
GPU-Assisted Computation of
Centroidal Voronoi Tessellation

Guodong Rong, Yang Liu, Wenping Wang, Xiaotian Yin, Student Member, IEEE,

Xianfeng David Gu, Member, IEEE, and Xiaohu Guo, Member, IEEE

Abstract—Centroidal Voronoi tessellations (CVT) are widely used in computational science and engineering. The most commonly

used method is Lloyd’s method, and recently the L-BFGS method is shown to be faster than Lloyd’s method for computing the CVT.

However, these methods run on the CPU and are still too slow for many practical applications. We present techniques to implement

these methods on the GPU for computing the CVT on 2D planes and on surfaces, and demonstrate significant speedup of these GPU-

based methods over their CPU counterparts. For CVT computation on a surface, we use a geometry image stored in the GPU to

represent the surface for computing the Voronoi diagram on it. In our implementation a new technique is proposed for parallel regional

reduction on the GPU for evaluating integrals over Voronoi cells.

Index Terms—Centroidal Voronoi tessellation, graphics hardware, Lloyd’s algorithm, L-BFGS algorithm, remeshing.

Ç

1 INTRODUCTION

VORONOI diagrams are well studied in computational
geometry and have many applications in areas like

computer graphics, visualization, pattern recognition, etc.,
[1], [2]. An evenly spaced tessellation of a given domain � is
produced by a special type of Voronoi diagram, called
Centroidal Voronoi Tessellation (CVT); see for example Fig. 1.
The uniformity of the cells of an optimal CVT has been
conjectured by Gersho [3] and proved in 2D [4], while
confirmed empirically in 3D [5]. This property makes the
CVT useful in many applications, including graph drawing
[6], decorative arts simulation [7], [8], [9], grid generation
and optimization [10], vector field visualization [11], [12],
surface remeshing [13], [14], [15], [16], and medial axis
approximation [17]. In this paper, we study how to speed up
the computation of the CVT using the GPU.

1.1 Preliminaries

We first present the definition and properties of the CVT
and some typical algorithms for computing the CVT. More
details about the CVT can be found in the survey [18].

Given n sites x1;x2; . . . ;xn in a domain � � IRN , the
Voronoi diagram is defined as the collection of the Voronoi
cells �i, i ¼ 1; 2; . . . ; n, defined as

�i ¼ fx 2 � : kx� xik < kx� xjk; i 6¼ jg:

The centroidal Voronoi tessellation is a special Voronoi diagram
in which each site xi coincides with the centroid ci of its
Voronoi cell �i:

ci ¼
R

�i
�ðxÞx d�R

�i
�ðxÞ d�

; ð1Þ

where �ðxÞ > 0 is a density function. An example of a CVT
of 200 sites in a square is shown in Fig. 1a.

The CVT energy function F is defined for the ordered set
of samples (i.e., sites) X ¼ ðx1;x2; . . . ;xnÞ in � as

F ðXÞ ¼
Xn
i¼1

fiðXÞ ¼
Xn
i¼1

Z
�i

�ðxÞkx� xik2 d�; ð2Þ

where the �i are the Voronoi cells of the sites xi. It can be
shown [18] that the regions �i of the sites xi form a CVT in
the domain � if and only if the gradient of F ðXÞ vanishes,
that is, a critical point of F ðXÞ. Therefore, a necessary
condition for F to be locally minimized is that the regions
�i form a CVT. A CVT that locally minimizes F will be
called a stable CVT. In practice one often seeks a stable CVT
since it usually produces a more regular and compact
tessellation than a CVT that is not a local minimizer of F .

Furthermore, a CVT that globally minimizes F is called
an optimal CVT. Because there are a large number of stable
CVTs when the number of sites is large, in general, it is
difficult to compute an optimal CVT.

For a nonconvex domain, the centroid of a cell �i

computed by (1) may lie outside �i. In this case the centroid
is replaced by the constrained centroid inside �i, defined as

c�i ¼ arg min
p2�i

Z
�i

�ðxÞkx� pk2 d�: ð3Þ

When all the sites coincide with the constrained centroids
within the domain �, the CVT is called a constrained centroidal
Voronoi tessellation (CCVT) [19]. The CCVT can also similarly
be defined on a surface S � IR3, i.e., by constraining all the

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 17, NO. 3, MARCH 2011 345

. G. Rong and X. Guo are with the Department of Computer Science,
University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX
75083. E-mail: {guodongrong, xguo}@utdallas.edu.

. Y. Liu is with the Alice Project Team, LORIA/INRIA Lorraine, 615, rue du
Jardin Botanique, 54600, Villers les Nancy, France.
E-mail: liuyang@loria.fr.

. W. Wang is with the Department of Computer Science, The University of
Hong Kong, Chow Yei Ching Building, Pokfulam Road, Hong Kong.
E-mail: wenping@cs.hku.hk.

. X. Yin and X.D. Gu are with the Department of Computer Science, State
University of New York at Stony Brook, Stony Brook, NY 11794.
E-mail: {xyin, gu}@cs.sunysb.edu.

Manuscript received 12 Nov. 2009; revised 16 Jan. 2010; accepted 25 Jan.
2010; published online 16 Mar. 2010.
Recommended for acceptance by M. Lin.
For information on obtaining reprints of this article, please send e-mail to:
tvcg@computer.org, and reference IEEECS Log Number TVCG-2009-11-0261.
Digital Object Identifier no. 10.1109/TVCG.2010.53.

1077-2626/11/$26.00 � 2011 IEEE Published by the IEEE Computer Society

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on May 11,2020 at 15:41:05 UTC from IEEE Xplore. Restrictions apply.

sites to lie on the surface. Fig. 1b shows an example of a CCVT
of 600 sites on a torus.

Two commonly used algorithms for computing the
CVT are Lloyd’s algorithm [20] and the L-BFGS algorithm
[21]. Although converging faster than Lloyd’s algorithm,
the L-BFGS algorithm still needs a long time to compute a
CVT. In this paper, we describe how to leverage the
parallel computational power of the programmable gra-
phics processing unit (GPU) to speed up these two
methods for computing the CVT in 2D and on surfaces.

Using the GPU for computing the CVT in 2D is a
straightforward idea, since a 2D domain can be represented
naturally by a 2D texture in the GPU. The idea of computing
the CCVT on a surface is similar, but we need to first
construct a parametric representation of the surface using the
geometry image. With the geometry image represented as a
texture in the GPU, we run the jump flooding algorithm [22]
to compute the Voronoi diagrams in each iteration of CVT
computation. Here, the pixels of the geometry image store
the 3D coordinates of sampled points on the surface and we
use the euclidean distance in 3D for computing the Voronoi
diagram. We note that this is different from the method in
[15], which computes Voronoi diagrams using distances in a
2D parametric domain.

1.2 Contributions

Our contributions are efficient implementations of Lloyd’s
algorithm and the L-BFGS algorithm on the GPU for the
computation of the CVT in 2D and on a surface. We propose
a new technique for computing Voronoi diagrams on
surfaces and a novel way of using vertex programs to
perform the regional reduction over Voronoi cells. Sig-
nificant speedup is achieved by our GPU programs in
various cases of CVT computation.

All our GPU programs are implemented with the shader
language Cg. Although general purpose languages on the
GPU (e.g., CUDA) are more popular now, our tests show
that Cg is better suited for implementing the algorithms for
CVT computation. We will explain the reasons behind this
in more details in Section 5.4.

The remainder of the paper is organized as follows:
Section 2 briefly reviews related work. Section 3 explains
how to compute the CVT on a 2D plane with the GPU. The
idea is then extended in Section 4 to computing the CCVT
on surfaces. The experimental results and comparisons are
given in Section 5. Section 6 concludes the paper with
discussions of future research.

