
Real-Time GPU-Aided Lung Tumor Tracking

Yin Yang, Zichun Zhong
Guodong Rong, Xiaohu Guo
University of Texas at Dallas

Richardson, Texas, USA
Email: {yxy061100∣zxz082020∣gxr071100∣xguo}

@utdallas.edu

Jing Wang, Timothy Solberg
Weihua Mao

UT Southwestern Medical Center
Dallas, Texas, USA

Email: {Jing.Wang∣Timothy.Solberg∣Weihua.Mao}
@UTSouthwestern.edu

Abstract—A real time solution of tracking daily lung tumor
motion is proposed in this paper in order to achieve an accurate
dose delivery for radiation therapy as recently developed cone-
beam computed tomography (CBCT) technique is not able
to catch tumor motions due to the patient’s respiration. We
develop a novel GPU-based fast digitally reconstructed radio-
graph (DRR) generation algorithm which enables an instant
DRR computation and rendering from patients’ radiation
therapy treatment planning CTs. In the meantime, classic
image correlation algorithm is extended as the main method to
locate tumors in X-ray 2D projections, the raw data of CBCT
scans. With the GPU-aided implementation, this algorithm is
capable of capturing movement of lung tumors as fast as the
CBCT image acquisition in real time, which greatly facilitates
the radioactive treatment.

Keywords-GPU; image correlation; DRR; radiation; therapy

I. INTRODUCTION

Radiation therapy is an essential modality in the treatments of
cancer, and used in over 50% of the patients with cancer, either
alone or in combination with other forms of treatments. Current
radiation therapy delivery techniques and dose calculations are
based on a treatment planning computed tomography (CT) scan
acquired before a course of therapy begins. Modern radiation ther-
apy techniques, such as 3D conformal radiation therapy (3DCRT),
intensity-modulated radiation therapy (IMRT), and stereotactic
body radiation therapy (SBRT) can conform radiation doses closely
to a tumor volume while sparing surrounding sensitive structures,
but high conformality is achieved only if relevant anatomy (tumor
and dose-limiting structures) can be perfectly replicated relative to
the treatment beam on a daily basis. This is particularly challenging
for treating tumors moving due to patients’ respiration. A tight
planning margin could be applied on 3D planning target volume
(PTV) based on the respiratory pattern so that normal tissues are
spared from toxic high dose radiation. An on-board cone-beam
CT (CBCT) imaging technique has been commercialized in the
past decade. It is mounted on the treatment linear accelerator
and capable of providing high quality volumetric imaging prior to
radiation therapy. A typical on-board CBCT scan takes from 1 to 2
minutes and acquires about 660 2D x-ray projections over a gantry
rotation of 360 degrees. CBCT technique provides high contrast
imaging for soft tissue however, it is difficult to catch respiratory
motions. It is essential to evaluate respiratory motion on a daily
basis to setup patient accurately for treatment and confirm breathing
patterns used for treatment planning. Motivated by the challenges in
terms of both accuracy and efficiency in such clinical requirement,
we extend the well-known image correlation algorithm to eliminate
the search miss while powerful parallel computation ability of

GPU is fully utilized boosting the computation performance. The
combination of these result an accurate, real-time solution for
tracking daily lung tumor motion that could be widely adopted
in clinics, hospitals and medical centers with low cost.

