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Boundary-Aware Multidomain
Subspace Deformation

Yin Yang, Weiwei Xu, Xiaohu Guo, Member, IEEE,
Kun Zhou, and Baining Guo, Fellow, IEEE

Abstract—In this paper, we propose a novel framework for multidomain subspace deformation using node-wise corotational elasticity.
With the proper construction of subspaces based on the knowledge of the boundary deformation, we can use the Lagrange multiplier
technique to impose coupling constraints at the boundary without overconstraining. In our deformation algorithm, the number of
constraint equations to couple two neighboring domains is not related to the number of the nodes on the boundary but is the same as
the number of the selected boundary deformation modes. The crack artifact is not present in our simulation result, and the domain
decomposition with loops can be easily handled. Experimental results show that the single-core implementation of our algorithm can
achieve real-time performance in simulating deformable objects with around quarter million tetrahedral elements.

Index Terms—Model reduction, domain decomposition, FEM, deformable model

1 INTRODUCTION

MODEL reduction is an important technique for accel-
erating the physics-based simulation of deformable
objects. The basic idea is to project the high-dimensional
equation of motion to a carefully chosen low-dimensional
subspace to construct a reduced model. Traditional global
subspace methods, however, cannot handle the object’s
local deformation behaviors well unless a large number of
basis vectors are used, which in turn would cancel out the
benefit of acceleration. Multidomain subspace techniques
provide a good solution to this problem by partitioning the
deformable object into multiple domains and constructing
reduced models for each domain independently. The
advantages are twofold. First, local deformation behaviors
can be well captured with a modest number of basis vectors
for each domain. Second, local simulation of each domain
can more flexibly handle deformable objects of complex,
semantic geometries. Users can easily specify the number of
degrees of freedom (DOFs) and the types of bases for each
domain to accommodate hybrid simulation results.

The key challenge in applying multidomain subspace
techniques to deformable object simulation is the seamless
coupling of the neighboring domains at their boundary
interface. Recently, two coupling methods have been
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developed for multidomain subspace deformations using
the reduced nonlinear St.Venant-Kirchhoff (S5tVK) deform-
able model. Kim and James [1] proposed to couple the
domains using penalty (spring) forces for character skin-
ning. With an increasing number of basis vectors in the
reduced model, the cracks become invisible visually.
However, this method requires predetermined motions of
local frames for each domain, and the length of the time
step is usually small due to the possible large penalty forces
at the boundary interface. Another multidomain subspace
deformation method in [2] relies on shape matching and
mass lumping at the boundary interfaces to handle the
coupling issue. Nevertheless, cracks might still be visible if
the deformation goes large and this problem can be
remedied by geometric blending operations at the post-
simulation stage. This method works well for the domain
decomposition with tree-like hierarchies and small domain
interfaces. However, seamless coupling of multidomain
subspace deformations with arbitrary domain decomposi-
tion remains a technical challenge.

The goal of this paper is to develop a seamless coupling
method for multidomain subspace deformation in the
framework of nodewise corotational elasticity. To this
end, we propose a boundary-aware mode construction
method that characterizes the deformation subspace of each
domain through its boundary deformations. Instead of
posing coupling constraints on boundary node pairs, which
can easily lead to overconstraints for large-scale meshes,
our algorithm formulates these constraints with rigid and
soft boundary modes, which form a compact representation of
boundary deformations. In this way, we can apply the
Lagrange multiplier technique to solve the boundary cou-
pling constraints without overconstraining. The boundary
modes are computed by solving the static equilibrium
equations as in component mode synthesis (CMS) [3]. The
large deformation of each domain is simulated using the
modal warping technique [4].

With our algorithm, cracks are avoided in the simulation
result, and the domain decomposition with loops can be
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naturally handled as well. We show the capability of our
multidomain subspace deformation algorithm by simulating
a variety of large-scale deformable objects. User manipula-
tion, such as directly constraining the node position or the
rotation of the domain boundary, is also supported in our
algorithm to ease the animation production.