2 PREVIOUS WORK

We will briefly review existing algorithms on the CPU for
computing the CVT. We also give a brief survey of previous
work on using the GPU to compute the Voronoi diagram.

2.1 CVT Algorithms

MacQueen’s probabilistic method is one of the earliest
methods for computing the CVT [23]. Ju et al. integrated
MacQueen’s method and Lloyd’s algorithm on a parallel
platform [24]. The most commonly used algorithm for
computing the CVT in 2D/3D is Lloyd’s algorithm [20] for
its simplicity and robustness. However, this method has
linear convergence and is very slow in practice. The
multigrid method has been proposed to accelerate Lloyd’s
algorithm [25].

It has recently been shown that the CVT energy function
is C2 continuous [21]. Justified by the C2 smoothness of the
CVT energy function, Liu et al. applied a quasi-Newton
method—the L-BFGS algorithm—to computing the CVT in
2D, 3D and on surfaces, and showed that the algorithm is
faster than Lloyd’s algorithm [21].

2.2 GPU Algorithms

With the rapid advance of the GPU, the general-purpose
computation on the GPU (GPGPU) has become an active
topic [26]. In the following, we will review previous work
on using the GPU to compute Voronoi diagrams.

Hoff et al. [27] built a right-angle cone for every site and
rendered them from bottom to get a Voronoi diagram of
these sites. Denny’s method [28] is similar to Hoff et al.’s but
changes the cones to depth textures to get better quality and
speed. Fischer and Gotsman [29] lifted the sites to a
paraboloid and rendered planes tangent to the paraboloid
to obtain the Voronoi diagram, thus avoiding tessellating the
cones. Note that the Voronoi diagrams computed by GPU
algorithms in 2D are defined by color-coded pixel maps;
hence, they are only discrete approximations to the true
Voronoi diagrams defined by polygons. All these algorithms
are designed for computation in 2D, and it is not clear how to
extend them to compute the Voronoi diagram on a surface.

The jump flooding algorithm (JFA) [22] is another
method for computing the Voronoi diagram in a 2D
discrete domain represented in pixels. The JFA propagates
information (e.g., coordinates of the sites in the Voronoi
diagram problem) from the sites to all other pixels in
parallel, similar to the flood-filling algorithm, but with
faster speed due to its use of varying step lengths. Cao et al.
[30] proposed the parallel banding algorithm (PBA) which
is faster than the JFA. But it is not clear how to extend the
PBA to compute the Voronoi diagram on a surface. We will
use the JFA to compute the Voronoi diagram in 2D as well
as on a surface. Like [19], [21], we use the euclidean distance
to approximate the geodesic distance on a surface.

To compute the Voronoi diagram on a surface, one may
compute a 3D Voronoi diagram and find its intersection
with the surface. The GPU has also been used to compute
3D Voronoi diagrams [27], [31], [32], [33], [34]. Weber et al.
[35] adopted the raster scan method in the geometry image
to compute the Voronoi diagram using the geodesic
distance on a surface. This method handles disk-like open

346 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 17, NO. 3, MARCH 2011

Fig. 1. (a) The CVT of a square 2D domain with 200 sites; (b) The
constrained CVT on a torus with 600 sites.

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on May 11,2020 at 15:41:05 UTC from IEEE Xplore. Restrictions apply.

surfaces only. The geodesic distance, though more accurate
than the euclidean distance, is much less efficient to
compute on a mesh surface, even with GPU acceleration.

Vasconcelos et al.’s work [36] is the only known
successful attempt so far using the GPU to compute the
CVT in a plane. They implemented the Lloyd’s method on
the GPU to compute the CVT on a 2D plane, focusing on the
computation of the centroids. A predefined mask is used to
conservatively estimate the Voronoi cell for every site. Since
the diameter of a Voronoi cell may be very big, to ensure an
accurate result, the mask must be as big as the whole
texture, which makes the method inefficient. Bollig [37] also
proposed a similar algorithm computing the CVT on the
GPU, but his method is prone to errors for regions with
high curvature.

In contrast, we use the vertex program to perform
scattering and use the framebuffer blending function to
accumulate the coordinates. Our approach is simpler and
works well for computing both the CVT on a 2D plane and the
CCVT on a surface.

3 CVT ON 2D PLANE

There are two main steps in both Lloyd’s algorithm and the
L-BFGS algorithm: 1) computing the Voronoi diagram of
the current sites, and 2) finding new positions of the sites for
the next iteration. For step 1, we compute a discrete
approximation of the Voronoi diagram using the jump
flooding algorithm (JFA) [22] on the GPU. We propose a new
regional reduction method for efficiently computing various
integrals needed in step 2. In the following, we will briefly
review the JFA and present the regional reduction technique.

3.1 Jump Flooding Algorithm

Suppose that there is a site in an n� n texture in the GPU
and we want to propagate some information (e.g., the
coordinates of the site) from the site to all the other pixels.
The JFA performs this in several passes. For an initial step
length k that is a power of 2 (e.g., 2dlogne), a pixel at ðx; yÞ
passes its information to its neighbors (eight at most) at
ðxþ i; yþ jÞ, where i; j 2 f�k; 0; kg (Fig. 2). Then in the
subsequent passes, the same propagation is performed for a
pixel using the step length that is half of the previous step
length k. The iteration is stopped when the step length
reaches 1. Fig. 2 illustrates how the JFA fills up an 8� 8
texture using three passes with the single initial site at the
bottom left corner.

When using the JFA to compute the Voronoi diagram in
a 2D texture, there are multiple sites and the information to
be propagated from each site is its coordinates. Upon
receiving the coordinates of different sites, each pixel

compares its distances to these sites to find the nearest site
whose Voronoi cell it belongs to. Thus, all the pixels are
classified to form a Voronoi diagram.

Despite its fast speed, the JFA may misclassify a small
number of pixels [22]. We use 1þJFA [34], an improved
version of JFA, to compute the Voronoi diagram in our GPU
implementations. On average, the error rate of 1þJFA is
less than 0.25 pixels in a texture with the resolution of 512�
512 for less than 10,000 sites, which is accurate enough for
most practical graphics applications utilizing the CVT. To
be brief, we will refer 1þJFA as JFA as well.

A sufficiently large initial step length is needed to ensure
that each pixel is reached by its nearest site. On the other
hand, one should try to use a small but “safe” initial step
length to reduce the computation time incurred by
unnecessary JFA passes. A safe choice is 2dlogne, which is
necessary for computing a Voronoi diagram when the sites
are distributed in such a way that each Voronoi cell is
narrow and long, as the cells generated by a sequence of
collinear sites. However, this initial step length is, overall,
very conservative because after a few iterations of CVT
computation (with either Lloyd’s algorithm or the L-BFGS
algorithm) the sites are normally already distributed rather
evenly, therefore a much smaller initial step length would
be sufficient for each pixel to be reached by its nearest site.

This consideration leads us to use the following scheme
for selecting the initial step length. In the VD computation
of the first CVT iteration, the initial step length of the JFA
is set to be 2dlogne. For the VD computation in the next t
CVT iterations, we compute the average distance from
each site to all the pixels in its Voronoi cell using the
regional reduction (to be introduced in next section), and
set the initial step length of the JFA to be the double of the
maximum of all these average distances. Our experiments
show that t ¼ 5 gives satisfactory performance. Then in
the remaining CVT iterations (i.e., after five iterations) the
initial step length of the JFA is set to be that used in the
fifth iteration.

3.2 Regional Reduction

Several different integrals over the Voronoi cells of all the
sites need to be evaluated in CVT computation, that is, for
computing the value of the CVT energy function or
computing the centroid as needed by the Lloyd algorithm.
To approximate these integrals, we need to perform
summations over the pixels of all the Voronoi cells in
parallel, which calls for solving the so-called regional
reduction problem.

