
Volume xx (200y), Number z, pp. 1–12

Superpixel Generation by Agglomerative Clustering with
Quadratic Error Minimization

Xiao Dong1,3, Zhonggui Chen†2, Junfeng Yao1, and Xiaohu Guo ‡3

1Software School, Xiamen University, China
2Department of Computer Science, Xiamen University, China

3Department of Computer Science, University of Texas at Dallas, USA

Abstract
Superpixel segmentation is a popular image preprocessing technique in many computer vision applications. In this paper we
present a novel superpixel generation algorithm by agglomerative clustering with quadratic error minimization. We use a
quadratic error metric (QEM) to measure the difference of spatial compactness and color homogeneity between superpixels.
Based on the quadratic function, we propose a bottom-up greedy clustering algorithm to obtain higher quality superpixel seg-
mentation. There are two steps in our algorithm: merging and swapping. First, we calculate the merging cost of two superpixels
and iteratively merge the pair with the minimum cost until the termination condition is satisfied. Then, we optimize the boundary
of superpixels by swapping pixels according to their swapping cost to improve the compactness. Due to the quadratic nature
of the energy function, each of these atomic operations has only O(1) time complexity. We compare the new method with other
state-of-the-art superpixel generation algorithms on two datasets, and our algorithm demonstrates superior performance.

1. Introduction

Superpixel generation divides an image into several regions. Pix-
els in one region are connected and have similar color values, and
each region is a perceptually meaningful small patch that adheres
well to object boundaries. The concept of superpixels as a pre-
processing step was first introduced by Ren and Malik [RM03]
in 2003. This high level image representation can greatly reduce
the computation complexity of many image processing tasks such
as segmentation [PZZ11, LWC12, SPD∗17, DSSVG16], saliency
detection [PKPH12, WSS18], object tracking [WLYY11], model-
ing [HZR06, NC08], and 3D reconstruction [HEH05].

Many superpixel generation algorithms have been proposed in
recent years. Some algorithms are designed for video superpixel
generation [LSD∗16]. The segmentation results of each algorith-
m have their own characteristics in terms of superpixel size and
shape. Although the quality of image segmentation is a subjective
judgment, high quality results generally meet the following criteria.
First, the superpixel must be a connected region, meaning that all
pixels within a superpixel can be traversed by adjacency. Second,
the algorithm needs to take the spatial compactness of superpix-
els into account. For regions having no boundaries or features, it
should exhibit regular and compact shape pattern. Third, the seg-
mentation results should be adaptive to local image contents, i.e.,
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pixels with similar color and intensity should be grouped into the
same region. Last but not the least, one superpixel should not con-
tain multiple objects, and it should adhere well to the object bound-
aries. These are important criteria for measuring the quality of su-
perpixels.

A traditional type of superpixel segmentation methods is based
on Lloyd’s algorithm [Llo82], by iterating through the follow-
ing two steps: (1) growing superpixel regions starting from some
initially-selected seeds; (2) moving the seeds to better locations
based on the current segmentation. Both steps are guided by some
well-defined energy functions. Due to the non-convex nature of op-
timization, it usually results in local minima of their corresponding
energy functions, and the results highly depend on the initial place-
ment of seeds. In contrast to these optimization methods, there is
no seed in our algorithm. Our optimization is based on agglomer-
ative clustering with merging and swapping operations. The use of
a quadratic energy function guarantees that each of these atomic
operations is of O(1) time complexity. Each step of the bottom-up
clustering chooses a pair of clusters with the least energy increase
after merging in a greedy fashion, thus it eliminates the dependen-
cy of optimization results on initial seed placement. This brings a
significant advantage as can be seen from the experimental results
in Sec. 4. Even though our quadratic energy function is similar to
SLIC [ASS∗12] and MSLIC [LYYH16], our optimization achieves
higher quality of superpixel results, evaluated with commonly-used
performance metrics on various image datasets.
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Figure 1: Superpixel Segmentation using our method. (a) 300 superpixels; (b) 500 superpixels; (c) 900 superpixels; (d) 1500 superpixels.

2. Related Work

The difficulty of superpixel generation algorithms lies in the need
not only to fit the boundary of objects well, but also to take the com-
pactness of superpixels into consideration. The early methods used
to segment images include watersheds [VS91], mean shift [CM02]
and quick shift [VS08]. Quick shift arranges all of the data points
into a tree where parents in the tree are the nearest neighbors in
the feature space which increases the estimate of density. Mean
shift defines a density function and attempts to maximize the func-
tion by moving the pixels within a window towards areas of higher
density. In these methods, there is no consideration of spatial dis-
tance of pixels, so the shape is generally irregular. In recent years,
newly proposed algorithms have taken into account the spatial com-
pactness. The superpixel generation methods can be roughly classi-
fied into several families. In first category, the algorithms are based
on the idea of graph theory and gradually add cuts to segment the
graph. Usually, the pixels are taken as nodes of the graph with edges
representing the similarities between pixels. In second category, al-
gorithms generally use the gradient image, and grow clusters from
selected seeds.