II. RELATED WORK

As digital reconstructed/rendererd radiographs (DRRs) gener-
ation is actually a subset of volume rendering [1] which enables
rendering of 2D projection images out of 3D discretely sampled
data, most volume rendering techniques can be directly transplanted
to DRR generation such as raycasting, splatting and shear warp.
The raycasting [2], [3] is the most intuitive as each X-ray is
simulated with line integral while splatting [4], [5] normally sets a
threshold such that the voexls under this threshold are considered as
none-contribution and removed, thus effectively reduces rendering
load. However, due to the absence of thresholded voxels, aliasing
problem arises. This requires additional processing suppressing
such aliasing. The shear warping [6] is a little bit similar to the
method used in this paper where a set of parallel slices are used to
represent the volume data. In many DRR-generation-involved real
applications (including our work), the generation speed is sensitive
and the fast DRR generation rate is always preferred. The GPU-
based DRR generation algorithms [3], [7], [8] have been proposed
considering this procedure is highly parallelable. Similar to [6],
[9], [10], texture slices (quads set) sampled from a 3D texture [11]
are used in this work, which makes the rendering much more
efficient than voxel-based rendering. The CT scanning is simu-
lated with OpenGL built-in perspective projection while additional
amendment is performed after the projection with Cg [12] fragment
program. The resulting DRR is very close to DRR generated using
raycasting (figure 8) and instant DRR generation rate (0.016 𝑠𝑒𝑐
per DRR) is made possible.

Certain similarity measurement is needed based on the generated
DRR. A nice survey can be found in [13] where several classic
registration algorithms are compared within the context of medical
imaging. The normalized cross correlation (NCC) [14] becomes
our prime choice. Other methods may not be applicable in this
work: the tumor signals suffer a very strong interference from other
featured structures’ signals. Different image modalities also make
this mission more challenging. The original correlation is further
extended by double correlation with different resolutions (similar
to [15]).

The time-consuming cross correlation search becomes the per-
formance bottle neck in this work. Several hardware accelerating
techniques have been proposed using both CPU [16]and GPU [17].
GPU shows a greater potential under such purposes. Though
CPU based method also claims [16] a remarkable acceleration, it
essentially still uses the idea of parallelization requiring a dedicated
multiprocessor hardware architecture. GPU with its indigenous

2010 Fourth Pacific-Rim Symposium on Image and Video Technology

978-0-7695-4285-0/10 $26.00 © 2010 IEEE

DOI 10.1109/PSIVT.2010.89

495

Figure 1. The setup of the two directional DRR generation.

multi-core is, from the parallelization point of view more suitable
for this task: the NVIDIA GeForce 8800GTX video card (the
graphic device used in this work) is equipped with 128 stream
processors clocked at 1.35 GHz. Cg [12] instead of CUDA [17]
or other GPGPU [18] languages is chosen in this step again. We
implement three acceleration strategies. The one with OpenGL
built-in 2D convolution beats other two methods. Such results
also suggest that more pipeline-oriented method/language, when
handling the pipeline-oriented tasks is likely to benefit more from
the graphical parallelization.

III. DRR GENERATION

Essentially, this work is to perform a rigid registration between
3D (PTV) and 2D (CBCT) medical images. This, normally calls
for the fast dimension reduction of higher dimensional data (PTV
in this case). The resulting 2D images (DRRs) are then subjected to
certain similarity measurement in order to estimate tumor position
in the CBCT image.

The production of DRR is a highly computation-involved and
time-consuming procedure. Theoretically, the calculation of line
integral along each simulated X-ray beam from the source to a
certain position on the expecting DRR should be performed [19].
Unfortunately, the direct implementation of this method is not fea-
sible under most circumstances as 3D/2D registration applications
normally require repeated DRR productions for the registration
adjustment. In our case, though only one DRR is necessary
because the simulated X-ray projection follows the same geometry
configuration as the on-board CBCT scan does, yet a big number
of DRR generations is still needed to match the actual CBCT series
(about 660 images) with different gantry angles.