In the reduction problem, one needs to reduce a number
of values to a single one, such as sum, maximum,
minimum, etc. More precisely, the reduction problem takes
as input a set of values v1; . . . ; vn and outputs a single value
v ¼ v1 � � � � � vn, where � is an associative and commu-
tative operator. Thus, summation is a special case of the
reduction problem.

The reduction problem can be solved in OðlognÞ passes
on the GPU using a fragment program [38]. Existing
algorithms can only perform global reductions, that is,
reducing values of all the pixels in a texture into one single
value. However, in CVT computation the domain � is
decomposed into multiple regions (that is, Voronoi cells) �i

RONG ET AL.: GPU-ASSISTED COMPUTATION OF CENTROIDAL VORONOI TESSELLATION 347

Fig. 2. The iterations of the JFA for an 8� 8 texture with an initial site at
the bottom left corner.

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on May 11,2020 at 15:41:05 UTC from IEEE Xplore. Restrictions apply.

and we need to compute the sums of values of the pixels of
different regions in parallel. Therefore, we face a regional
reduction problem rather than a global one.

We propose to use the method of rendering points for
regional reduction. A single point is rendered for every
pixel, and its position is changed in the vertex program. All
the points in the Voronoi cell of site xi are translated to the
same position decided by its ID i. For example, the site xi
corresponds to the position ði=w; i%wÞ, where w is the width
of the texture used and “/” and “%” are division and
modulus operators for integers, respectively. The result is a
texture containing the reduction values for all the Voronoi
cells, one pixel for each site, which are packed in the order
of the site’s ID. Fig. 3 shows an illustration of this operation.

First, every point is rasterized into one fragment. The
fragment program processing these fragments then writes
the values to a texture recording the results. The depth test
or framebuffer blending operations can be used to reduce all
the values corresponding to the same pixel to a single value
which is stored in a result texture. For example, if we want to
compute the maximum of the values, we can write the
values into the depth channel as well as the color channels
for every fragment, and set the depth test function so that
only the fragment with the maximum value is stored into the
result texture (e.g., using glDepthFunc(GL_GREATER)). If
we want to compute the sum of the values, we can write the
values into color channels for every fragment, and set the
blending function so that the values of all the fragments are
added and the result is stored into the result texture (e.g.,
using glBlendFunc(GL_ONE, GL_ONE)).

Our regional reduction method works for a connected
region as well as a set consisting of disconnected regions.
This is important because the Voronoi diagram of a surface
may contain disconnected Voronoi cells near the bound-
aries of the geometry image (see Section 4). Furthermore, a
Voronoi cell in a pixel plane may contain disconnected parts
[39]; such a case can be handled properly by our regional
reduction method.

3.3 Lloyd’s Algorithm in 2D

Every iteration in Lloyd’s algorithm contains two steps:
1) computing the Voronoi diagram of the current sites; and
2) computing the centroids for Voronoi cells as the new sites
in the next iteration. These two steps are iterated until
certain termination condition is met.

On a 2D plane the centroids are computed using (1).
Using regional reduction the integrations in (1) are
approximated by summations, so we have

ci ¼
P

x2�i
�ðxÞx ��P

x2�i
�ðxÞ ��

¼
P

x2�i
�ðxÞxP

x2�i
�ðxÞ ; ð4Þ

where the x is the pixel position and �� the constant area
occupied by each pixel.

The numerator and denominator in (4) are computed
using the regional reduction in the same pass since they
share the same domain. The numerator is a 2D vector stored
in red and green channels of the texture, and the
denominator is a scalar value stored in the blue channel.

We stress that the coordinates of each site of the Voronoi
diagram are floating point numbers, albeit they are stored in
the discrete pixel closest to it. Since the Voronoi cells are
composed of pixels, the Voronoi boundaries have only pixel
precision. The algorithm will stop when the Voronoi
diagram does not change. Alternatively, a different termina-
tion condition can be used by checking if the value of CVT
energy function F or its gradient has reached a threshold.

3.4 L-BFGS Algorithm in 2D

The L-BFGS algorithm is a quasi-Newton algorithm that is
more efficient than Lloyd’s method for CVT computation
[40], [21]. In every iteration of the L-BFGS algorithm, we
need to compute the CVT energy F and its partial
derivatives with respect to all the sites. These values are
accumulated with those values of the m preceding itera-
tions to approximate the inverse Hessian matrix.

More specifically, define sk ¼ Xk �Xk�1 and yk ¼
rFk �rFk�1, where Xk and rFk are the ordered set of
sites and the gradient of the CVT energy function F at the
kth iteration, respectively. Then the approximated inverse
Hessian matrix Hk is updated by

Hk ¼ VT
kHk�1Vk þ �ksksTk ; ð5Þ

where �k ¼ 1=ðyTk skÞ, and Vk ¼ I� �kyksTk . The new sites
Xkþ1 for the next iteration is given by Xkþ1 ¼ Xk �HkrFk.
More details of the L-BFGS algorithm are given in [21].

The first-order partial derivative of F with respect to the
site xi is [2]:

@F

@xi
¼ 2

Z
�i

�ðxÞðxi � xÞ d�: ð6Þ

This integral is again approximated by summation as:

@F

@xi
¼ 2

X
x2�i

�ðxÞðxi � xÞ ��: ð7Þ

The summation is computed using the regional reduction in
the same pass as computing the energy function F . These
values are written into a texture and read back to the CPU,
where they are used to compute the approximated inverse
Hessian matrix Hk using (5) and then the new sites Xkþ1.
Hence, our implementation of the L-BFGS method is not
entirely done on GPU.

4 CCVT ON SURFACES

In this section, we will explain the pipeline of computing
the CCVT on a surface, following the flow in Fig. 4.

4.1 Geometry Image for Surface Representation

For a given surface we first compute a conformal parameter-
ization [41] of the surface over a 2D rectangular domain and

348 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 17, NO. 3, MARCH 2011

Fig. 3. Illustration of regional reduction. All the points in the Voronoi cell i
(VCi) are translated to the pixel corresponding to the site xi.

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on May 11,2020 at 15:41:05 UTC from IEEE Xplore. Restrictions apply.

use the parameterization to construct a regular quad mesh
to represent the surface. Then the surface can be repre-
sented by a 2D texture called the geometry image [42] whose
pixels store the 3D coordinates of the corresponding mesh
vertices. The red, green, and blue channels of a geometry
image store the 3D coordinates of the mesh vertices,
respectively. The surface normal vectors at the vertices are
also stored in a 2D texture of the same size, called normal
vector image, which will be used in the L-BFGS algorithm for
computing the CCVT on a surface.

Due to parameterization distortion, each pixel is assigned
a weight equal to the area it covers on the surface. This
weight is computed as follows: Suppose that the grid is
subdivided to give a regular triangulation as shown in Fig. 5.
Every pixel is supposed to cover one-third of each triangle
incident to the corresponding vertex of the pixel. Thus, the
weight of the pixel is set to 1/3 of the areas of all the triangles
incident to the corresponding vertex. The weight will be
called the distortion factor and is used as �� in (4) and (7).

The pipeline of computing the CCVT is shown in Fig. 4.
The left most part of Fig. 4 shows the geometry image and the
normal vector image of the surface of David Head in the top
row, and the surface itself and a checkerboard texture
showing the parameterization in the bottom row. The
computed distortion factors are shown in the left middle
part of Fig. 4.

Like the 2D case, computing the CCVT on a surface using
either Lloyd’s algorithm or the L-BFGS algorithm takes two
main steps in each iteration: 1) computing the Voronoi
diagram of the current sites on the surface, and 2) computing

the new sites for the next iteration. We will explain these two
steps in the following sections.