The rest of the paper is organized as follows: Section 2
reviews the related work. Section 3 describes how to
construct deformation modes from the boundary deforma-
tion. The deformation algorithm and direct manipulation
methods are described in Sections 4 and 5. Experimental
results and limitations are discussed in Section 6. Finally,
we conclude in Section 7.

2 ReLATED WORK

Physics-based simulation of deformable objects has been an
active research topic in computer graphics since 1980s. A
comprehensive survey can be found in [5], [6]. Terzopoulos
et al. [7], [8] proposed a fundamental framework to simulate
3D deformations based on the theory of elasticity. The
ordinary differential equations describing the dynamics of
deformable models can be numerically solved with the
finite-element method (FEM) and generate realistic defor-
mations. High computational cost is a drawback of the FEM
especially for the finite-element meshes of large size. To
make deformable models more practical for interactive
applications, numerous works have been proposed and
have greatly advanced related areas. Multiresolution [9] or
adaptive simulation [10], [11] uses hierarchical or adaptive
bases of the deformation to accelerate the computation.
These types of techniques use the high-level bases to
represent general deformations and the low-level or refined
bases for more detailed deformations when necessary.
Similarly, embedded mesh, mesh coarsening or controlling
lattice [12], [13], [14], [15], [16] handle the deformation with
auxiliary coarsened grids.

Corotational elasticity and its variations are widely used
in computer graphics for fast simulation of large-scale
deformations. It was first introduced by Miiller et al. [17],
[18] via stiffness warping and widely adopted in various
applications [19], [20], [21], [22]. It has been extended to thin
shell [23] and meshless [24] simulation. Warp-canceling
corotation has recently been proposed to improve the
approximation accuracy of stiffness warping to element-
wise corotational elasticity [25]. Although the stiffness
matrix can be kept constant in nodewise corotational
methods as in [4], [17], it is still hard to directly apply it
to the real-time simulation of a large-scale mesh as in our
case, since the prefactorization of the large-scale stiffness
matrix might take hours and sometimes not plausible on a
desktop PC due to the memory limitations.

Another series of contributions are based on modal
analysis (MA), which is a well-developed technique widely
used in engineering areas. The MA utilizes the eigende-
composition to project the full deformation space to the
vibrations of different frequencies [26], [27], [28], [29], [30].
The eigenvectors associated with low vibration energies are
discarded as they are believed to have less contribution to
the final deformation. To handle rotational deformations,
Choi and Ko [4] proposed a technique called modal
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warping. The curl of the linear displacement field is used
to estimate nodal rotation and warp the distortion induced
by using linear modal bases. Alternatively, nonlinear
deformation can also be captured with modal derivatives
[31], which extends the linear deformation subspace to the
parabolic subspace. On-the-fly subspace construction [32]
provides another direction to accelerate the simulation. The
subspace bases are the recently simulated displacements
and vary during the simulation with the extra cost of
examining residual error periodically. Geometry-based
shape matching [33], [34] provides an alternative for fast
computation of soft 3D volumes. Unfortunately, shape
matching is not able to incorporate the material properties
intuitively, and increasing the number of DOFs does not
necessarily lead to a more accurate simulation.