A. Two Directional DRR Generation
During CT scanning, each pixel on the resulting image is

assigned a numerical value (CT number), which is the average of all
the attenuation values/density contained within the corresponding
voxels. This number is compared to the attenuation value of water
and displayed on a scale of arbitrary units named Hounsfield units
(HU). We take use of graphical perspective projection plus blending
to simulate the X-ray cone-beam volume and the summation of the
attenuation values respectively. The PTV used as DRR source has
around the size of 512× 512× 200 𝑣𝑜𝑥𝑒𝑙𝑠. The distance between
X-ray source and the resulting image plane is 1, 536 𝑚𝑚 and the

radius of the rotation centered at the ISO center which is manually
set close to labeled lung tumor margin is 1, 000 𝑚𝑚. The rotation
of X-ray source is performed within a plane parallel to the top
and bottom of the PTV. The given CT volume is passed to GPU
video memory as a 3D texture. Quads are used as the elementary
rendering primitives which could be much less rendering intensive
than voxel-oriented methods [5]. Each quad corresponds to one
slice of voxels with the texture coordinates computed based on
its spatial position. The blending function, afterwards sums up
all the voxel slices and generates the preliminary DRR image.
This configuration could be problematic when the camera which
simulates the X-ray source travels on the orbit (the dash circle in
figure 1): when the camera rotates to the position where the cone-
beam volume is somehow parallel to the quad-set, we are not able
to get the valid DRR images any longer.

In order to solve this problem, we can define the quad-set
dynamically based on the camera position making the quad-
set always perpendicular to the CBCT volume as most volume
rendering techniques do [9], [10]. However because the voxels
are intrinsically arranged in a regular fashion. When the quad-
set fits the original arrangement of the voxels, we do not miss
or try to guess any information; when the quad-set diverges from
the original voxel arrangement, we have to do certain interpolation
to estimate volume intensity at some positions. Such interpolation
though could be accomplished by OpenGL built-in routines, still
effects the accuracy of the resulting DRR. In addition, the distance
between every successive two quads must be handled very carefully
so that voxels in the PTV are cut by one and only one quad which
is not possible in some extreme angles. Alternatively, we propose
a new method named as two directional rendering to solve this
problem. The idea is simple, where two sets of quads are to be
drawn instead of merely one set (figure 1). As shown in the figure,
the original PTV defines 8 segments of the camera’s traveling path.
In region 1, 3, 5 and 7 where the camera is mostly orthogonal to
one dimension of PTV while aligned to the other dimension (the
third dimension is eliminated as the orbit plane is perpendicular to
one dimension of the PTV), only one set of quads is to be drawn.
More specifically, in regions 1 and 5 the quad-set #1 is to be
drawn while in regions 3 and 7, the quad-set #2 is to be drawn.
In other regions, both quad-sets are to be drawn. An additional
clipping plane is applied to remove unnecessary voxel information
(the yellow dash line in the figure 1) which can be defined by one
of the four edges (depending on which region camera is sitting in)
perpendicular to the orbit plane plus the camera position. As shown
in figure 1 assuming camera is in region 2, the cone-beam volume
is partitioned into two parts. For the part on the left hand side of the
plane, only quad-set #1 is to be rendered (solid red lines). On the
contrary, for the part on the other side of the plane, we only draw
quad-set #2 (solid green lines). Intuitively, the portions that are
most orthogonal to the cone-beam volume of each set are rendered
and the rest (dotted lines) are clipped. In this method, all the
quad-sets follow the original voxel arrangement and the intervals
between quads that are freed of any texture interpolations are just
the real size of the voxel. It is also noteworthy that the extension of
this method to three directional rendering is straightforward which
enables the arbitrary camera positioning in 3D space.

B. Integral Adjustment

The OpenGL blending function sums up all the voxel intensities
along the simulated X-ray beams, however the lengths of the beams
have not yet been incorporated. Thus an amendment is required for
the preliminary generated DRR images. We assume that the beam

496

Figure 2. One slice of the original PTV (left) and tumor-removed PTV
(right).

always travels within one voxel between two successive quads1.
The beams are actually subdivided evenly by each quad based on
the assumption, and the corresponding integrals can be simplified
as: ∑

𝑙 × 𝑖(𝑡) = 𝑙 ×
∑

𝑖(𝑡), (1)

where, 0 ≤ 𝑡 ≤ 1 is the 1D coordinate of the parameterized beam;
𝑙 is the length of the line segment between two successive quads
and 𝑖(𝑡) is the volume intensity at 𝑡. This implies only a constant
is needed for each beam. Fortunately, the constant of each beam
can be pre-computed which is just the length of line segment from
the camera to the pixel on the final DRR image. The DRR without
amendment is rendered to a frame buffer object (FBO) and A Cg
fragment program is then used for this pixel-wise operation carried
out simultaneously at each fragment/pixel.