4.2 Computing Voronoi Diagram on Surfaces

Suppose that a given surface is represented as a geometry
image. We first store the 3D coordinates of the initial sites in
the nearest corresponding pixels of the geometry image, and
then perform the JFA to compute a Voronoi diagram on the
surface. Note that the euclidean distance between points in
3D space is used as approximation to the geodesic distance
when computing the Voronoi diagram on the surface.

We use a single geometry image for parameterizing a
surface of arbitrary topology, with necessary topological
cutting to facilitate parameterization. Due to the topological
cut, a Voronoi region on a surface may be split into
disconnected regions in the geometry image. This is usually
not a problem for the JFA, because the information of a site
can reach every pixel during the JFA procedure as long as it
is not killed en route [34]. Fig. 6b demonstrates the correct
Voronoi cells of initial sites near the cutting edges generated
by the JFA. According to our experiments, even in some
rare cases where errors occur near the cutting edges in
certain iteration, its affection will get eliminated during
later iterations. As the result, the final CVT result is always
very good (see Fig. 6c, for example).

Equipped with the routine for computing the Voronoi
diagram on a surface, we now explain how to implement

RONG ET AL.: GPU-ASSISTED COMPUTATION OF CENTROIDAL VORONOI TESSELLATION 349

Fig. 4. The pipeline for computing a CCVT on a surface. From left to right: The input David Head model together with its geometry image

ððr; g;bÞ ¼ ðx; y; zÞÞ and normal vector image ððr; g; bÞ ¼ ðnx; ny; nzÞÞ, distortion factors (modulated for visual clarity), the initial sites and the

corresponding Voronoi diagram, and the final sites with the CCVT. The top row shows the parameter domain, and bottom row shows the surface.

Fig. 5. (a) A regular triangulation in a geometry image. (b) The
corresponding triangulation on the surface.

Fig. 6. (a) Cutting edges (red) on David Head. The enlarged region in the
yellow box is shown with (b) the initial Voronoi diagram, and (c) the final
CVT.

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on May 11,2020 at 15:41:05 UTC from IEEE Xplore. Restrictions apply.

Lloyd’s algorithm and the L-BFGS algorithm on the GPU to
compute the CCVT on a surface.

4.3 Lloyd’s Algorithm on Surfaces

Using the geometry image to compute the CCVT on a
surface with Lloyd’s algorithm follows the same procedure
as for computing the CVT in 2D, except that we need to
compute the constrained centroids using (3). The following
property about the constrained centroid will be useful [19]:
if ci and c�i are the centroid and the constrained centroid of
the Voronoi cell �i, respectively, then cic

�
i is parallel to the

surface normal vector at c�i . On the other hand, we observe
that if c0i is the nearest point in �i to ci and it is not on the
boundary of �i, then cic

0
i is parallel to the surface normal

vector at c0i. Based on these observations, we find it an
effective heuristic to use the nearest point c0i as the
constrained centroid c�i in Lloyd’s algorithm, although they
are not always identical, since cic

0
i being parallel to the

surface normal vector at c0i is not a sufficient condition for c0i
to be the constrained centroid.

The nearest point c0i is computed as follows: For the
corresponding mesh vertex of every pixel in �i, we
compute the nearest point within its six incident triangles
to the centroid ci. To avoid redundant computations, we
only need to check two incident triangles for every vertex
(e.g., the two shaded triangles in Fig. 5 for the center
vertex), and the other four incident triangles will be dealt by
other neighboring vertices. In this way we find a nearest
point to the centroid ci for every pixel in �i. Then by
computing the minimum of the distances from these points
to ci using the regional reduction, we find the nearest point
c0i within �i to ci.

The number of iterations needed by both Lloyd’s and the
L-BFGS algorithms to obtain the CVT can be reduced
significantly if the initial sites are roughly evenly distributed
on the surface. To obtain such initial sites, we use the
distortion factors as a probability density function to sample
the initial sites in the geometry image. Therefore, a pixel with
a larger distortion factor is more likely to be selected as the
initial site. The right middle part of Fig. 4 shows 1,000 initial
sites sampled according to the distortion factors and the
Voronoi diagram generated in the parameter domain (top
row), as well as on the surface (bottom row). The final sites
and the CCVT are shown in the right most part of Fig. 4.

4.4 L-BFGS Algorithm on Surfaces

The initial sites for the L-BFGS algorithm are also sampled
according to distortion factors. In every iteration, to update
the sites we need to evaluate the CVT energy function F
and its partial derivatives. Because the sites are constrained
to be on the surface, we only use the tangential components
of the partial derivatives as

@F

@xi

����
�

¼ @F

@xi
� @F

@xi
�NðxiÞ

� �
NðxiÞ; ð8Þ

where NðxiÞ is the surface normal vector at xi stored in the
normal vector image. Therefore, we can use shaders to
evaluate F and its partial derivatives on the GPU efficiently,
in the same way as in the 2D case.

The updated sites computed in the L-BFGS algorithm
may not lie exactly on the surface. We compute their nearest

points in their respective Voronoi cells on the surface as the

new sites on the surface.

5 EXPERIMENTAL RESULTS AND DISCUSSION

We implement our programs using Microsoft Visual C++

2005 and NVIDIA Cg 2.0. The hardware platform is Intel Core

2 Duo 2.93 GHz with 2 GB DDR2 RAM, and NVIDIA GeForce

GTX 280 with 1 GB DDR3 VRAM. For the L-BFGS algorithm,

we use our HLBFGS library [43]. We have compared our
results with the CPU version of Lloyd’s algorithm and the

CPU version of the L-BFGS algorithm in [21]. We use m ¼ 7

for all L-BFGS algorithms in our experiments; that is, we use

the gradients of the seven previous iterations to estimate the

inverse Hessian in our implementation.
All the programs in this paper use IEEE standard float

point numbers (32 bit).

5.1 Results of CVT in 2D

The first test example is the computation of the CVT in the

2D domain of ½�1; 1� � ½�1; 1� mapped to a 512� 512

texture, with 1,000 random initial sites. The CVTs computed

by the GPU program and CPU program are shown in Fig. 7.

It is clear that the uniformity of the sites is greatly improved

in both results. We plot the CVT energy values and their

gradients versus the number of iterations for Lloyd’s

algorithm and the L-BFGS algorithm in Fig. 8. The red

and green curves are for our GPU programs and the black

and blue curves for CPU ones. For clarity, we show zoom-in

views of the shaded regions in Fig. 8b and Fig. 8d.
The experiments show that the GPU result is very close

to the CPU one, although there are fewer hexagon cells in

the GPU result and the the final CVT energy value

generated by the GPU is slightly higher. We may evaluate

the quality of an approximate CVT by considering its relative

difference from CVT computed with the CPU, defined as

CV T energy� final energy CPU
final energy CPU

� 100%;

where CV T energy is the CVT energy of the approximate

CVT. For the tests shown in Fig. 8, the relative difference is

0.69 percent for the result of Lloyd’s algorithm on GPU and

0.58 percent for that of the L-BFGS algorithm on GPU. These

differences can be attributed to two factors. First, a different

local minimum with higher energy is produced by the GPU

program. Second, the quantization errors in the GPU

implementation are responsible.

350 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 17, NO. 3, MARCH 2011

Fig. 7. (a) The Voronoi diagram of 1,000 initial sites in the 2D domain of
½�1; 1� � ½�1; 1�, and CVT results generated by the L-BFGS algorithm
using (b) GPU, and (c) CPU. (Unshaded cells are hexagons.)

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on May 11,2020 at 15:41:05 UTC from IEEE Xplore. Restrictions apply.