Local subspace methods such as [1], [2], [35] can be
categorized as domain decomposition methods (DDMs). The
input mesh is decomposed into mutually disjoint domains.
The model reduction is then applied to each domain.
Because the domains are always connected and interacted
with the neighbors, the domain’s deformation is not
unconstrained like a single deformable object. The key
technical challenge of local subspace methods is to impose
domain coupling with low costs when there exist a large
number of boundary DOFs. Such interdomains constraints
should be considered during the selection of deformation
modes to construct a reasonable local subspace at each
domain. Huang et al. [35] use node-pair position constraints
(PCs) for domain coupling and a precomputed force-
displacement matrix to accelerate matrix-vector multiplica-
tion. Barbi¢ and Zhao [2] adopt a passive interdomain
deformation mechanism with rigid interface fitting when
the parent domain deforms. This framework works well for
domain decomposition with tree-like hierarchies, and the
precomputation time can be significantly reduced when a
large number of domains are of the same geometry.
However, due to the rigid interface assumption, it is not
suitable for domains connected through large soft inter-
faces. Kim and James [1] use spring forces to avoid the
stiffening induced by the subspace coupling. Meanwhile,
additional damping forces are also provided to suppress
boundary jigging. This coupling strategy is effective and
simple to implement. It targets character skinning where the
motion of the local frame of each domain must be
predetermined. These DDM techniques unfortunately do
not fully incorporate the boundary condition during the
construction of the local subspace. As a result, the
displacements at the duplicated domain interfaces may
experience slight incompatibility and crack or interpenetra-
tion could appear. However, this problem can be easily
fixed by a simple blending treatment at postsimulation
stage as in [2].

Our algorithm complements existing methods. It is
inspired by CMS [3] to construct the modes at the static
equilibrium while we perform model reduction geometri-
cally at the boundary DOFs to avoid the oversized
boundary problem. The domain coupling constraint can
be directly imposed on the reduced coordinates without the
overconstraining problem. Boundary modes constitute the
static deformation of the domains. The extra internal
vibrational deformation is also captured with interior
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— Interface B1
Domain Internal region

— Interface B>

Fig. 1. A three-domain bar.

modes that do not participate in the domain coupling.
Domains are always exactly coupled, and the postsimula-
tion processing is avoided.

3 BOUNDARY-AWARE MoDE CONSTRUCTION

The input finite-element mesh (tetrahedral mesh in this
paper) is called a host mesh and is to be divided into
multiple submeshes or domains. We enforce the face
connectivity between a pair of neighboring domains such
that they must share at least one triangle face if considered
connected.' The modes are simply the precomputed domain
displacements that serve as local subspace bases. Our
boundary-aware mode construction characterizes the de-
formation subspace of each domain through its boundary
deformation. Unlike the classic CMS method [3] that
provides complete boundary freedom by assigning each
boundary DOF an individual mode, we reduce the
boundary freedom with the use of geometrically con-
structed bases. After that, the corresponding boundary
modes of the domain are computed through solving the
static equilibrium with linear elasticity. Besides boundary
modes, internal modes are also incorporated for enriched
local deformation.

3.1 DOF Classification

A domain with n nodes has total of 3n DOFs as each node
has independent freedoms along z, y, and z. The DOFs that
are shared with neighboring domains are called boundary
DOFs denoted by set B. All the other DOFs are called
internal DOFs (even they may be located at the surface of the
mesh) and are denoted by set Z. A DOF is either in B or in 7
and cannot be in B and 7 at the same time. If a domain has %
neighboring domains, B is further grouped into k subsets,
By, Bs, ..., By Each subset holds DOFs that are shared with
the same neighbor and is called an interface. Fig. 1 shows an
illustrative 2D example of a bar model. The middle domain
has the boundary with two interfaces. Let ® denote the
modes of a single domain. According to the DOF types, it
can be decomposed into two parts ® = [®; | ®5]". As
illustrated in Table 1, in the following sections where the

1. The face-connectivity avoids the singularity of the substiffness
corresponding to internal DOFs, during the mode computation. Because
the interface’s displacement is always constrained during the computation
of domain modes, as long as interface is able to determine the rigid body
motion of the domain, the internal submatrix is always nonsingular.
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TABLE 1
Matrix Notation Used in the Mode Computation

P Mode matrix

Pl Rigid (R) boundary mode matrix (Sec. 3.2)

P Soft (S) boundary mode matrix (Sec. 3.2)

Normal (N) mode matrix (Sec. 3.3)

P! Inertia (I) mode matrix (Sec. 3.3)

o Mode submatrix corresponding to internal (Z) DOFs
L35 Mode submatrix corresponding to boundary (8) DOFs
Mode submatrix corresponding to DOFs on interface By,

detailed mode computation is explained, we use subscript
to denote the DOF type and superscript for mode type.