IV. TUMOR TRACKING

After the simulated CT for certain gantry angle is produced,
the rigid registration is then performed between the pair of 2D
images: one DRR image and one CBCT image. The classic NCC
is extended and used in the similarity measurement.

A. Normalized Cross Correlation Search
The NCC is one of the most widely used methods for the

similarity measurement. In short, it calculates a scalar named
correlation coefficient (CC) such that:

𝐶𝐶 =

∑
𝑠

∑
𝑡[𝑓(𝑠, 𝑡)− 𝑓][𝑤(𝑥+ 𝑠, 𝑦 + 𝑡)− 𝑤̄]√∑

𝑠

∑
𝑡[𝑓(𝑠, 𝑡)− 𝑓]2

∑
𝑠

∑
𝑡[𝑤(𝑥+ 𝑠, 𝑦 + 𝑡)− 𝑤̄]2

,

(2)
where, 𝑓 and 𝑤 are the two images under correlation. 𝑓 is

the image pattern under search and 𝑤 is the image where this
pattern is to be located. Obviously, 𝑓 should have smaller size
than 𝑤 does. We, here name 𝑓 and 𝑤 as template image and
target image respectively. For each valid candidate position (𝑥, 𝑦)
in 𝑤, a correlation window with the same size of 𝑓 is defined.
The summation indices 𝑠, 𝑡 traverse all the pixels in 𝑓 and the
correlation window in order to compute the corresponding CC at
this position. When CC hits the maximum value, 1, it indicates the
best similarity based on the pixel grey level (GL) has been reached.
And the corresponding correlation window is considered as the
located pattern in the target image. The procedure that loops over
all the candidate positions in target image and keeps tracking the
maximum CC value is called “cross correlation search” or “cross
search” in short. Prior to the planning stage, experienced and skilled
doctors have labeled a tight margin of lung tumor based on the
regular CT scanning of the patient as mentioned. Such information

1This could not be the real case. However our experiments show that
such approximation does not effect the accuracy of upcoming cross search

Figure 3. The subtraction-based tumor intensification.

is preserved when PTV is reconstructed: additional bit is added to
the conventional voxel data indicating whether this voxel is within
the margin or not. So in DRR, a 2D margin of the tumor is also
generated which, ideally should serve as template image during
cross search. Unfortunately, the direct cross search based on labeled
lung tumor and CBCT image is not applicable due to the low
signal intensity of the tumor portion comparing with other internal
structures (i.e. bony structures) and the cross search gets constantly
missed. Consequently, some other processes are necessary in order
to emphasize the tumor signals.

B. First Cross Search

The intensities of all the labeled tumor voxels in PTV are cleared
and the DRRs are generated based on the tumor-free CT volume
(figure 2). On the tumor-free DRRs, a region is selected based
on the image contents such that the following two conditions
must be satisfied: 1) the bounding box of tumor margin is fully
contained and 2) extra strong GL pattern such as bony structures
are desired. This region is called matching window which serves as
the template image for the first cross search. The size of matching
window is normally set as two to four times of the tumor bounding
box. However, user can change this parameter for the various
tumor positions in order to achieve the best search result. The first
condition effectively reduces the number of candidate positions on
the target image and the second condition guarantees a reasonable
result from the cross search and in our experiments, the first cross
search can always return an accurate result due to the included
strong features. After the search is finished, we have a subregion in
the target image (CBCT) with the same size of matching window.
Most importantly, it now can be safely assumed that the tumor
must be located within this subregion.