Table 1 compares the total running times of all iterations
of different programs for this example. The GPU program
and CPU program of the same algorithm use the same
number of iterations. Because of the line search used in the
L-BFGS minimizer, the function evaluating gradients and
energy value may be called more than once in every
iteration. Within every function call, we need to rebuild the
Voronoi diagram and compute the gradients of the CVT
energy, and this is the most time-consuming part of the L-
BFGS algorithm and dominates the running time. For this
reason, #Iter. for the L-BFGS method in Table 1 is the
number of the function calls.

We see that the GPU program of Lloyd’s method is
several time faster than the CPU program, because all the
computations for Lloyd’s algorithm are executed on the
GPU. However, the GPU program of the L-BFGS method
has only about 30 percent speedup over its CPU counter-
part. That is because, although the most time-consuming
parts for the L-BFGS algorithm are executed on the GPU,
some of its computations are done on the CPU which takes
about 23 percent of the total time and is not accelerated by
the GPU; and the communication between the CPU and the
GPU also takes about 5 percent of the total time.

We have also compared our GPU program of Lloyd’s
method to the algorithm proposed by Vasconcelos et al.
[36]. For 1,000 sites, even with a very small mask (32� 32),
their program needs 1.416 seconds for the same number of
iterations as in Table 1. If the size of the mask is set to be

same as the screen resolution (512� 512), the running time
becomes 44.521 seconds.

Our GPU programs can also compute the CVT with a
nononstant density function, as the density can be sampled
and stored as floating point numbers in a texture. An
example is shown in Fig. 9, comparing the CVTs computed
by the GPU program and the CPU program of the L-BFGS
method. The final CVT energy values and the total running
time of all iterations are listed in Table 2.

5.2 Results of CCVT on Surfaces

We will compare our GPU programs and CPU programs of
Lloyd’s algorithm and the L-BFGS algorithm using five
surface models: Torus (Fig. 1), Lion (Fig. 10), Sculpture
(Fig. 11), Body (Fig. 13), and David Head (Fig. 4). Table 3
lists information about these five models. All of our
experiments use 1,000 initial sites on the surface sampled
according to distortion factors. For each model, the same set
of initial sites are used as input for all programs. The CPU
programs utilize the fast algorithm introduced in [44] which
can greatly accelerate the computation of the intersection
between the surface and the 3D Voronoi diagram. For every
model the geometry image is precomputed with user
interaction in less than 10 seconds. This time is not included
in the total running time reported below.

The final energy values F and the total running time of
all iterations are listed in Table 4 and Table 5. Like the 2D
cases, for the L-BFGS algorithm, the number of the function
calls for VD computation is listed, rather than the number of
iterations. The GPU program and the CPU program have
the same number of iterations for Lloyd’s algorithm or the
same number of function calls for the L-BFGS algorithm.

It is observed that the GPU programs perform about one
order of magnitude faster than their CPU counterparts. This
speedup is more than that of the 2D case because the CPU

RONG ET AL.: GPU-ASSISTED COMPUTATION OF CENTROIDAL VORONOI TESSELLATION 351

Fig. 8. Energy values (a) and their gradients (c) of CPU and GPU
programs for Lloyd’s algorithm and the L-BFGS algorithm using
1,000 sites in the 2D domain of ½�1; 1� � ½�1; 1�. (b) and (d) are zoom-
in views of shaded regions in (a) and (c).

TABLE 1
Comparison of Energy F and Running Time (in Seconds)

of Different Programs Using 1,000 Initial Sites in the
2D Domain of ½�1; 1� � ½�1; 1�

Fig. 9. CVT results of 1,000 initial sites generated by the L-BFGS
algorithm in the 2D domain of ½�1; 1� � ½�1; 1� with the density function
�ðxÞ ¼ e�20x2�20y2 þ 0:05 sin2ð�xÞ sin2ð�yÞ using (a) GPU and (b) CPU.

TABLE 2
Comparison of Energy F and Running Time (in Seconds) of

Different Programs Using 1,000 Initial Sites in the 2D Domain of
½�1; 1� � ½�1; 1� with Nonconstant Densities

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on May 11,2020 at 15:41:05 UTC from IEEE Xplore. Restrictions apply.

programs for computing the CCVT of a surface need to
compute a 3D Voronoi diagram and find its intersection
with the surface, which is a very time consuming task
compared with computing a Voronoi diagram in a 2D
domain. Although the GPU programs also compute dis-
tances in 3D, the whole algorithms are still efficiently
performed in a 2D domain.

The relative differences between the GPU and CPU
results range from 0.88 percent to 8.36 percent due to
different distortions of surface parameterizations. Fig. 10

and Fig. 11 show two sets of results with the largest relative

differences of Lion (genus 0) and Sculpture (genus 3): the

Voronoi diagram of the initial sites, and the CCVTs

generated using the GPU and the CPU of Lloyd’s algorithm

and the L-BFGS algorithm, with the same number of

iterations for each algorithm. We note that the GPU results

have larger energy values than their CPU counterparts due

to its approximation nature.

352 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 17, NO. 3, MARCH 2011

Fig. 10. Comparison of the Voronoi diagram of initial sites and CCVT results on the surface of Lion generated by (a) Lloyd’s (GPU), (b) L-BFGS
(GPU), (c) Lloyd’s (CPU), (d) L-BFGS (CPU), and (e) algorithms. The relative differences of the GPU results are 5.07 percent for Lloyd’s algorithm
((b) and (d)) and 6.17 percent for the L-BFGS algorithm ((c) and (e)). As a reference, the CVT energy of the initial sites is 2:538� 10�2, and the
relative differences of the initial sites (before optimization) are 82.85 percent for Lloyd’s algorithm and 83.12 percent for the L-BFGS algorithm.

Fig. 11. Comparison of the Voronoi diagram of initial sites and CCVT results on the surface of Sculpture generated by (a) Lloyd’s (GPU), (b) L-BFGS
(GPU), (c) Lloyd’s (CPU), (d) L-BFGS (CPU), and (e) algorithms. The relative differences of the GPU results are is 7.88 percent for Lloyd’s algorithm
((b) and (d)) and 8.36 percent for the L-BFGS algorithm ((c) and (e)). As a reference, the CVT energy of the initial sites is 8:726� 10�3, and the
relative differences of the initial sites (before optimization) are 91.02 percent for Lloyd’s algorithm and 90.44 percent for the L-BFGS algorithm.

TABLE 3
Information of the Five Models Used in This Paper

The last two columns are for the number of boundaries and the
resolution of geometry images.

TABLE 4
Comparison of Energy F and Running Time (in Seconds) of

GPU and CPU Programs for Lloyd’s Algorithm

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on May 11,2020 at 15:41:05 UTC from IEEE Xplore. Restrictions apply.

In addition to the comparison in terms of visual
inspection and energy values, we may also measure the
geometric uniformity of the sites and their Voronoi cells in
the CCVT results. For every site xi, we define the radius ri of
its Voronoi cell �i, the distance di to its nearest neighboring
site, and the area ai of its Voronoi cell �i as follows:

ri ¼ max
x2�i

kx� xik; di ¼ min
j 6¼i
kxi � xjk; ai ¼ Areað�iÞ:

The standard deviations of ri, di, and ai are used to measure
the uniformity of a set of sites. Table 6 lists the standard
deviations for initial sites and the sites in the CCVT results
on Lion. The uniformity of the initial sites is greatly
improved in all the results. Again, the GPU results are
overall still not as good as the CPU ones.