3.2 Boundary Modes

The boundary modes are the domain’s displacement at
static equilibrium status when it is imposed to external
boundary displacements (e.g., displacement at B). Such
equilibrium can be expressed in the form of Ku = f, where
the domain’s stiffness matrix is denoted by K. u and f
represent the displacement and forces of the domain,
respectively. The unknown responding deformation at 7
is computed by solving the following equilibrium:

Kzr  Kizp Kzs,

Kpz Kgps Kos [[®;] [0 1
&y = | Fg| (1)

Kpzr Kgs Kp.5,

The domain’s stiffness matrix is grouped and ordered
corresponding to the classification of DOFs (e.g., boundary
or internal DOFs), and it is constant under linear elasticity.
f5 is the external force applied at the boundary to drive the
boundary displacement. If a domain has more than one
interface (e.g., k> 1), the modes are computed indepen-
dently for each interface such that the imposed boundary
displacement has nonzero values only at one interface each
time, and all the other interfaces are fixed. Consequently, let
®p, be the nonzero interface displacement for B;, and ®5
has the block-diagonal-like form as

P5

1

Py

2

P =

®5

k

Rigid boundary modes: The rigid boundary modes,
denoted by Bf, represent the domain’s deformation when
its interfaces only have rigid body motion. Correspondingly,
@g has six columns, where the first three columns in @gi
represent three linearly independent translational displace-
ment fields over B;. A natural choice is to use unit
displacements along each axis as x = [LO,O]T, y =
0,1,0]", and z = [0,0,1]" for each interface node. The
other three columns are the rotational modes constructed by
assigning each interface node the displacements along the
tangent directions of the rotations around three linearly
independent rotation axes (i.e., x, y, and z). We set the
centroid of the interface c; as the rotation pivot. Such
tangential rotation modes are only able to represent
infinitesimal rotations for linear elasticity. We later show
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in Section 5 that they can also represent large rotations with
the help of modal warping. For an interface node p whose
rest position is p, the corresponding 3 x 6 block in <I>§I has
the structure like

@) 5 = [xlylz|(p — i) xx|(p — i) x y|(p—¢;) x2]. (2)

By expanding the first line of (1) (which corresponds to the
internal DOFs of the domain) and substituting ®5, with tI’gi,
&% can be computed through

®f = K7} [Kzp ®f | K75, @4 | ... |[Kzp, @3] (3)

Stacking ®% and ®} yields the rigid boundary modes:

- [2)

The number of rigid boundary modes is 6k, which only
depends on the number of neighbor domains. The rigid
boundary modes represent the general deformation of the
domain, and they are always chosen as the domain’s
subspace bases in our implementation.

Soft boundary modes: Soft boundary modes complement
the rigid boundary modes by incorporating the deforma-
tions that are induced by nonrigid interface displacements.
Assigning each boundary DOF an individual boundary
mode will lead to a very big system if there are many
boundary nodes. This compromises the original purpose of
using model reduction. Instead, the soft boundary modes
are designed to only capture the most notable interface
geometry, which is similar to regular MA of deformable
model. For each interface, we compute its manifold harmonic
bases [36] (denoted by H), by solving the generalized eigen
problem of the Laplacian matrix of the interface: —QH =
ABH, where Q, B are square symmetric matrices with size
np,, the number of nodes on interface 5;. Elements in Q,B
are computed with

!
cot(Bap) + cot(B,,) Buy = It +1¢]
Qap = 5 and Z12 "
Q(L,Ll = Zb Qa,b Ba,n _ %’

where ¢ and ¢’ are two triangles that share the edge (a,b)
with area [t| and [t'|. B, and 3], denote the two angles
opposite to the edge (a,b) in t and t'. St(a) stands for the set
of triangles incident to a.

