitted to explain the high variation
contents spanning over different objects. To restrict the descriptive
ability of the Gaussian generative model, we introduce the unity
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determinant constraint: |∆|= 1. We denote this constrained model
as unimodular Gaussian generative model. Its PDF becomes:

p(c|θ) = 1

(2π)
d
2

exp(−d(c,θ)
2

).

4.3. Color Fitting Objective

Suppose the pixel color values are independent and identically dis-
tributed (IID). The probability that the color proxy θ generates the
observed cluster C is:

p(C|θ) = ∏
x∈C

p(I(x)|θ).

For clarity, we use the log-likelihood:

ln p(C|θ) =−1
2
(d |C| ln(2π)+ ∑

x∈C
d(I(x),θ)),

where |C| is the number of pixels in C.

For a fixed cluster C, its color homogeneity is defined as the
maximum log-likelihood among all possible color proxies:

Ecolor(C) = max
c̄,∆=∆>,|∆|=1

− 1
2
(d |C| ln(2π)+ ∑

x∈C
d(I(x),θ)).

When evaluating Ecolor(P), it is clear the first term is a constant
when summing over all clusters. Thus the color fitting objective has
a more concise representation:

Ecolor(C) = min
c̄,∆=∆>,|∆|=1

∑
x∈C

d(I(x),θ)

= min
c̄,∆=∆>,|∆|=1

∑
x∈C

(I(x)− c̄)>∆
−1(I(x)− c̄).

(6)

Note that Eq. 6 is actually the discrete form of the MCVT en-
ergy shown in Eq. 2. Thus maximizing the log-likelihood of our
generative model is equivalent to solving MCVT in a discrete man-
ner. Not surprisingly, its optimization leads to the optimal unbiased
color c̄? being the mean value of the observations; (∆?)−1 being the
normalized inverse covariance matrix:

c̄? = ∑
x∈C
I(x)/ |C| ,

(∆?)−1 = |Uc(C)|
1
d U−1

c (C).
(7)

Note Uc(C) is the covariance matrix for the observed pixel color
values: Uc(C) = ∑

x∈C
(I(x)− c̄)(I(x)− c̄)>.

The proof for Eq. 7 is provided in the supplementary material
for completeness. It is shown clearly in Eq. 7 that the color fitting
objective has a Mahalanobis form when the unimodular Gaussian
generative model is adopted to explain the observed data. Actually,
the color fitting energy can be simply evaluated from the covariance
matrix of the cluster by substituting Eq. 7 into Eq. 6:

Ecolor(C) = |Uc(C)|
1
d . (8)

It is shown the color fitting energy, which has a Mahalanobis
form similar to MCVT [RA15], has a probabilistic interpretation
for superpixel generation. With the assumption of generating pixel
color from its color proxy by Gaussian probability IID, the energy

in Eq. 8 stands for the log-likelihood of observing all image pixels
(up to a constant difference). Also, there is a fundamental difference
between Eq. 8 and the MCVT energy of modeling the image as
a surface. Eq. 8 only considers the color information within each
over-segment. The spatial compactness requirement is discussed in
Sec. 4.5.

4.4. Affine Illumination Invariant Property

Let us consider the color fitting energy for image pair I and I
′

in
different illumination environments. For general lighting environ-
ment variation [SMT13], such as illumination intensity/direction
change and ambient light change, the affine variation accounts for
the relationship between pixel color values:

I
′
(x) = AI(x)+b, (9)

where A is the linear transformation; b is the translation vector.

There are literatures aim to reduce the effect of illumination
variation by color transformations. Normalized cross-correlation
(NCC) [FVT∗93] and adaptive NCC (ANCC) [HLL11] are popular
transform-based methods to preprocess the image (or the support
window) to have a zero mean and unit standard deviation. Usually
the color channels are processed separately. Normalized correlation
methods are not effective to handle illumination variation [KHKS14].
The main reason is that the affine illumination variation causes color
channels to influence each other. With this cross-channel informa-
tion encoded in the covariance matrix, it is shown [KHKS14] that
the Mahalanobis distance is an invariant measure under affine illu-
mination change.