2.1. Graph-based Methods

Wu and Leahy [WL93] proposed a clustering method which glob-
ally minimizes a graph-based objective function to find the opti-
mal partition. Based on this work, Shi and Malik introduced Nor-
malized Cuts [SM00] which avoid favouring the cuts in small set-
s of nodes in the graph. Normalized Cuts is less effective when
the number of superpixels grows, and some other methods were
proposed to speed it up [EOK07, XLS09]. Felzenszwalb and Hut-
tenlocher [FH04] proposed an agglomerative clustering algorithm,
each superpixel is the minimum spanning tree of the constituen-
t pixels. However, the algorithm only uses the color information
to calculate the similarity between pixels, so the boundaries of su-
perpixels are usually irregular. Moore et al. [MPW∗08, MPW10]
presented the optimal cuts by using pre-computed boundary maps,
but the quality of such boundary maps affects the performance of
algorithm. Liu et al. [LTRC11] introduced a method that maximizes
the entropy rate of cuts in graph. There are other methods based on
graph-cuts to improve the efficiency of algorithm [VBM10, ZHM-
B11].

2.2. Seed-based Methods

The second type of algorithms defines an energy function to evalu-
ate the similarities between pixels and grows superpixels from as-
signed seeds. Turbopixels [LSK∗09] is a geometric flow method
that uses level-set, and the results are highly uniform. One obvious
drawback of Turbopixels is that their lattice-like results present rel-
atively low adherence to boundaries of objects. SLIC [ASS∗12] us-
es iterative K-means clustering, and generates clusters by measur-
ing the similarities between pixels and centers in the combined five-
dimensional (color and coordinate) space. EWCVT [WJW09] and
VCells [WW12] are essentially Centroidal Voronoi Tessellations
(CVT) with compactness constraints. Peng et al. [PSYL16] adopt-
ed K-means clustering to get initial partition and applied high order
energy function to refine the results. The main drawback of these
methods is that they can not adhere the weak boundary well in the
graph. Recently, Wang et al. [WZG∗13] presented an image seg-
mentation algorithm based on a geodesic distance metric. Based on
this, Zhou et al. [ZPW∗16,PZLZ17] proposed a Bilateral Geodesic
Distance to improve the boundary adherence at weak boundaries,
and we refer it as BGD. Shen et al. [SDWL14] presented the Lazy
Random Walk(LRW) method to compute the probabilities of pixels
and according to which the boundaries of image are obtained. The
authors also proposed a real-time image superpixel segmentation
method called DBSCAN [SHL∗16] by using the density-based s-
patial clustering. Liu et al. [LYYH16] proposed the MSLIC method
which extends the conventional SLIC algorithm. MSLIC algorith-
m lifts pixels to a 2-manifold M embedded in the 5-dimensional
space and computes restricted centroidal Voronoi tessellations un-
der the Euclidean metric. As an improvment of MSLIC, the authors
proposed IMSLIC [LYLH18] method to compute a geodesic cen-
troidal Voronoi tessellations on the image manifold M instead. Cai
et al. [CG16] presented a Gaussian Generative Model for anisotrop-
ic superpixel generation based on Mahalanobis distance, and it is
referred as GGM in this paper.

2.3. Other Methods

Bergh et al. proposed SEEDS [VdBBR∗12] based on hill-climbing
optimization that measures color homogeneity and shape regularity
by histograms. It proposes new partitions at pixel-level and block-
level to avoid excessive operations. However, SEEDS also suffers
from high shape-irregularity. Li et al. [LC15] presented the LSC
algorithm which combines the normalized cuts formulation and
weighted K-means method, and still uses seed points to grow super-
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pixels. This method can produce compact and uniform superpixels
with low computational costs. Zhang et al. [ZMZZ17] proposed
a superpixel generation algorithm by simplifying the 3D triangle
mesh model based on the quadric error metric (QEM) [GH97]
framework. Their main problem is that the edges of a triangle mesh
can not fit the boundaries of objects very well. Our new method is
inspired by the GGM method [CG16], but we integrate agglomera-
tive clustering with the well known quadratic CVT energy function
that measures color homogeneity and spatial compactness. We il-
lustrate in Sec. 4 that our method is more sensitive to weak bound-
aries and has better boundary recall rates (Fig.6 and Fig.9) than G-
GM method. Fig.1 shows some segmentation results of our method.
We can see that our new method generates compact superpixels in
background and also preserves the boundaries of objects very well.