Each Harmonics basisis a vector of size ng,. Itis spanned to
represent the interface displacements in z, y, and z directions,
respectively, as

P =H®I, ()

where ® denotes the Kronecker product and I € IR**® is the
identity matrix. The complete set of harmonic bases spans
the full space of the interface displacement, and the
harmonic bases corresponding to the large eigenvalues
can be discarded to reduce the number of interface
freedoms because they represent the detailed geometry
features of the interface. Such property of harmonics is
also utilized for mesh deformation with model reduction
[37], [38].
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Redundant bases could be induced if an interface
displacement represented with harmonic bases is close to
rigid. Therefore, for a given harmonic-spanned interface
displacement q&% € R* !, we check the residual error of
projecting cﬁg onto the existing rigid interface subspace
spanned by & :

lieg)(@5]) [@5]) " [®5] ¢5 — o4 |
I 63, |
If the error e is small enough (e.g., <1 percent in our
implementation), it indicates that a certain combination of
the existing rigid interface displacements is able to represent
¢p, well, and ¢3 is opt out. It is noteworthy that the first
harmonic basis has zero eigenvalue. The corresponding
three bases computed by (5) are identical to the three
translational modes. As a result, they are always excluded.
The unknown internal displacement ®3 with respect to
the interface harmonics can be computed similar to (3):

(6)

®7 = K77 [Kzp,®} |Kz,23 | .. [Kz5,®5 ). (7)

By stacking boundary and internal parts computed in (5)
and (7), the soft boundary modes are assembled as

o [3]

3.3 Internal Vibrational Modes

Boundary modes are suitable for capturing static deforma-
tion driven by the unaccelerated boundary displacement.
Enriched deformation at internal DOFs is necessary when
the inertia force associated with boundary displacement is
considered. Following an idea similar to [29], we include
additional internal vibrational modes in the framework for
detailed local deformation at internal DOFs (Z). Internal
vibrational modes always have zero values at the
boundary DOFs. Therefore, they are not responsible for
domain coupling.

Normal modes: A natural choice for computing the
vibrational mode is via solving the generalized eigen
problem of internal DOFs (so, the modes look like fixed at
the boundary):

(Kzz — AMz7)®) = 0 )
&y = 0.

Equation (9) is actually performing the linear mode analysis
(LMA) over I. It can be understood as choosing the
deformation modes that increase the system’s energy least
[39] with the additional imposed constraints that the
boundary DOFs are fixed.

Inertia modes: Using normal modes is a good choice when
there is no clue about what internal deformation is going to
happen. However, in multidomain deformation, the inter-
nal deformation occurs most likely as the consequence of
the accelerated boundary movement. To better account for
such boundary-triggered internal deformation, we precom-
pute the corresponding internal deformation based on the
knowledge of the boundary displacements (which are
defined with boundary modes), and the resulting deforma-
tion modes are called inertia modes. They are called so
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Rest shape
Soft interface

Rigid interface

Fig. 2. The assumption of rigid interface [2] induces artifact when the
interface is wide and the neighbor domains are soft. Using our soft
modes yields smooth and natural deformation. Same number of modes
(30 per domain) are used in the comparison while five soft boundary
modes are used to capture the boundary deformation. The external
force is shown as an arrow.

because inertia modes are computed by solving the
equilibrium with inertia forces that correspond to the
boundary acceleration:

e 2] e[l

10
Kz Kps 0 FIB ( )

where ®” represents the acceleration along the directions of
the rigid boundary modes. Soft boundary modes can also be
included in (10). However, from our experience, the inertia
forces associated with soft boundary modes are often much
smaller than the forces associated with rigid boundary
modes. So, they are discarded for model reduction. The first
order of inertia modes is computed as
I -1 R
@) = [i’gl)} = {Knl‘gﬂ‘bf } : (11)
Similarly, if the acceleration associated with displacement
<I>(Il) is not neglected, another set of deformation can be
computed with the same form of equilibrium as in (10).
Successive blocks of higher order inertia modes are built
with following recurrence relationship:
P! )= {‘I)égﬂ)] = l:KE%MII(I)é(k) } .