C. Subtraction-Based Tumor Intensification

With the newly-defined target image which is the subregion on
CBCT that corresponds to the matching window, we can roughly
have some ideas of the tumor position. However, due to the
condition 2, the new target image is still suffering none-tumor
signals that is in orders-of-magnitude stronger than original tumor
signals. Based on the assumption that the new target image and
the matching window in DRR contain almost the same materials
except that the tumor portion is removed in matching window,
an image substraction is operated which removes most strong GL
features within the target image. Before the subtraction, a histogram
equalization is performed at both images to minimize the modality
difference between images. Figure 3 shows a detailed step-by-step
result of this procedure.

497

D. Second Cross Search

Naturally, the resulting image with tumor intensified after sub-
traction is to serve as the new target image. Another DRR is created
from the volume where only tumor-labeled voxels are kept and all
other voxels are cleared which actually is the DRR of the tumor
margin. A rectangle tumor bounding box can be extracted out of
this DRR which is the template image in the second cross search.
Because most interfering information has been removed after the
subtraction, this step operates smoothly and fast (only searching
within the matching window rather than the entire CBCT image).
The second cross search is a low resolution search as compared
with the first search which runs on the whole CBCT image.

E. Constrained Cross Search

It is well-known that NCC, though is easy to implement and in
most cases gives reasonable results is very computation-intensive.
In our implementation using Matlab, the time needed for searching
on one complete CBCT series which contains about 660 2D images
of 512×512 𝑝𝑖𝑥𝑒𝑙𝑠 is about 20 hours. However, running the cross
search over the entire target image region (in the first cross search)
could be unnecessary based on the observation that the CBCT
images are generated continuously. The time latency between two
CBCT images is about 0.2 𝑠𝑒𝑐 and within such limited time, the
tumor is not likely to move far away from its previous position.
Thus it is greatly wasteful to compute CC for all candidate positions
in target image. Following this consideration, the search region is
constrained to a small area close to its previous search result. With
this constraining strategy, we can eliminate over 95% unnecessary
computation. The time, in consequence is reduced to about 35 𝑚𝑖𝑛
executed with Matlab implementation.

V. GPU-BASED SEARCH ACCELERATION

In order to make this work a real-time application for the
practical clinical usage, some efforts are still needed in terms of the
time performance. Recall that in equation 2, the computation of CC
at different candidate positions are totally independent of each other
indicating that a parallelization-based acceleration is promising.
GPU naturally becomes our prime choice. Both DRR generation
and cross search are of huge potential in terms of parallelization and
the whole procedure can get fitted into the conventional graphics
pipeline seamlessly. We use Cg [12] as the main GPU language
in our implementation instead of other GPGPU language (CUDA
for example) because generally speaking, a pipeline-oriented ap-
plication gets more accelerated using more pipeline-oriented GPU
language. The Cg fragment program is executed on the fragments
concurrently and each fragment corresponds to a pixel in the image.
We re-arrange the NCC equation as:

𝑐 =

∑∑
(𝑓𝑤 − 𝑓𝑤 − 𝑓𝑤̄ + 𝑓𝑤̄)

𝐴
√∑∑

(𝑤2 − 2𝑤𝑤̄ + 𝑤̄2)
, (3)

where, 𝐴 =
√∑∑

(𝑓 − 𝑓)2 can be considered as a pre-computed
constant as template image 𝑓 is fixed. The summation is over 𝑠 and
𝑡 which are the two dimensions of template image as in equation 2.
In order to compute CC, we have to do massive video memory
accesses which include double 𝑠 × 𝑡 accesses for term 𝑓𝑤 and
another several 𝑠 × 𝑡 accesses for 𝑤̄ related terms for a single
candidate position. A typical tumor bounding box with the size
of 60 × 60 𝑝𝑖𝑥𝑒𝑙𝑠 results in (512 − 60) × (512 − 60) × 60 ×
60 memory accesses. This is a very large number impeding the
real-time processing rate even with GPU acceleration. Some pre-
computation is necessary to reduce the number of memory access.