3. Agglomerative Clustering with Quadratic Error
Minimization

In this section, we present our superpixel algorithm which not on-
ly produces superpixels with compact shape but also captures the
boundaries of objects in image. The algorithm for generating su-
perpixels is inspired by the idea of Quadric Error Metric (QEM)
[GH97]. As we know, QEM is a surface simplification method for
triangle meshes, and it is built upon edge contraction and quadric
errors. We define quadratic functions to measure the color homo-
geneity and spatial compactness of the superpixels. Our algorith-
m includes two main steps: merging and swapping. The merging
process is a greedy clustering method, similar to edge contraction
in QEM, we merge superpixel pairs according to their quadratic
merging cost. The use of quadratic energy function guarantees that
all these atomic operations are of O(1) time complexity, which en-
sures the high efficiency of our algorithm.

3.1. Definition of Objective Function

Given an input image I with its two-dimensional domain Ω, the
set of superpixels C is a partition of I into k smaller regions. We
denote the partition as P = {Ci}k

i=1, which satisfies Ci∩C j = ∅ for
i 6= j, and ∪iCi = Ω. In this paper, we measure the similarity of pix-
els from two aspects: color homogeneity and spatial compactness.
In some previous algorithms [WZG∗13, ZPW∗16], instead of us-
ing traditional Euclidean distance, they presented a measure called
geodesic distance to improve the segmentation results. Some oth-
er algorithms [LC15] calculated the similarity in a ten-dimensional
feature space combining colors and coordinates. From our perspec-
tives, since the metrics of spatial distance and color distance are d-
ifferent, we introduce two energy terms to measure the spatial com-
pactness and color homogeneity in our energy function F(P), and
combine them with a parameter λ, which can be automatically de-
cided during the optimization process (described in Sec. 3.3). We
find the optimal partition by minimizing the following energy func-
tion:

F(P) = λFspatial(P)+Fcolor(P)

=
k

∑
i=1

(λFspatial(Ci)+Fcolor(Ci)),
(1)

where Fspatial measures spatial compactness and Fcolor measures
color homogeneity.

Algorithm 1 Superpixel Algorithm Framework

Input:
An input image I, and user-specified number of superpixels k;

Output:
An optimal k-partition of the image I.

1: Merge pixels to k superpixels as initial segmentation using Al-
gorithm 2;

2: Optimize the energy funtion by swapping pixels between
neighboring superpixels using Algorithm 3;

3: Enforce connectivity.

Spatial Compactness: We denote a pixel of an image as p =
(ps,pc), where ps is a two-dimensional vector, representing its co-
ordinates; pc is a three-dimensional vector, representing its color.
For a superpixel C containing several pixels, we expect C to have a
regular shape in non-feature or non-boundary regions of an image.
Similar to the CVT energy, the Fspatial term is defined as follows:

Fspatial(C) = ∑
p∈C
‖ps− p̄s(C)‖2 . (2)

Where p̄s(C) represents the barycenter of the cluster C. It is easy
to convert the formula into a matrix form and represent it with the
trace of a superpixel’s covariance matrix:

Fspatial(C) = ∑
p∈C
‖ps− p̄s(C)‖2

= ∑
p∈C

Tr(ps− p̄s(C))T(ps− p̄s(C)))

= Tr( ∑
p∈C

(ps− p̄s(C))(ps− p̄s(C))T)

= Tr(Ms(C)).

(3)

Here, Ms(C) =∑p∈C(ps− p̄s(C))(ps− p̄s(C))T is the 2×2 covari-
ance matrix for pixel coordinates in 2D.

Color Homogeneity: The color distribution of a superpixel C is
expected to be uniform. We use the CIELAB color space, and use
the same CVT formula to measure color homogeneity:

Fcolor(C) = ∑
p∈C
‖pc− p̄c(C)‖2

= Tr(Mc(C)).

(4)

Similarly, Mc(C) = ∑p∈C(pc− p̄c(C))(pc− p̄c(C))T is the 3× 3
covariance matrix for colors in 3D CIELAB space.