(k+1) = 0 (12)

When the size of inertia subspace is close to full space size, the
inertia modes could bring redundancy to the subspace bases.
However, high-order inertia deformation has a much less
contribution to the final internal deformation. Accordingly,
the high-order inertia modes are discarded. For the sake of
stability, one may apply a mass-based Gram-Schmidt
orthonormalization over the inertia modes after each block
iteration. Nevertheless, in our experiment, the system is
stable even without mass orthonormalization.

Another advantage of inertia mode is its faster pre-
computation: The inverse of K77 is shared in the computa-
tion of boundary modes (e.g., (3) and (7)). In fact, inertia
mode . spans a block Krylov subspace:

®; = [AF|A*RT|ADY| .. ], (13)
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Fig. 3. Subspaces spanned by different types of modes constitute the
layered deformation. Final deformation of the domain can be understood
as the superposition of deformations from each subspace. Complete set
of modes span the full space.

Final result
Full space

where A = KEIIMII. Krylov subspace is a well-known
numerical method to compute the generalized eigen
problem as defined in (9). We start the power iteration
from the rigid boundary modes. From this point of view,
inertia modes can be understood as a tuned version of
normal modes as the inertia forces are preknown and
boundary driven. In practice, we choose to use inertia
modes instead of normal modes because they can be
computed more efficiently than normal modes.

3.4 Discussion

Rigid interface versus soft interface: When the interface is
small, a rigid body motion can well approximate its
displacement. In this case, it is reasonable to make the
assumption of the interface rigidity as in [2]. Such
approximation can be achieved in our framework by only
adopting rigid boundary modes and internal vibrational
modes. However, in some situations where domains share
broad and flexible interfaces, such assumption of interface
rigidity could induce visual artifacts, because pure rigid
interface is not sufficient for propagating enough deforma-
tion across domains. As shown in Fig. 2, the rigid interface
fitting used in [2] leads to the discontinuous shape, while
soft boundary modes generate much smoother deformation
across the host mesh, and the sharp edges of the cube
remain continuous. It may be possible to use higher order
blending to smooth the deformation, but it requires extra
postsimulation computation like moving least square
embedding [40].

Layered subspaces: In our boundary-aware mode con-
struction framework, the local domain’s deformation is
organized in layers. For each domain, we can consider its
final deformation as the superposition of three subspace
deformations as shown in Fig. 3. First, we slowly move
the interface without changing its shape. Necessary
domain deformation is generated to keep the domain
coupled with its neighbors. This portion of deformation is
represented with rigid boundary modes. After that, some
nonrigid interface displacements are further generated to
better accommodate the deformed boundary with soft
boundary modes. Finally, internal vibrational modes
capture additional local internal deformation. Complete
set of boundary modes and internal vibrational modes
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Fig. 4. The shapes of each type of warped modes associated with right interface of the domain. The left interface is assigned with zero displacements.

constitute the full space of the domain’s deformation.
Low-rank® boundary modes capture dominate interface
displacements and low-rank internal vibrational modes
describe majority internal vibrations with fixed boundary
condition. From this figure, we can see that our boundary-
aware mode construction strategy carefully performs
model reduction on boundary modes and internal vibra-
tional modes separately. By doing so, neighbor domains
always have consistent low-dimensional interface displa-
cement that is purely decided by the geometry feature of
the interface (via computing its harmonic bases and rigid
motion). We will see in Section 4.2 that such mechanism
facilitates the subspace domain coupling so that the
interface constraint can be directly enforced over the
generalized reduced coordinate.