Different from the previous paper [KHKS14], we show the Ma-
halanobis distance can be used to achieve partition invariant under
affine illumination change. In the remainder of the section, we il-
lustrate the affine illumination invariant property for the defined
color homogeneity in Sec. 4.3: the optimal k-partition minimizing
Ecolor(P) is invariant under affine illumination change.

Lemma 1 Under affine illumination change, for every point x
in the fixed partition P , the bias between the pixel color and its
associated optimal color proxy θ

? is multiplied by a same constant
factor, i.e., ∀x d(I

′
(x),θ

′?
) = |A|

2
d d(I(x),θ?).

Proof The optimal color proxy θ
′?
= (c̄

′?
,∆

′?
) under affine illu-

mination change can be easily solved following Eq. 7:

c̄
′?
= Ac̄?+b.

It is easy to verify U
′
c(C) = AUc(C)A>, thus

(∆
′?
)−1 = |A|

2
d |U(C)|

1
d (AU(C)A>)−1

= |A|
2
d (A>)−1(∆?)−1A−1.

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.



Y. Cai & X. Guo / Anisotropic Superpixel Generation Based on Mahalanobis Distance

Substituting the new optimal color proxy into Eq. 5,

d(I
′
(x),θ

′?
)

= d(AI(x)+b,θ
′?
)

= (A(I(x)− c̄?))>(|A|
2
d (A>)−1(∆?)−1A−1)(A(I(x)− c̄?))

= |A|
2
d (I(x)− c̄?)>(∆?)−1(I(x)− c̄?)

= |A|
2
d d(I(x),θ?) 2

Lemma 2 If the k-partition P is a minimizer of Ecolor(P) for
image I, P must also be a minimizer for image I

′
.

Proof Since the energy of each cell in Eq. 6 is equivalent to the
MCVT energy, each partition Ci ∈ P must be the Voronoi region
Ci = {x ∈Ω |d(I(x),θ?i )< d(I(x),θ?j) for∀ j 6= i}.

According to Lemma 1, each region is also the Voronoi region
for I

′
, i.e., Ci = {x ∈ Ω | d(I

′
(x),θ

′?

i ) < d(I
′
(x),θ

′?

j ) for∀ j 6= i}.
Thus, P is the MCVT minimizing the energy for I

′
. 2

4.5. Spatial Compactness

It has been shown that minimizing CVT energy is closely related to
the maximization of the compactness of Voronoi cells [LWL∗09].
We adopt this observation and apply the CVT energy on the spatial
information as the regularizer in Eq. 4. Different from previous
approaches, we propose the CVT energy from the perspective of
covariance matrix. This reformulation via covariance matrix allows
us to calculate CVT energy in the same way as the color fitting
energy of Eq. 8.

For a fixed cluster C, the CVT energy is defined as its inertia
momentum:

Espatial(C) = ∑
x∈C
||x− x̄(C)||2 .

It is easy to see the it is equivalent to the trace of the cluster pixels’
covariance matrix:

∑
x∈C
||x− x̄(C)||2 = Tr( ∑

x∈C
(x− x̄(C))>(x− x̄(C))

= ∑
x∈C

Tr((x− x̄(C))(x− x̄(C))>)

= Tr(Us(C)).

(10)

Here Us is the covariance matrix for pixels spatial coordinates:
Us(C) = ∑

x∈C
((x− x̄(C))(x− x̄(C))>). We use Eq. 10 to regularize

the spatial compactness for superpixel generation.

5. Image/Video Superpixel Generation

5.1. k-partition Optimization

From the perspective of energy optimization, there are two widely
used approaches for MCVT computation: the Lloyd relaxation
scheme [Llo82] and the quasi-Newton approach [LWL∗09]. Yet,
our problem is in a discrete manner with pixel clustering, this op-
timization process can be greatly accelerated with a variational
merging-swapping framework [CGZM15].