3.2. Agglomerative Clustering Algorithm

In this section, we show the framework of our agglomerative clus-
tering algorithm. The algorithm contains two main parts: merging
and swapping. The first step of our algorithm starts from treating
each pixel in the image as an individual superpixel, and iterative-
ly merging pairs of superpixels with the least energy increase in a
greedy way. Superpixel number will decrease from the total pixel
number n to the user specified k. In the seond step, taking the merg-
ing result as initial segementation, our energy function is optimized
by swapping boundary pixels between neighboring superpixels. We
then enforce the connectivity of suerpixels in the last step.
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Figure 2: Image segmentation results with 500 superpixels. The
partition in first row shows superpixels after merging, compactness
CO = 0.29; the second row shows partition after swapping, com-
pactness CO = 0.43.

Merging: As shown in Eqs. (3) and (4), the objective function
can be computed from the two covariance matrices Ms(C) and
Mc(C). Start from treating each pixel as a superpixel, the merg-
ing process iteratively merges two superpixels with least energy
increase until the number of superpixels is reduced to the speci-
fied value k. During merging operation, it is necessary to calcu-
late the merging cost of two superpixels. Suppose we have a candi-
date pair of superpixels Ci and C j that will be merged into Ck. We
need to calculate the merging cost ∆F and place the merging pair
(Ci,C j) with ∆F in a min-heap. We denote the merging operation
as Ci +C j→Ck. As Fspatial and Fcolor are defined in a similar fash-
ion, we ignore the subscript s, c and denote the average values of
clusters Ci, C j and Ck with symbols p̄(Ci), p̄(C j) and p̄(Ck), respec-
tively. To calculate the merging cost, we update the average value
p̄(Ck) of new cluster Ck by using the following equation:

p̄(Ck) =
|Ci|p̄(Ci)+ |C j|p̄(C j)

|Ci|+ |C j|
, (5)

where |Ci| and |C j| are the numbers of pixels in Ci and C j. The
covariance matrix can be updated by:

M(Ck) =M(Ci)+ |Ci|(p̄(Ci)− p̄(Ck))(p̄(Ci)− p̄(Ck))
T

+M(C j)+ |C j|(p̄(C j)− p̄(Ck))(p̄(C j)− p̄(Ck))
T.

(6)

Note that in the above updates of p̄(Ck) and M(Ck), we do not
need to sum over all pixels in these superpixels. Each superpixel
C can be fully represented by σC = {M(C), p̄(C), |C|}. Due to the
quadratic nature, the objective function of the newly merged cluster
Ck can be simply computed from the representatives σCi and σC j

of the two clusters Ci and C j. This is an operation of O(1) time
complexity, which does not depend on the number of pixels in each
cluster. The merging cost is positive, and defined as ∆F = F(Ck)−
F(Ci)−F(C j). As shown in Alg. 2, the pair of superpixels with the
minimum merging cost will be first processed.

Swapping: The segmentation results need to be further opti-
mized. In Fig.2 we can see the shape of superpixels is irregular

Algorithm 2 Merging

Input:
An input image I, and number of superpixels k;

Output:
Initial Segmentation of image I.

1: initialize each superpixel Ci to contain only one pixel pi;
2: initialize N to be the number of all pixels;
3: for each pixel pi do
4: compute the merging cost ∆F of pi with its four neighboring

pixels;
5: place the valid merging pair (Ci,C j) with ∆F into min-heap

Hmin, ordered by ∆F ;
6: end for
7: while N > k do
8: remove a merging pair (Ci,C j) from the top of heap Hmin;
9: if Ci is not empty and C j is not empty then

10: merge two superpixels Ci, C j into Ck;
11: minus one from N;
12: end if
13: delete all merging pairs involving Ci and C j from Hmin;
14: compute new merging pairs of Ck with its neighboring su-

perpixels, as well as their merging cost ∆F ;
15: place new merging pairs into Hmin.
16: end while

Algorithm 3 Swapping

Input:
Initial Segmentation after merging;

Output:
Optimized segmentation.

1: initialize set Ss to conatin all superpixels
2: calculate the adjacency between superpixels
3: while termination condition not satisfied do
4: compute the set of boundary pixels B of superpixels in Ss;
5: for each superpixel Ci do
6: for each boundary pixel p ∈ Bi do
7: for each neighboring pixel pn of p that are not in Ci do
8: get the superpixel C j which pn belongs to;
9: get the cost of swapping p from Ci to C j;

10: store the minimum cost as ∆Fmin;
11: end for
12: if ∆Fmin < 0 then
13: store the swapping item (Ci,C j,p,∆Fmin) in the heap