Figure 4. The summed area table.

Figure 5. The horizontal phase of SAT generation.

Figure 6. The blending-based implementation: 𝑠× 𝑡 quads with shifts are
drawn at different depth. Blending is used to compute the summation.

Figure 7. The general data flow and computational procedures.

498

(a) (b)

Figure 8. Generated DRR images using (a) our method and (b) raycasting.

Method Time performance

Linear raycasting on CPU 16.1 𝑠𝑒𝑐/DRR
Two directional rendering 0.016 𝑠𝑒𝑐/DRR

Cross search on CPU (no constraint) 20.4 ℎ𝑜𝑢𝑟/660 CBCT
Cross search on CPU (with constraint) 35.8 𝑚𝑖𝑛/660 CBCT

GPU-aided cross search (with blending) 4.6 𝑚𝑖𝑛/660 CBCT
GPU-aided cross search (no blending) 1.6 𝑚𝑖𝑛/660 CBCT

GPU-added cross search (with 2D convolution) 1.2 𝑚𝑖𝑛/660 CBCT

Table I
TIME PERFORMANCE.

The auxiliary data structure called summed area table (SAT)
is built. This data structure was first introduced for fast com-
putation of graphical texture mapping [20]. In SAT, each pixel
stores the sum of a rectangle area top-right-cornered by this
pixel. As a result, a constant number of readings are sufficient to
get the sum of any sub-rectangle area of the image. As shown
in figure 4, in order to get the summed area of the shadowed
rectangle 𝐴7624, only the value at four corners are read such
that 𝑆𝐴𝑇 (2) = 𝐴0123, 𝑆𝐴𝑇 (4) = 𝐴0843, 𝑆𝐴𝑇 (7) = 𝐴0875 and
𝑆𝐴𝑇 (6) = 𝐴0165. 𝐴7624 = 𝐴0123 + 𝐴0875 − 𝐴0843 − 𝐴0165 =
𝑆𝐴𝑇 (2)+𝑆𝐴𝑇 (7)−𝑆𝐴𝑇 (4)−𝑆𝐴𝑇 (6). We follow the famous
recursive doubling [21] to generate the SAT for the target image
𝑤 and 𝑤2. The generation consists of one horizontal phase and
one vertical phase that must be carried out sequentially. Figure 5
illustrates the horizontal phase for one pixel strip. Total number
of log𝑁 (𝑁 denotes the strip width) passes are to be executed.
As shown in the figure, in pass 𝑘, every element is added by
the element that is 2𝑘 ahead. The out-bounding access returns 0.
Vertical phase begins after the horizontal phase with the similar
fashion. The fragment programs are running simultaneously at all
the horizontal/vertical pixel strips. After SAT of 𝑤 and 𝑤2 are
computed. 𝑤̄,

∑∑
𝑤 and

∑∑
𝑤2 become instant-accessible

quantities in equation 3 which can be further written as:

𝑐 =

∑∑
𝑓𝑤 +𝐵

𝐴𝐶
, (4)

where, 𝐴, 𝐵 and 𝐶 are all terms that can be evaluated in constant
time. Thus, the most time-consuming term is

∑∑
𝑓𝑤 which are

to be parallelized using GPU. Three parallelization strategies are
used in our implementation. In the first implementation, we take
use of OpenGL blending function to do the summation over two
dimensions of template image 𝑓 . More specifically, 𝑠× 𝑡 quads are
drawn on the screen with different depth. Each quad is of the same
size of target image 𝑤 while takes a index shift corresponding 𝑠 and
𝑡 (as shown in figure 6). The second approach is running a fragment
program on each candidate pixel in target image and compute CC
using equation 4 and the third one is to use OpenGL built-in 2D

convolution routine to compute 𝑓𝑤. The use of OpenGL built-
in routine gives the best computation speed while the blending
based method is the slowest one. This result also coincide with
the-more-pipeline-oriented-the-faster assumption. All GPU-aided
methods greatly accelerate the computation of CC as compared
to the CPU-implemented linear computation.