Our method versus free vibrational LMA: LMA provides the
most natural deformation bases of the unconstrained
vibration space in the case that the domain’s deformation
is completely unknown [39]. It is done by solving a
generalized eigen problem (K® = AM®) defined over
the entire domain [26]. Many model reduction techniques
construct subspaces based on this method [4], [31], [41].
However, simply choosing the low-frequency LMA modes
may not be the best solution for the multidomain deform-
able object, because domains are always coupled and not
simple unconstrained free deformable bodies. Boundary
modes are specially designed for the subspace domain
coupling and, in general, they are not always the domain’s
vibrations of lowest frequency. In Fig. 4, we plot the
frequency distribution of three types of modes mentioned
above over the spectrum of the domain’s free vibration. The
y-axis in the plots is the projection of the modes onto the
LMA bases of different frequency. We can see in the figure
that the rigid boundary modes have more low-frequency
components. However, some higher frequency components
still exist. On the other hand, soft boundary modes have a

2. We say low rank that typically refers to the modes that are selected
with high priority, such as rigid boundary modes and soft boundary modes
associated with low-frequency harmonics. For internal vibrational modes, it
means low-order inertia modes or normal modes with small eigenvalues.

wider distributed spectrum, which means that they have
more high-frequency vibrational components. Similarly,
internal vibrational modes have fixed boundary. As a
result, they also have wide distribution over the free
vibrational spectrum.

The boundary modes (both rigid and soft) are computed
for each interface independently. That is, when imposing a
certain displacement to an interface, we keep other domain
interfaces fixed. This strategy has two advantages: 1) it
guarantees that the subsets of boundary modes correspond-
ing to different interfaces are linearly independent to each
other; and 2) the displacement of an interface of the domain
is determined only by the modes associated with the
interface. The internal vibrational modes have vanishing
values at the interfaces and only contribute to the
deformation at Z. Thus, they are always linearly indepen-
dent to the boundary modes and do not participate in the
domain coupling.

4 DEFORMATION ALGORITHM

In this section, we briefly describe the reduced Euler-
Lagrange formulation for multidomain deformable bodies
and the subspace domain coupling. Then, we introduce
how to generalize the reduced nodewise corotational
elasticity [4] for multidomain deformation.

4.1 Equation of Motion

For a single domain 4, the Euler-Lagrange equation on the
reduced coordinate [q]’ can be written as

[M]'[d]" + [Col'[d] + [K]'[a]" = [£]",
where [M,]', [C,)’, and [K,|' are the reduced mass,
damping, and stiffness matrices. They are constant under
linear elasticity. For the case of the commonly used Rayleigh
damping, [C,]' is a linear combination of [M,]' and [K,]". [f,]’
is the reduced external force. Domain displacements [u]’
and reduced coordinate [q]' are related by the equation:
[u]" = [®]'[q]", where [®]" contains the selected modes of
the domain. It is noteworthy that since we are not using the

(14)
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Fig. 5. The structures of global mode matrix and its nonzero
diagonal submatrix at an individual domain. Shadowed blocks are
nonzero submatrices.

regular eigenvectors as local subspace bases, the reduced
equations are not decoupled and need to be solved using
direct linear solver.

For a dynamic system with multiple domains, the
global reduced mass, damping, and stiffness matrices are
block diagonal: M, = diag([M,]'), C, = diag([C,]'), and
K, = diag([K,]"). Similarly, the global mode matrix &
also has a block-diagonal-like structure as shown in Fig. 5.
The global reduced displacement/velocity/acceleration
q/4/q is the column vector stacking [q]'/[q]'/[d]’ at all
domains. We do not apply mass orthogonalization to the
modes as done in [31], because the boundary modes have
clearly specified geometric properties that can be further
utilized for interactive manipulation. We do not experi-
ence any stability issues in our experiment (with time step
1/30 sec and implicit Newmark intergration).