Pswap with ∆Fmin as the key;
14: end if
15: end for
16: end for
17: clear Ss
18: for each swapping item (Ci,C j,p,∆Fmin) in Pswap do
19: swap p from Ci to C j;
20: add Ci, C j and their neighboring superpixels to Ss;
21: end for
22: update the adjacency between superpixels and clear Pswap
23: end while
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after merging especially in the background area. Taking the merg-
ing result as an initial segmentation, the swapping algorithm min-
imizes the energy in Eq. (1) by swapping the boundary pixels be-
tween superpixels. Alg. 3 demonstrates how to optimize the par-
tition with swapping operation. It is an iterative process, and we
can set the maximum number of iterations or terminate the itera-
tion when the energy reduction ratio is below a given threshold.
First we will detect boundary pixels for a superpixel Ci. We treat a
pixel p in Ci as the boundary pixel if one of its four neighbors does
not belong to Ci. For a boundary pixel p, it may have more than
one neighboring superpixels. The swapping method calculates the
cost of swapping p to its neighboring superpixels and chooses the
optimal swapping strategy, which means swapping p to the super-
pixel with the minimun swapping cost. Suppose we consider swap-
ping a boundary pixel p from Ci to C j, i.e., (Ci,C j)→ (C

′

i ,C
′

j), and

C
′

i = Ci−p, C
′

j = C j +p. We calculate the energy change by for-

mula ∆Fo = F(C
′

i )+F(C
′

j)−F(Ci)−F(C j). If the value of ∆Fo
is negative, then the energy will be reduced and the pixel can be
swapped. The formulas to compute F(C

′

i ) and F(C
′

j) are also s-
traightforward. If we treat the pixel p as a superpixel, the genera-
tion of C

′

j is a merging operation between C j and p. Thus we can
use the above mentioned merging formulation. The generation of
C

′

i is actually a subtraction: Ci−p→ C
′

i . In this case, we need to
calculate the average value and covariance matrix of superpixel C

′

i
by:

p̄(C
′

i ) =
|Ci|p̄(Ci)−p
|Ci|−1

, (7)

and

M(C
′

i ) =M(Ci)−|C
′

i |(p̄(C
′

i )− p̄(Ci))(p̄(C
′

i )− p̄(Ci))
T

− (p− p̄(Ci))(p− p̄(Ci))
T.

(8)

Our swapping method does not ensure superpixel connectivity,
i.e., during the swapping of pixels a superpixel may be divided in-
to several disconnected sub-clusters. We keep the sub-cluster with
largest number of pixels, calculate the merging cost of other small
sub-clusters with their neighboring superpixels, and assign these
sub-clusters to the least-cost neighboring superpixel. After such
post-processing the superpixels are guaranteed to be connected.

Fig. 2 illustrates results of merging and swapping. It is clear
to see that the swapping method significantly improves the spatial
compactness and boundary smoothness. To quantitatively demon-
strate the improvement of compactness, we use the compactness
metric CO [SFS14]:

CO = ∑
c∈C

Qc ·
|c|
|I| , (9)

where Qc =
4πAc

L2
c

. Ac and Lc are the area and perimeter of superpix-
el, |c| and |I| are the number of pixels in superpixel c and image I.
Qc = 1 if the shape of superpixel is circular, Qc(< 1) increases for
more compact shape, so does the CO value. In Fig. 2 the CO value
of merging result is 0.29, and it increases to 0.43 after swapping.

We quantitatively demonstrate the performance of the swapping
algorithm in Fig. 3. The explanation of boundary recall, achiev-
able segmentation accuracy, and under-segmentation error metrics

Figure 3: Performance of swapping iterations. The first column
shows performance of BR, ASA and UE of results after merging, 1
iteration , 3 iterations, 5 iterations of swapping and the final result
after swapping. The second column shows results after 1 ,3 and 5
iterations of swapping with k=500.

Figure 4: Taking SLIC and MSLIC results as input for the
swapping method to optimize. The last row shows details
of original and swapping results of SLIC, MSLIC and ours,
respectively. The results after merging and swapping of our
method are shown in Fig.2. We show the performance of (BR,
UE, ASA): SLIC:(0.903,0.085,0.926),(0.963,0.076,0.941);
MSLIC:(0.942,0.059,0.936),(0.974,0.059,0.949);
ours:(0.984,0.060,0.949),(0.975,0.058,0.950).

is given in Sec. 4.1. We can see that the BR performance may de-
crease slightly during iterations, as the superpixels becoming more
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 5: Superpixel generated by different methods with 500 clusters. (a) Original image; (b) our method; (c) BGD [ZPW∗16]; (d) SLIC
[ASS∗12]; (e) Turbopixels [LSK∗09]; (f) VCells [WW12]; (g) LRW [SDWL14]; (h) MSLIC [LYYH16]; (i) LSC [LC15]; (j) GGM [CG16];
(k) DBSCAN [SHL∗16]; (l) IMSLIC [LYLH18]. The last row shows the magnified details in sequence.

compact it allows more color variation in a region, and the bound-
ary adherence may decrease slightly. As for ASA and UE, the per-
formance does not change much. In addition, the more number of
superpixels achieves the better performance.