VI. EXPERIMENT AND RESULTS

All the tests are run on a Windows 7 PC with Intel Q6600
CPU, 4GB DDR2 RAM, and NVIDIA 8800GTX video card (768M
GDDR3 video memory, 128 stream processors). Cg is used as
major GPU shader language. The whole framework has two main
components: DRR production and cross search. Both of them are
run mainly on GPU. Figure 7 shows a general data flow and step-
by-step computational procedure. The CT volume with labeled
tumor margin and 660 CBCT images are the general inputs. Two
types of DRRs are generated: the ones without tumor along as
the CBCT images are the inputs of the first cross search; the
ones with only tumor plus the tumor-intensified target images after
subtraction are the inputs of the second cross search. Finally, the
tumor position is tracked. The accompanied demo video is available
at:http://www.utdallas.edu/∼yxy061100/demo. For the purpose of
comparison, the common raycasting method is also implemented
using C++. Our two directional rendering method gives very similar
results of DRR images (as shown in figure 8). However, the time
needed for one DRR image generation using our method is about
0.01632 𝑠𝑒𝑐 which is almost 1, 000 times faster comparing with
linear raycasting executed on CPU (16.121 𝑠𝑒𝑐). 4 anonymous
patients’ on-board CBCT images with lung tumor are analyzed
using our method. Each patient has 6-8 sets of CBCT series. Each
series contains about 660 images of size 512 × 512 𝑝𝑖𝑥𝑒𝑙𝑠. We
can locate tumor accurately on over 98% CBCT images (figure 9)
which is a very high rate in oncology. The original cross search
without any constraints takes over 20 hours to locate one CBCT
series with Matlab implementation. This number decreases to 1.2
𝑚𝑖𝑛 with GPU based implementation. The detailed benchmark
can be found in table I. Because it takes about 2 𝑚𝑖𝑛 to have one
series of CBCT ready during treatment, we are able to locate tumor
position as soon as the CBCT scanning finishes which makes this
method run at a real-time processing rate. It can greatly facilitate
the radioactive treatment.

VII. CONCLUSION

We present a GPU-based real-time solution to track daily lung
tumor movements. The classic NCC algorithm is extended with
ampliation of tumor signal which makes the cross search much
more accurate. In DRR generation, a new rendering strategy is used
with two orthogonal texture slices avoiding texture interpolation.
The Cg fragment program is used to adjust final CT numbers.
In NCC computation, the summed area table is employed which
saves at least half memory readings. We compare three GPU-based
implementation of cross search and the OpenGL 2D convolution is
the one with the fastest computation rate. The constrained search-
ing with parallelized GPU-aided implementation gains enormous
performance increase. This work makes the real-time lung tumor
tracking possible, thus is of substantial potential for real clinical
applications.

REFERENCES

[1] R. A. Drebin, L. Carpenter, and P. Hanrahan, “Volume ren-
dering,” in SIGGRAPH ’88, 1988, pp. 65–74.

[2] P. M. Joseph, “An improved algorithm for reprojecting rays
through pixel images.” IEEE Trans. Med Imaging, vol. 1,
no. 3, pp. 192–6, 1982.

499

(a) (b) (c)

Figure 9. Cross search results for different gantry angles with tumor highlighted.

[3] H. Pfister, J. Hardenbergh, J. Knittel, H. Lauer, and L. Seiler,
“The volumepro real-time ray-casting system,” in SIGGRAPH
’99, 1999, pp. 251–260.

[4] L. Westover, “Footprint evaluation for volume rendering,” in
SIGGRAPH ’90, 1990, pp. 367–376.

[5] W. Birkfellner, R. Seemann, M. Figl, J. Hummel, C. Ede,
P. Homolka, X. Yang, P. Niederer, and H. Bergmann, “Wob-
bled splatting - a fast perspective volume rendering method
for simulation of x-ray images from ct,” Phys. in Med. and
Bio., vol. 50, no. 9, p. N73, 2005.