Figure 2: Illustration of image superpixel generation by computing
optimal k-partition.

The merging step reduces the partition number from the num-
ber of pixels to k in a greedy Quadric Error Metric (QEM) fash-
ion [GH97]. Initially, each pixel is treated as an individual clus-
ter. Clusters may choose to merge with its direct neighbors with
the amount of increased energy as the merging cost, i.e., for a
cluster-pair merging(Ci,C j)→Ck, the total increase amount is sim-
ply E(Ck)−E(Ci)−E(C j). All possible cluster-pairs are stored in
a min-heap with the least cost pair performed at each time. Only a
local computation is needed to update the heap after each merging.

The swapping step optimizes the k-partition by relaxing the pixel
binding during successive merging. It is encouraged to swap pixels
to neighboring cluster if the swapping decreases the energy. These
pixel swappings can be launched in an iterative scheme [CGZM15]
until energy convergence. In each iteration, boundary pixels are
tested on whether their swappings could possibly decrease the total
energy, i.e., for a boundary pixel x ∈ Ci neighboring with C j, the
energy changes from the state of (Ci,C j) to (Ci− x,C j + x). If a
pixel can be swapped to multiple neighboring clusters, the one with
largest energy decrement would be selected.

5.2. Image/Video Superpixel Generation Overview

Image superpixels can be generated directly using the merging-
swapping scheme described in Sec. 5.1. Like SLIC [ASS∗12], our
k-partition optimization does not enforce cluster connectivity. For
"orphaned" pixels disconnected from the main component of the
cluster, we compute the merging costs with their direct neighbor
clusters. These pixels are assigned to the least cost neighbor cluster
using the merging operation defined in Sec.5.1. Clusters are guar-
anteed to be connected after the post-processing. Fig. 2 illustrates
image superpixel generation process.

Since our color fitting objective has taken the illumination change
into account, the partition of successive video frames only change
slightly with the assumption of only small changes in the scene. It
is natural to extend the discrete variational optimization approach

c© 2016 The Author(s)
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Figure 3: Flowchart of the proposed video superpixel generation framework based on the swapping operations.

to video superpixels. The optimal k-partition of the first frame is
computed with the same approach as image superpixel generation.
For successive frames, only swapping operations are required for
local update on the k-partition of the previous frame. Note our
approach is a streaming method for video processing. The required
memory remains constant regardless of the video length. The flow
chart of our proposed video superpixel generation framework is
listed in Fig. 3.

5.3. Implementation Details

During the superpixel generation, we track two sets of controids
and covariance matrices with respect to color and pixel coordinates
respectively. For merging or swapping operations, the update of
these statistics can be efficiently assembled from the altered clusters
in O(1) computation, without the need to sum over all pixels. We
provide the update rules in Appendix. The change of energies are
also easy to evaluate from these matrices using Eq. 8 and Eq. 10.

Merging Initialization: When each over-segment has less than
d +1 distinct pixel colors, its covariance matrix is degenerate and
the color homogeneity fails to learn an effective proxy. Thus it
becomes a waste to start the merging process with each pixel as
an individual cluster. For our implementation, the merging step
is initialized by dividing the image into blocks, i.e., the image is
equidistantly divided into 25k blocks. With this initialization, the
number of cluster-pair merging operation is reduced to O(k). Even
though object boundaries are not well preserved with the block
initialization, we noticed the first few iterations of the swapping step
will cover this shortcoming of the acceleration.

For the space complexity of our algorithm, the clusters’ covari-
ance matrices and the min-heap require additional space. Using the
block initialization, this additional space is also reduced to O(k).