In our optimization framework, the merging method generates
a partition with k superpixels. Based on this initial partition, swap-
ping method optimizes energy function by swapping boundary pix-
els between superpixels. We can acctually replace merging result
with other segmentation and do the swapping to minimize the ener-
gy, such as taking SLIC or MSLIC results as initial segmentation.
Obviously, a good initial segmentation is vital to the final result,
and we believe that our merging method can provide better seg-
mentation than other methods. Since for seed-based methods, the
results highly depend on the initial placement of seeds and easily
get stuck in local minima. While in the proposed merging method,
each step of bottom-up clustering choose the pairs of clusters with
leaset energy increase in a greedy pattern, thus eliminates the de-
pendency of optimization results on initial seeds position. In Fig.
2, we demonstrate the partition of merging method and swapping
method with k=500. In Fig. 4, the left column shows partition gen-
erated by SLIC method and MSLIC method. We take SLIC and

MSLIC results as initial partition for swapping, and show the cor-
responding optimized partition in right column. The last row shows
the magnified details of initial partition and optimized partition of
SLIC, MSLIC and our method, respectively. The results show that
our optimization algorithm with simply defined CVT energy out-
performs others.

3.3. Implementation Details

As mentioned in Eq. (1), the parameter λ balances the relative
importance of color homogeneity and spatial compactness. In the
merging step, we start with setting λ to be an empirical value
λ = 0.1. Later in the swapping progress, λ will be updated au-
tomatically by setting the two objectives equally important, i.e.,
λFspatial(P) = Fcolor(P). If we want to obtain more compact super-
pixels, we can emphasize the importance of spatial compactness by
setting λ to a value bigger than the computed value. The swapping
method is an iterative process. In practice, it generates a good par-
tition of an image by setting the maximum iteration number to be
100 or setting the energy reduction ratio to be 0.01% as the termi-
nation condition.

In Sec. 4.2 we extend our algorithm to RGB-D images of NYU-
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(a) (b) (c)

Figure 6: Comparisons with Turbopixels [LSK∗09], LRW [SDWL14], SLIC [ASS∗12], VCells [WW12], DBSCAN [SHL∗16], BGD
[ZPW∗16], MSLIC [LYYH16], IMSLIC [LYLH18], LSC [LC15] and GGM [CG16] on the BSDS500 benchmark. (a) Boundary recall;
(b) achievable segmentation accuracy; and (c) under-segmentation error.

Figure 7: Running time comparison with different algorithms on
BSDS500. The first shows runtime with respect to the superpixel
numbers; The second shows runtime with respect to the scaling
ratio.

V2 dataset, which includes extra depth information. In practice, by
incorporating depth information into the spatial coordinates, we ex-
tend the dimension of the spatial covariant matrix Ms(C) to 3× 3.
Experiments show that our algorithm can detect the boundaries of
objects in indoor scenes very well by using the depth information.

4. Experiments

We implemented our algorithm in C++ and tested it on a PC with an
Intel i7- 4790 CPU (3.60GHz) and 16GB RAM. Experiments were
performed on two datasets: the Berkeley Segmentation Dataset
(BSDS500) [MFTM01] and the NYU Depth Dataset (NYUV2)
[SHKF12]. BSDS500 dataset consists of 500 images, human seg-
mented ground truth and benchmark to test performance. The reso-
lution of the image is 481×321 (321×481). NYUV2 dataset con-
sists of 1449 indoor images with resolution of 640×480. For each
image, a depth image is provided. Since the raw images of NYUV2
contain white frames, we further crop the images to a resolution of
608×448.

4.1. BSDS500 Results

In this section, we compare our algorithm with other superpix-
el generation methods on the BSDS500 dataset. The performance
of superpixels is commonly measured by three standard metrics:
boundary recall (BR), under-segmentation error (UE) and achiev-
able segmentation accuracy (ASA). For UE, the lower the better,
and for BR and ASA, the higher the better. Among these standard
metrics, the BR [LSK∗09] measures the fraction of the ground truth
boundaries correctly overlapped by the superpixel boundaries. A
boundary pixel is regarded to be detected if it falls within 2 pixels
from one point of superpixel boundaries. A high value of BR means
good performance of boundary adherence. The UE [LSK∗09] mea-
sures the percentage of pixels exceeding the ground truth bound-
aries when the superpixels are mapped on. It is actually a penal-
ization strategy when the superpixels overlap with multiple ob-
jects. The ASA [WZG∗13] is a performance upper-bound mea-
sure defined as the highest achievable object segmentation accu-
racy. The superpixels are labeled with the ground truth segments of
the largest overlapping area.