[6] P. Lacroute and M. Levoy, “Fast volume rendering using a
shear-warp factorization of the viewing transformation,” in
SIGGRAPH ’94, 1994, pp. 451–458.

[7] J. Spoerk, H. Bergmann, W. Birkfellner, F. Wanschitz, and
S. Dong, “Fast DRR splat rendering using common consumer
graphics hardware,” Med. Phys., vol. 34, pp. 4302–4308,
2007.

[8] D. Ruijters, B. M. ter Haar-Romeny, and P. Suetens, “GPU-
accelerated digitally reconstructed radiographs,” in BioMED
’08: Proceedings of the Sixth IASTED International Confer-
ence on Biomedical Engineering, 2008, pp. 431–435.

[9] O. Wilson, A. VanGelder, and J. Wilhelms, “Direct volume
rendering via 3D textures,” Tech. Rep., 1994.

[10] J. Kruger and R. Westermann, “Acceleration techniques for
GPU-based volume rendering,” in Proceedings of the 14th
IEEE Vis 2003 (VIS’03), 2003, p. 38.

[11] K. Akeley, “Reality engine graphics,” in SIGGRAPH ’93,
1993, pp. 109–116.

[12] W. R. Mark, R. S. Glanville, K. Akeley, and M. J. Kilgard,
“Cg: a system for programming graphics hardware in a C-like
language,” in SIGGRAPH ’03, 2003, pp. 896–907.

[13] G. Penney, J. Weese, J. Little, P. Desmedt, D. Hill, and
D. Hawkes, “A comparison of similarity measures for use
in 2-d-3-d medical image registration,” IEEE Trans. Med.
Imaging, vol. 17, no. 4, pp. 586–595, 1998.

[14] C. Wilson and J. Theriot, “A correlation-based approach to
calculate rotation and translation of moving cells,” IEEE
Trans. Image Processing, vol. 15, no. 7, pp. 1939 –1951, july
2006.

[15] S.-D. Wei and S.-H. Lai, “Fast template matching based on
normalized cross correlation with adaptive multilevel winner
update,” IEEE Trans. Image Processing, vol. 17, no. 11, pp.
2227–2235, 2008.

[16] M. Cavadini, M. Wosnitza, and G. Tröster, “Multiprocessor
system for high-resolution image correlation in real time,”
IEEE Trans. Very Large Scale Integr. Syst., vol. 9, no. 3, pp.
439–449, 2001.

[17] P. J. Lu, H. Oki, C. A. Frey, G. E. Chamitoff, L. Chiao,
E. M. Fincke, C. M. Foale, S. H. Magnus, W. S. M. Jr.,
D. M. Tani, P. A. Whitson, J. N. Williams, W. V. Meyer,
R. J. Sicker, B. J. Au, M. Christiansen, A. B. Schofield, and
D. A. Weitz, “Orders-of-magnitude performance increases in
GPU-accelerated correlation of images from the international
space station,” Journal of Real-Time Image Processing, 2009.

[18] W. Liu, B. Schmidt, and W. Müller-Wittig, “Performance
analysis of general-purpose computation on commodity
graphics hardware: a case study using bioinformatics,” J. VLSI
Signal Process. Syst., vol. 48, no. 3, pp. 209–221, 2007.

[19] M. Levoy, “Efficient ray tracing of volume data,” ACM Trans.
Graph., vol. 9, no. 3, pp. 245–261, 1990.

[20] F. C. Crow, “Summed-area tables for texture mapping,” in
SIGGRAPH ’84, 1984, pp. 207–212.

[21] J. Hensley, T. Scheuermann, G. Coombe, M. Singh, and
A. Lastra, “Fast summed-area table generation and its ap-
plications,” Computer Graphics Forum, vol. 24, pp. 547–555,
2005.

500