The quality of the CCVT we computed with the GPU is
heavily affected by the distortion factors. If the distortion
factors are very large in a certain part of a surface, the
Voronoi cells in this part are mapped to a very small region
in the geometry image. Then the resolution of the geometry
image will not be adequate for accurate computation in this
part of the surface, resulting in larger errors in the
computation of centroids (for Lloyd’s algorithm) or energy
value and gradients (for the L-BFGS algorithm). To
illustrate this, we compare the results on David Head using
two different parameterizations (see Fig. 12). Clearly, the
second parameterization has larger distortion, which leads
to more artifacts than the first parameterization. This
problem could be alleviated by using a geometry image of
higher resolution (see the example in Fig. 12e and 12h), or
using multiple geometry images based a multichart surface
parameterization [45].

The CCVT can be used for surface remeshing by
computing a well-shaped triangulation of the surface as
the dual mesh of a CCVT. Fig. 13 shows an example of
remeshing the Body surface with 1,000 sites.

5.3 JFA Errors

Ideally, the CVT energy should decrease monotonically
during the iterations in both Lloyd’s and the L-BFGS
algorithm, if implemented accurately. However, since some
pixels may be misclassified by the JFA into other Voronoi
cells, the partial CVT energy values computed for those
Voronoi cells are slightly different to the accurate values.
Despite this, the sites move greatly and the total CVT energy

RONG ET AL.: GPU-ASSISTED COMPUTATION OF CENTROIDAL VORONOI TESSELLATION 353

TABLE 6
Comparison of the Standard Deviations of Different Uniformity
Measures for 1,000 Initial Sites, and the Sites in CCVT Results

on the Surface of Lion

Fig. 12. (a) and (b) Comparison of two different parameterizations of
David Head. (c) The CVTs computed using the parameterization in
(a) with a 512� 416 geometry image; (d) the CVTs computed using the
parameterization in (b) with a 512� 191 geometry image; and (e) the
CVTs computed using the parameterization in (b) with a 2;048� 765
geometry image. (f)-(h) Are enlarged top views of the circled part.

TABLE 5
Comparison of Energy F and Running Time (in Seconds) of

GPU and CPU Programs for the L-BFGS Algorithm

Fig. 13. (a) The dual triangle mesh of 1,000 initial sites; and (b) dual
triangle mesh of 1,000 final sites of the CCVT. The insets show the
corresponding Voronoi diagrams on the surface.

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on May 11,2020 at 15:41:05 UTC from IEEE Xplore. Restrictions apply.

keeps decreasing in early iterations. However, in later

iterations, when most of the sites are no longer moving, the

error of JFA may cause the CVT energy to fluctuate. When

this happens, most sites would remain unchanged but a

small number of sites may oscillate between some positions.
To evaluate the consequence of this oscillation, we

compared the JFA with an implementation on the GPU

which computes the distance from every pixel to every site

accurately by brute force, and show the results in Fig. 14.

We see that the energy values only begins to oscillate in

very late iterations due to the errors of the JFA.
In practice, this oscillation is very small and so does not

affect the quality of the CVT for most applications in

graphics. One may handle this nonconvergent behavior by

terminating the computation when the CVT energy is found

to increase.

5.4 Shader Language versus CUDA

CUDA is a relatively new and popular C-like language for

general purpose computation on the GPU. Since CUDA

has some features not available in traditional shader

languages (such as accessing the shared memory), it is

much faster for applications which can benefit from the

new features. However, Cg is better suited than CUDA for

implementing CVT algorithms. To compare Cg and CUDA

programs, we list detailed time break-down for each step

in Lloyd’s algorithm and the L-BFGS algorithm for a 2D

case in Table 7 and Table 8 (the time is the total time for all

iterations). It is clear that the JFA and the regional

reduction (computing centroid for Lloyd’s algorithm, and

computing CVT energy and its gradient for the L-BFGS

algorithm) are the two steps dominating the total running

time. The Cg version is faster for both steps than the

CUDA version. In total, the CUDA versions are more than
40 percent slower than the Cg versions.

The better efficiency of the Cg implementation can be
explained as follows: The JFA spends most of its time on
accessing memory rather than computation. For every pixel,
it needs to read information from nine pixels and write to
one pixel (itself). The reading addresses required by the JFA
are noncoalesced [46] and change in every pass according to
different step lengths. So it is very difficult, if not
impossible, to make this step efficient with CUDA.

Computing the centroids in Lloyd’s algorithm (as well as
the energy value and gradients computation in the L-BFGS
algorithm) is essentially a regional reduction problem. The
regional reduction is known to be difficult for CUDA, since
it requires many threads writing to a same memory
address. This is usually implemented using atomic operations
[46]. Currently, CUDA only supports atomic operations on
integers. So for floating point numbers, we have to mimic
the atomic operations by tagging the five least significant
bits of the thread ID (see [47], [48] for details). This is
inefficient and hardware-dependent, since the warp size
must be known in advance.

In conclusion, our algorithms for computing the CVT fit
the traditional shader languages better than CUDA at this
moment. However, as CUDA is fast evolving, we believe
that efficient atomic operations on floating point numbers
will be available soon. That will be likely to make CUDA
faster than Cg for implementing our GPU algorithms in the
near future.

6 CONCLUSION AND FUTURE WORK

We have presented new techniques that use the GPU to
compute the centroidal Voronoi tessellation both in 2D and
on a surface. We proposed a novel algorithm to directly
compute the Voronoi diagram on a surface, and also
presented a new method using the vertex program to
perform the regional reduction. Equipped with these two
tools, we implemented two algorithms on the GPU—Lloyd’s
algorithm and the L-BFGS algorithm. For Lloyd’s algorithm,
the entire procedure is performed on the GPU; and for the L-
BFGS algorithm, the major computational work is performed
on the GPU. Our GPU implementations of the two methods
have shown significant speedup over their CPU counter-
parts. Although our results are discrete approximations to
the true CVTs, we believe that many applications can benefit

354 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 17, NO. 3, MARCH 2011

Fig. 14. Energy values of Lloyd’s algorithm using the JFA and an
accurate method to compute the Voronoi diagram of 1,000 sites on
Sculpture. (b) A zoom-in view of energy plots in the shaded region in (a).

TABLE 7
Comparison of Cg and CUDA Running Time (in Seconds) of

Lloyd’s Algorithm for 1,000 Sites in the 2D Domain of
½�1; 1� � ½�1; 1�

All steps are executed 243 times.

TABLE 8
Comparison of Cg and CUDA Running Time (in Seconds) of the

L-BFGS Algorithm for 1,000 Sites in the 2D Domain of
½�1; 1� � ½�1; 1�

All steps are executed 92 times.

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on May 11,2020 at 15:41:05 UTC from IEEE Xplore. Restrictions apply.

from the fast computation of the CVT made possible by our
GPU-based algorithms. Our algorithms can be directly
extended to 3D CVT with the help of 3D textures, but the
detailed analysis of the performance and result quality in 3D
is out of the scope of this paper.

Sharp features are essential to model remeshing, espe-
cially for artificial models. How to incorporate sharp
features in our algorithm will be an important future work.
Integrating sharp edges into geometry image [49] is a
possible solution of this problem.

In our current implementation of the L-BFGS algorithm,
only the computation of CVT energy values and gradients,
which is the most time-consuming part, is performed on the
GPU. Currently, these values still need to be read back to
the CPU for computing the new sites, thus slowing down
the overall computation. If we could migrate this task onto
the GPU, the speedup would be even more significant.