In Fig. 5 and Fig. 6, we show the comparison result of various
algorithms including BGD [ZPW∗16], SLIC [ASS∗12], Turbopix-
els [LSK∗09], VCells [WW12], LRW [SDWL14], MSLIC [LYY-
H16], LSC [LC15], GGM [CG16], DBSCAN [SHL∗16],and IM-
SLIC [LYLH18]. We can see that our method is better than most
algorithms in terms of boundary adherence. Many algorithms are

submitted to COMPUTER GRAPHICS Forum (8/2018).

Page 7 of 12 Computer Graphics Forum



8 X. Dong et al. / Superpixel Generation by Agglomerative Clustering with Quadratic Error Minimization

Figure 8: Comparison with the MSLIC method [LYYH16]. We
show the performance of (k, BR, UE, ASA): first row, MSLIC:
(505,0.910, 0.046, 0.931), Ours: (505,0.958, 0.028, 0.955); second
row, MSLIC: (486,0.975, 0.019, 0.973), Ours: (486,0.987, 0.013,
0.980).

not able to detect boundaries that have pixels of similar color on
opposite sides. In Fig. 6 we illustrate the performance of BR, ASA
and UE, our method has the best performance on BR. It is very sen-
sitive to capture the pixel color changes, and in the vast majority of
cases it is able to detect the object boundaries. Except for our new
method, the LSC and GGM methods exhibit high performance: the
BR value of our method is 2 percentage higher than GGM method.
In terms of UE, our method is comparable to the GGM method with
the increase of the number of superpixels. For ASA, our method
achieves a little bit lower value than the GGM method, it is about
0.2 percentage lower when the number of superpixels is 300 or 500.
The GGM algorithm has an excellent performance on three metrics
– it adopts a Gaussian Generative Model to assure the color homo-
geneity and the results of this method present good quality on both
spatial and color aspects. The SLIC algorithm is a special case of
K-means adapted to the task of generating superpixels, which lo-
calizes pixel search to a limited area. The DBSCAN algorithm also
limites the pixel search in a local region, using the density-based s-
patial clustering of applications with noise algorithm instead. Both
these algorithms are super efficient. The boundary adherence of S-
LIC is less competitive. For runtime performance showed in Fig.
7, our algorithm is comparable to other algorithms. For the scal-
ing ratio, a ratio of 2 means that the image size is 4 times of the
original.

In order to further demonstrate the differences between our al-
gorithm and the other methods, we compare our method with three
algorithms: MSLIC, GGM and LSC. For each image in these com-
parisons, we give the values of BR, UE, and ASA. As shown in
Fig. 8, the MSLIC method cannot produce the exact number of su-
perpixels specified by the user. It is clear that our algorithm outper-
forms MSLIC in terms of boundary adherence. In Fig. 9 we illus-
trate the results of the GGM method in the first column. The GGM
algorithm can maintain regular shapes and uniform sizes of super-
pixels, and it does not allow relatively small or elongated shapes

Figure 9: Comparison with the GGM method [CG16], k=500. The
performance of (BR, UE, ASA): first row, GGM: (0.934, 0.057,
0.959), ours: (0.954, 0.053, 0.957); second row, GGM: (0.964,
0.059, 0.946), ours: (0.991, 0.056, 0.958).

Figure 10: Comparison with the LSC method [LC15], k=300. The
performance of (BR, UE, ASA): first row, LSC: (0.957, 0.035,
0.940), ours: (0.957, 0.034, 0.940); second row, LSC: (0.968,
0.076, 0.949), ours: (0.980, 0.055, 0.961).

Figure 11: A bad case of our method, k=300. The left column shows
zigzag boundaries with a automatically computed λ in swapping;
the right column shows smooth boundaries with λ 4 times larger
than the automatically computed value.

to appear. Thus in the second row, in the wing area of the plane,
boundaries can not be detected well. Besides, GGM does not de-
tect the weak boundaries well. Compared with the LSC method [L-
C15], which is a combined method of weighted K-means and nor-
malized cuts by introducing a ten dimensional feature space, Fig.
10 shows the results. According to the experiments, these two algo-
rithms generate similar results. The LSC algorithm performs well
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on boundary adherence. However in some cases, the LSC has dif-
ficulty in detecting small objects, even when the color is obviously
different with its adjacent regions.