Regularizer Weight: In Eq. 4, the regularizer weight λ deter-
mines the importance of the spatial compactness in the final re-
sult. Its value is automatically adjusted in our algorithm accord-
ing to the image/video content. At the beginning, the merging

step starts with the empirical value λ = 0.17. Then this regular-
izer weight is updated by setting the two objective equally important
λEspatial(P) = Ecolor(P) when a sketch of the superpixels avail-
able, i.e., for image superpixel generation, λ is updated at the end
of the merging step; for video superpixel generation, λ is updated
every frame using the previous optimized partition.

Swapping Parallelization: The swapping test of all boundary
pixels in each iteration can be performed parallelly [CGZM15]. We
adopt a GPU implementation to speed up this process. For superpixel
generation in Sec. 6.3, we achieve around 13 fps on videos with
resolution 400×320.

6. Experiments

Our algorithm is implemented using Microsoft Visual C++ 2010.
For the hardware platform, the experiments are run on a desktop
computer with Intel(R) Core i7-4770 CPU with 3.40GHz, 32GB
DDR3 RAM, and NVIDIA GeForce GTX 660 GPU with 2 GB
GDDR5 video memory.

6.1. Illumination Variation

In this section, we demonstrate our superpixels are robust against
environment illumination changes. The Dolls image pair (I1,I2)
are picked from Middlebury dataset [Hir07] under different illu-
mination settings. We manually transform I1 to I

′

1 using Eq. 9 by
randomly generated parameters. Note due to image data precision,
the produced image I

′

1 is only an approximated affine transforma-
tion with truncations. Fig. 4 shows the 500 superpixels Manifold
SLIC and Our results on the three images respectively.

To provide a quantitative measurement on the robustness of super-
pixels, we adopt the achievable segmentation accuracy by assigning
each superpixel region a different segmentation label. Relative to a
partition P , the partition robustness of P

′
is defined as:

PR(P,P
′
) =

1
N ∑
Ci∈P

max
C j∈P′

{
∣∣Ci∩C j

∣∣},
c© 2016 The Author(s)
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Figure 4: Superpixels of the Dolls under different illumination
settings. (a) Image I1 selected from Middlebury dataset. (b) Image
I

′

1 produced by the affine illumination transformation of I1. (c)
Image I2 selected by different illumination setting.

Figure 5: Superpixel generation on the Chameleon with 500 over-
segments.

where N is the total number of pixels. Note for P and P
′

with
the same partition number, 100% partition stableness can only be
achieved by exactly the same partition.

Let the partition on I1 be the partition to be evaluated on. Mani-
fold SLIC’s partition robustness on I

′

1 and I2 are 68.3% and 62.7%,
respectively. While we have much higher robustness with 81.5%
and 78.6% correspondingly.

6.2. Image Superpixels

Our superpixel generation algorithm is tested on the Middlebury
dataset [Hir07], INRIA Holidays dataset [JDS08] and BSDS500
dataset [AMFM11]. As shown in Fig. 4,5, 6 and 7, our superpix-
els satisfy the desired properties listed in Sec. 4.1, i.e., adhere to
image boundaries while maintain the spatial compactness. Gener-
ally speaking, hexagonal tiling is expected in color homogeneous
regions. While in regions with color variations, these over-segments
adapts its shape and anisotropy to preserve the object boundaries.

Figure 6: Superpixel generation on the Mermaid with 1000 over-
segments.

Figure 7: Representative superpixel generation examples on the
INRIA Holidays dataset.

The anisotropy adaptation is clearly illustrated in the antenna region
of the Mermaid image. Also, the shape adaption can be clearly seen
from the text region in Fig. 7.

We compare our anisotropic superpixel with several representa-
tive methods on the BSDS500 benchmark [AMFM11]. These meth-
ods include FH [FH04], SLIC [ASS∗12], Manifold SLIC [YJLH16],
Turbopixels [LSK∗09] and VCells [WW12]. Following Manifold
SLIC, 200 images are randomly selected and evaluated against the
provided ground truth segmentation.