The number of sites of the CVT is currently limited by the
size of the 2D texture in the GPU (e.g., for a 512� 512 texture,
the number of sites should not exceed 10,000; otherwise, the
results would be very poor due to the large approximation
errors). Furthermore, when using the geometric image to
represent a surface of complex shape, the surface parameter-
ization often has a large distortion and that leads to large
discretization error in computation. In the future we will
consider applying our GPU-base method to a multiple-chart
representation of a surface of complex shape in order to
compute the CVT with a much larger number of sites or on a
surface of arbitrary shape.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers
for their constructive comments. We would like to thank
Feng Sun and Dongming Yan for their help on CPU
programs for the L-BFGS algorithm, and Vasconcelos for
providing her source code. Guodong Rong and Xiaohu Guo
are partially supported by the US National Science Founda-
tion (NSF) under Grant No. CCF-0727098. Yang Liu is
supported by the European Research Council (GOOD-
SHAPE FP7-ERC-StG-205693). Wenping Wang is partially
supported by the General Research Funds (718209, 717808) of
Research Grant Council of Hong Kong, NSFC-Microsoft
Research Asia cofunded project (60933008), and National 863
High-Tech Program of China (2009AA01Z304). Xiaotian Yin
and Xianfeng David Gu are partially supported by NSF
CAREER CCF-0448399, DMS-9626223, DMS-0523363, CCF-
0830550, and ONR N000140910228.

REFERENCES

[1] F. Aurenhammer, “Voronoi Diagrams—A Survey of a Funda-
mental Geometric Data Structure,” ACM Computing Surveys,
vol. 23, no. 3, pp. 345-405, 1991.

[2] A. Okabe, B. Boots, K. Sugihara, and S.N. Chiu, Spatial Tessella-
tions: Concepts and Applications of Voronoi Diagrams, 2nd ed. John
Wiley & Sons, 1999.

[3] A. Gersho, “Asymptotically Optimal Block Quantization,” IEEE
Trans. Information Theory, vol. 25, no. 4, pp. 373-380, July 1979.

[4] G. Fejes Tòth, “A Stability Criterion to the Moment Theorem,”
Studia Scientiarum Math. Hungarica, vol. 38, nos. 1-4, pp. 209-224,
2001.

[5] Q. Du and D. Wang, “The Optimal Centroidal Voronoi Tessella-
tions and the Gersho’s Conjecture in the Three-Dimensional
Space,” Computers and Math. with Applications, vol. 49, nos. 9/10,
pp. 1355-1373, 2005.

[6] K.A. Lyons, H. Meijei, and D. Rappaport, “Algorithms for Cluster
Busting in Anchored Graph Drawing,” J. Graph Algorithms and
Applications, vol. 2, no. 1, pp. 1-24, 1998.

[7] O. Deussen, S. Hiller, C. van Overveld, and T. Strothotte, “Floating
Points: A Method for Computing Stipple Drawings,” Computer
Graphics Forum, vol. 19, no. 3, pp. 41-50, 2000.

[8] A. Hausner, “Simulating Decorative Mosaics,” Proc. ACM
SIGGRAPH ’01, pp. 573-580, 2001.

[9] L.-P. Fritzsche, H. Hellwig, S. Hiller, and O. Deussen, “Interactive
Design of Authentic Looking Mosaics Using Voronoi Structures,”
Proc. Second Int’l Symp. Voronoi Diagrams in Science and Eng.,
pp. 82-92, 2005.

[10] Q. Du and M. Gunzburger, “Grid Generation and Optimization
Based on Centroidal Voronoi Tessellations,” Applied Math. and
Computation, vol. 133, nos. 2/3, pp. 591-607, 2002.

[11] Q. Du and X. Wang, “Centroidal Voronoi Tessellation Based
Algorithms for Vector Fields Visualization and Segmentation,”
Proc. IEEE Visualization, pp. 43-50, 2004.

[12] A. McKenzie, S.V. Lombeyda, and M. Desbrun, “Vector Field
Analysis and Visualization Through Variational Clustering,” Proc.
EUROGRAPHICS—IEEE VGTC Symp. Visualization, pp. 29-35,
2005.

[13] Q. Du and D. Wang, “Tetrahedral Mesh Generation and
Optimization Based on Centroidal Voronoi Tessellations,” Int’l
J. Numerical Methods in Eng., vol. 56, no. 9, pp. 1355-1373, 2003.

[14] S. Valette and J.-M. Chassery, “Approximated Centroidal Voronoi
Diagrams for Uniform Polygonal Mesh Coarsening,” Computer
Graphics Forum, vol. 23, no. 3, pp. 381-389, 2004.

[15] P. Alliez, �E.C. de Verdière, O. Devillers, and M. Isenburg,
“Centroidal Voronoi Diagrams for Isotropic Surface Remeshing,”
Graphical Models, vol. 67, no. 3, pp. 204-231, 2005.

[16] S. Valette, J.-M. Chassery, and R. Prost, “Generic Remeshing of 3D
Triangular Meshes with Metric-Dependent Discrete Voronoi
Diagrams,” IEEE Trans. Visualization and Computer Graphics,
vol. 14, no. 2, pp. 369-381, Mar./Apr. 2008.

[17] J. Dardenne, S. Valette, N. Siauve, and R. Prost, “Medial Axis
Approximation with Constrained Centroidal Voronoi Diagrams
on Discrete Data,” Proc. Computer Graphics Int’l, pp. 299-306, 2008.

[18] Q. Du, V. Faber, and M. Gunzburger, “Centroidal Voronoi
Tessellations: Applications and Algorithms,” SIAM Rev., vol. 41,
no. 4, pp. 637-676, 1999.

[19] Q. Du, M.D. Gunzburger, and L. Ju, “Constrained Centroidal
Voronoi Tessellations for Surfaces,” SIAM J. Scientific Computing,
vol. 24, no. 5, pp. 1488-1506, 2003.

[20] S.P. Lloyd, “Least Squares Quantization in PCM,” IEEE Trans.
Information Theory, vol. 28, no. 2, pp. 129-137, Mar. 1982.

[21] Y. Liu, W. Wang, B. Lévy, F. Sun, D.-M. Yan, L. Lu, and C. Yang,
“On Centroidal Voronoi Tessellation—Energy Smoothness and
Fast Computation,” ACM Trans. Graphics, vol. 28, no. 4, pp. 1-17,
2009.

[22] G. Rong and T.-S. Tan, “Jump Flooding in GPU with Applications
to Voronoi Diagram and Distance Transform,” Proc. Symp.
Interactive 3D Graphics and Games, pp. 109-116, 2006.

[23] J.B. MacQueen, “Some Methods for Classification and Analysis of
Multivariate Observations,” Proc. Fifth Berkeley Symp. Math.
Statistics and Probability, pp. 281-297, 1967.

[24] L. Ju, Q. Du, and M. Gunzburger, “Probabilistic Methods for
Centroidal Voronoi Tessellations and Their Parallel Implementa-
tions,” Parallel Computing, vol. 28, no. 10, pp. 1477-1500, 2002.

[25] Q. Du and M. Emelianenko, “Acceleration Schemes for Comput-
ing Centroidal Voronoi Tessellations,” Numerical Linear Algebra
with Applications, vol. 13, nos. 2/3, pp. 173-192, 2006.

[26] J.D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krger, A.E.
Lefohn, and T.J. Purcell, “A Survey of General-Purpose Computa-
tion on Graphics Hardware,” Computer Graphics Forum, vol. 26,
no. 1, pp. 80-113, 2007.

[27] K.E. Hoff III, T. Culver, J. Keyser, M. Lin, and D. Manocha, “Fast
Computation of Generalized Voronoi Diagrams Using Graphics
Hardware,” Proc. ACM SIGGRAPH ’99, pp. 277-286, 1999.

[28] M.O. Denny, “Algorithmic Geometry via Graphics Hardware,”
PhD dissertation, Universität des Saarlandes, 2003.

[29] I. Fischer and C. Gotsman, “Fast Approximation of High Order
Voronoi Diagrams and Distance Transforms on the GPU,”
J. Graphics Tools, vol. 11, no. 4, pp. 39-60, 2006.