Our algorithm can achieve better boundary adherence than other
algorithms in most cases. One drawback of our algorithm is that it
is very sensitive to color changes, generating irregular shapes and
zigzag boundaries at some cases. The parameter λ which balances
the importance of spatial compactness and color homogeneity, is
automaticlly computed during swapping iterations and performs
well in most cases. For an image with severe color changes, the
value of λ needs to be larger to improve the compactness. Like the
result shown in the right column of Fig. 11, we set λ to be 4 times
larger than the automatically computed value.

4.2. NYUV2 Results

In Fig. 13, we test on an indoor image and its depth image from
the NYUV2 dataset. Combining the depth information with the co-
ordinates of the 2-dimensional image, the matrix Ms(C) becomes
a 3× 3 covariance matrix. We implement some existing superpix-
el algorithms by combining the depth information with the spatial
coordinates as well, such as SLIC, MSLIC and GGM. As shown in
Fig. 12 and Fig. 13, the other algorithms only operate with coor-
dinate infomation. In Fig. 12, for three performance measurements
our algorithm outperforms the others. Fig. 13 demonstrates details
of superpixel results. It is clear that our algorithm makes good use
of the depth information of the image, showing higher performance
in boundary recall.

4.3. Application

Superpixel segmentation can be used as preprocessing step for
many computer vision tasks. In this paper, we apply superpixel
segmentation in saliency detection [WSS15, WSYP18]. A recent
method for saliency optimization from robust background detec-
tion [ZLWS14] uses superpixel segmentation as input to generate
salient object detection results. We randomly selected 500 images
from the MSRA [LYS∗11] dataset to test the performance. Fig. 14
shows results of saliency maps using different superpixel results.
The greater gray value indicates more important area. The mean
absolute error (MAE) means the average per-pixel difference be-
tween a saliency map and the ground truth, normalized to [0,1].
We compute the standard precision recall (PR) curves in Fig. 15.
They are computed by comparing the saliency map to the ground
truth. The high recall value means that more salient regions labeled
by the ground truth are considered, and the high precision value
means less pixels on the background are detected. In order to see
the differences more clearly, we show the magnified details. In most
cases, our method shows high precision.

5. Discussion

In this paper, we present an agglomerative clustering algorithm
based on a quadric error metric which produces compact super-
pixels and automatically adapts to local image contents. In contrast
to seed-based methods [ASS∗12, WW12, LYYH16], our method
does not need a good initial seed distribution, thus avoids bad lo-
cal minima to which the previous methods may get stuck. This is

Figure 14: Saliency detection using different superpixels. The first
row shows images and ground truth. From left to right, the salien-
cy results are obtained based on the superpixel results generated
by: SLIC; MSLIC; Turbopixels; DBSCAN; LSC; IMSLIC; GGM;
ours. In sequence, the MAE values of the first image: 0.011, 0.011,
0.014, 0.014, 0.011, 0.013, 0.012, 0.010; the MAE values of the
second: 0.066, 0.067, 0.067, 0.071, 0.066, 0.055, 0.057, 0.055.

achieved by removing the dependency of the objective function on
seed points, and using a greedy merging operation which is capa-
ble of generating sufficiently good results for subsequent optimiza-
tion. The optimization scheme in this paper follows the method
proposed by GGM [CG16], but for a different objective function.
In GGM [CG16], they measure the spatial compactness and color
homogeneity by using Mahalanobis distance, and the resultant su-
perpixels show anisotropy in both shape and color. In other words,
their method allows slightly larger color variation in a superpix-
el. In contrast, our algorithm is more sensitive to the changes of
color and can capture small color variation. Our method tends to
generate rather small and irregular shaped superpixels in complex
regions with boundaries and features, leading to better boundary
adherence. In the future, we consider utilizing deep learning fea-
tures [WS18] as prior knowledge to regularize superpixel genera-
tion, which is also likely to get better results.
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(a) (b) (c)

Figure 12: Comparisons with Turbopixels [LSK∗09], SLIC [ASS∗12], DBSCAN [SHL∗16], MSLIC [LYYH16], IMSLIC [LYLH18], LSC
[LC15] and GGM [CG16] on the NYUV2 dataset. (a) Boundary recall; (b) achievable segmentation accuracy; and (c) under-segmentation
error.

(a) SLIC (b) MSLIC (c) GGM (d) Ours

(e) Turbopixels (f) LSC (g) DBSCAN (h) IMSLIC

Figure 13: Superpixel results of eight algorithms on RGBD images. Our algorithm shows high performance on boundary recall.

Figure 15: Precision recall curves of saliency detection using different superpixel algorithms. The middle and right figures show magnified
details of the regions outlined in red in the left figure.
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