Fig. 8 illustrates the quantitative comparison on undersegmen-
tation error, boundary adherence and achievable segmentation ac-
curacy [XC12]. Undersegmentation error [ASS∗12] measures the
fraction of pixels exceeding the ground truth boundaries when the
superpixels are mapped on. Boundary recall [ASS∗12] measures the
fraction of ground truth boundaries falling within two pixels of the
superpixel boundary. Achievable segmentation accuracy [XC12] is
the upper bound of segmentation accuracy for a superpixel represen-
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Figure 8: Evaluation statistics on the BSDS500 benchmark. Com-
pared with FH, SLIC, Manifold SLIC, Turbopixels and VCells, our
results have the least undersegmentation error and the highest
boundary recall rate. Among all these comparison methods, Mani-
fold SLIC has the most similar quality to ours.

tation. The result shown in Fig. 8 shows our method provides the
least undersegmentation error and almost the same level of boundary
recall with Manifold SLIC. For achievable segmentation accuracy,
our algorithm performs at the same level with VCells and SLIC.
While Manifold SLIC provides the best performance. For runtime
performance, our algorithm is at the same level with Manifold SLIC.

6.3. Video Superpixels

For video superpixel generation, we compare our framework in
Sec. 5.2 with Temporal Superpixels (TSP) [CWFI13] and the top two
3D graph-based methods according to Xu and Corso [XC12]. The
results are reported on the mixture of SegTrack dataset [TFNR12]
and Chen dataset [XC12].

Since there is no volumetric representation of the video data in our
method, we evaluate the metric using the 2D criteria in Sec. 6.1. For
the spatio-temporal coherence measurement in video superpixels,
we adopt the mean duration metric [XC12] to measure the number
of frames a superpixel exists in. These metrics w.r.t. the number of
superpixels are illustrated in Fig. 9. It can be seen that our frame-
work has the best boundary adherence performance due to its least
undersegmentation error, comparable boundary recall and highest
achievable segmentation accuracy. Also, the mean duration indicates
our superpixels are able to track objects in videos for longer periods.

Figure 9: Evaluation statistics on the SegTrack dataset [TFNR12]
and Chen dataset [XC12].

7. Conclusion

In this paper, we have presented a unimodular Gaussian generative
model for the measurement of color homogeneity of superpixel
generation. Using this model, the color homogeneity measurement
is a MCVT energy, where the anisotropic metric is learned from
local pixel color variations. We have demonstrated our model is
invariant to affine illumination change, which is a desired property
under evolving illumination environments. Also, we quantitatively
shown that our framework outperforms other supervoxel methods in
image/video analysis.

8. Appendix

This efficient update of covariance matrices requires to keep track
of the pixel number and centroid of the clusters. We illustrate the
update for Us, Uc can be updated in a similar approach.

For a merging operation (Ci,C j)→Ck:

x̄(Ck) =
|Ci| x̄(Ci)+

∣∣C j
∣∣ x̄(C j)

|Ci|+
∣∣C j
∣∣ ,

Us(Ck) =Us(Ci)+Us(C j)+ |Ci|(x̄(Ck)− x̄(Ci))(x̄(Ck)− x̄(Ci))
>

+
∣∣C j
∣∣(x̄(Ck)− x̄(C j))(x̄(Ck)− x̄(C j))

>.

For a swapping operation which swaps a boundary pixel x from
Ci to C j. Denote Ci′ = Ci−x, and C j′ = C j ∪x:

Us(Ci′ ) =Us(Ci)−
∣∣Ci′
∣∣(x̄(Ci′ )− x̄(Ci))(x̄(Ci′ )− x̄(Ci))

>

− (x̄(Ci)−x)(x̄(Ci)−x)>,
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Us(C j′ ) =Us(C j)+
∣∣C j
∣∣(x̄(C j′ )− x̄(C j))(x̄(C j′ )− x̄(C j))

>

+(x̄(C j′ )−x)(x̄(C j′ )−x)>.
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