[30] T.-T. Cao, K. Tang, A. Mohamed, and T.-S. Tan, “Parallel Banding
Algorithm to Compute Exact Distance Transform with the GPU,”
Proc. Symp. Interactive 3D Graphics and Games, pp. 83-90, 2010.

RONG ET AL.: GPU-ASSISTED COMPUTATION OF CENTROIDAL VORONOI TESSELLATION 355

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on May 11,2020 at 15:41:05 UTC from IEEE Xplore. Restrictions apply.

[31] C. Sigg, R. Peikert, and M. Gross, “Signed Distance Transform
Using Graphics Hardware,” Proc. IEEE Visualization, pp. 83-90,
2003.

[32] A. Sud, M.A. Otaduy, and D. Manocha, “DiFi: Fast 3D Distance
Field Computation Using Graphics Hardware,” Computer Graphics
Forum, vol. 23, no. 3, pp. 557-566, 2004.

[33] A. Sud, N. Govindaraju, R. Gayle, and D. Manocha, “Interactive
3D Distance Field Computation Using Linear Factorization,” Proc.
ACM Symp. Interactive 3D Graphics and Games, pp. 117-124, 2006.

[34] G. Rong and T.-S. Tan, “Variants of Jump Flooding Algorithm for
Computing Discrete Voronoi Diagrams,” Proc. Fourth Int’l Symp.
Voronoi Diagrams in Science and Eng. (ISVD ’07), pp. 176-181, 2007.

[35] O. Weber, Y.S. Devir, A.M. Bronstein, M.M. Bronstein, and R.
Kimmel, “Parallel Algorithms for Approximation of Distance
Maps on Parametric Surfaces,” ACM Trans. Graphics, vol. 27, no. 4,
pp. 1-16, 2008.

[36] C.N. Vasconcelos, A. Sá, P.C. Carvalho, and M. Gattass, “Lloyd’s
Algorithm on GPU,” Proc. Fourth Int’l Symp. Visual Computing,
pp. 953-964, 2008.

[37] E.F. Bollig, “Centroidal Voronoi Tessellation of Manifolds Using
the GPU,” Master’s thesis, Florida State Univ., 2009.

[38] I. Buck and T. Purcell, “A Toolkit for Computation on GPUs,”
GPU Gems: Programming Techniques, Tips, and Tricks for Real-Time
Graphics, R. Fernando, ed., ch. 37, pp. 621-636, Addison-Wesley,
2004.

[39] G. Rong, T.-S. Tan, T.-T. Cao, and Stephanus, “Computing Two-
Dimensional Delaunay Triangulation Using Graphics Hardware,”
Proc. Symp. Interactive 3D Graphics and Games, pp. 89-97, 2008.

[40] D.C. Liu and J. Nocedal, “On the Limited Memory BFGS Method
for Large Scale Optimization,” Math. Programming, vol. 45, no. 3,
pp. 503-528, 1989.

[41] X. Gu and S.-T. Yau, “Global Conformal Surface Parameteriza-
tion,” Proc. Eurographics/ACM SIGGRAPH Symp. Geometry Proces-
sing, pp. 127-137, 2003.

[42] X. Gu, S.J. Gortler, and H. Hoppe, “Geometry Images,” ACM
Trans. Graphics, vol. 21, no. 3, pp. 355-361, 2002.

[43] Y. Liu, “HLBFGS,” http://www.loria.fr/~liuyang/software/
HLBFGS/, 2009.

[44] D.-M. Yan, B. Lévy, Y. Liu, F. Sun, and W. Wang, “Isotropic
Remeshing with Fast and Exact Computation of Restricted
Voronoi Diagram,” Computer Graphics Forum, vol. 28, no. 5,
pp. 1445-1454, 2009.

[45] P. Alliez, M. Meyer, and M. Desbrun, “Interactive Geometry
Remeshing,” ACM Trans. Graphics, vol. 21, no. 3, pp. 347-354, 2002.

[46] NVIDIA Corporation, “NVIDIA CUDA2 Programming
Guide,”http://www.nvidia.com/object/cuda_home.html, July
2009.

[47] V. Podlozhnyuk, “Histogram Calculation in CUDA,” NVIDIA
Corporation, White Paper, 2007.

[48] R. Shams and R.A. Kennedy, “Efficient Histogram Algorithms for
NVIDIA CUDA Compatible Devices,” Proc. Int’l Conf. Signal
Processing and Comm. Systems (ICSPCS), pp. 418-422, 2007.

[49] M. Gauthier and P. Poulin, “Preserving Sharp Edges in Geometry
Images,” Proc. Graphics Interface 2009, pp. 1-6, May 2009.

Guodong Rong received the BEng and MEng
degrees both in computer science from Shan-
dong University in 2000 and 2003, respectively,
and the PhD degree in computer science from
National University of Singapore in 2007. He is
currently a research scholar at Department of
Computer Science, University of Texas at
Dallas. His research interests include computer
graphics, computational geometry, visualization,
and image processing, especially on using the

GPU to accelerate geometry-related problems.

Yang Liu received the BS and MS degrees in
mathematics from the University of Science and
Technology of China, Anhui, in 2000 and 2003,
respectively, and the PhD degree in computer
science from the University of Hong Kong, in
2008. He is currently a postdoc in Loria/Inria,
France. His research interests include geometric
computation and optimization, computer aided
geometric design, and computer graphics.

Wenping Wang received the BSc and MEng
degrees from Shandong University, China, and
the PhD degree from the University of Alberta,
Canada, all in computer science in 1983, 1986,
and 1992, respectively. He is a professor of
computer science at the University of Hong
Kong. His research interests include computer
graphics, visualization, and geometric comput-
ing. He is currently an associate editor of the
Springer journal Computer Aided Geometric

Design and IEEE Transactions on Visualization and Computer
Graphics. He is program cochair of several international conferences,
including Geometric Modeling and Processing (GMP 2000), Pacific
Graphics 2003, ACM Symposium on Physical and Solid Modeling (SPM
2006), and International Conference on Shape Modeling (SMI 2009).

Xiaotian Yin received the BS degree in compu-
ter science from Peking University, China, in
2001, and worked for Bell Labs Research China
from 2001 to 2004. He is currently working
toward the PhD degree in computer science at
Stony Brook University, and a visiting scholar in
the Mathematics Department of Harvard Uni-
versity. His research interests include broad
area of computational differential geometry and
computational topology. He is a student member

of the IEEE. For more information, see http://www.cs.sunysb.edu/~xyin.

Xianfeng David Gu received the PhD degree in
computer science from Harvard University in
2003. He is an associate professor of computer
science and the director of the 3D Scanning
Laboratory in the Department of Computer
Science in the State University of New York at
Stony Brook University. His research interests
include computer graphics, vision, geometric
modeling, and medical imaging. His major works
include global conformal surface parameteriza-

tion in graphics, tracking and analysis of facial expression in vision,
manifold splines in modeling, brain mapping and virtual colonoscopy in
medical imaging, and computational conformal geometry. He won the
US National Science Foundation (NSF) CAREER Award in 2004. He is a
member of the IEEE.

Xiaohu Guo received the PhD degree in
computer science from the State University of
New York at Stony Brook in 2006. He is an
assistant professor of computer science at the
University of Texas at Dallas. His research
interests include computer graphics, animation
and visualization, with an emphasis on geo-
metric, and physics-based modeling. His current
researches at UT-Dallas include: spectral geo-
metric analysis, deformable models, centroidal

Voronoi tessellation, GPU algorithms, 3D and 4D medical image
analysis, etc. He is a member of the IEEE. For more information,
please visit http://www.utdallas.edu/~xguo.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

356 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 17, NO. 3, MARCH 2011

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on May 11,2020 at 15:41:05 UTC from IEEE Xplore. Restrictions apply.