4.2 Boundary Coupling

The locking issue and overconstraining problem are well
resolved in our framework. First, neighboring subspaces are
always compatible because the modes are computed based
on the predefined boundary displacements, and the
possible interface displacements at each subspace are the
same. Second, the interface displacement is no longer a
high-dimensional variable as it is expressed with a set of
reduced geometric bases. Without loss of generality,
assuming there are two domains « and [ sharing an
interface, a valid domain coupling requires keeping the
duplicated interface DOFs at both domains overlapping
during the simulation. Let [®] and [®]” denote the modes
superset at the domains. Then, the interface constraint can
be expressed as

[@5]"a]” — [®3]°[a)” = 0, (15)

where [q]* and [q]” are the reduced modal displacement in
domains. In general, the local interface index is different
from a domain to another. To simplify the notation, we just
use subscript g, for both domains that can be considered as
a global index of the interfaces on the host mesh.
Equation (15) indicates that an interface displacement
must be able to be represented with the reduced
coordinates at both domains. In other words, the interface
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displacement has to be within the intersection of the
subspaces spanned by [®5]" and [®p,]". If the intersection
is only a small portion of the original subspaces, the
regions nearby the boundary may appear to be “locking”
as some deformations are filtered by the neighboring
subspace. Time-varying subspace construction [32] may
alleviate such an effect, but does not guarantee eliminating
it. To have a natural deformation across the interface, the
subspaces at the domains should be compatible at the
interface DOFs. That is, any subspace interface displace-
ments of « can also be represented within the subspace at
B. Another problem of using (15) lies in the fact that the
number of boundary constraints depends on the number of
the domain’s boundary DOFs. For a host mesh of large
scale, a high-dimensional boundary constraint could easily
turn the system into an overconstrained one.

In our framework, each interface is clearly associated with
a subset of boundary modes, and the displacement of the
interface is only determined by the corresponding reduced
coordinates. Suppose domain d; neighbors to k£ domains
(dy,ds, ..., d;, k> 1) at interfaces By, Bs, ..., B, the bound-
ary constraint for interdomain coupling can be directly
enforced at the reduced domain coordinates that correspond
to the interfaces for each pair of neighbor domains:

[%Jj‘ - [CIB]]j = 0
[az,]” — [az,] : 0 (16)
las] " — [ag,]" — o,

where the notation like [qu]d0 stands for the subset of the
reduced displacement at domain d, that corresponds to
interface B;.

4.3 Large-Scale Deformation

The linear elasticity-based model reduction described
above is not able to simulate large deformations. This is
because 1) the Cauchy’s strain tensor used is a linear strain
tensor that generates inappropriate strain under rotations;
and 2) the linear combination of the modes is not able to
represent the intermediate rotational displacement. As a
result, the rotational deformation must be specially
handled. We adopt a nodewise corotational formulation
with model reduction as in [4].

The curl of the linear deformation field is used to
approximate the local rotation at each node. For finite
elements with a linear shape function, it can be precom-
puted with the subspace modes. At each time step, we
assemble a block-diagonal warping matrix R. Each 3 x 3
diagonal block of R represents the current nodal warping.
We refer the reader to the literature [4] for a detailed
derivation of R. Because of the domain decomposition,
interface nodes are duplicated at the neighbor domains. This
means that the number of rows of the global mode matrix ®
is larger than the number of DOFs on the host mesh.
Accordingly, we assemble an auxiliary elementary matrix E,
such that the rows of ® corresponding to the duplicated
boundary nodes are picked only once. This operation
implies that the computation of the curl at the interface
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node takes all the neighbor domains into account, which
ensures the smoothness of the warped deformation u:

it = RE®q. (17)

E is fixed when the domain decomposition is done and the
product of E® can be precomputed. The update of nodal
displacements is “local” as modes from other domains do
not contribute to the final displacement of the node.?
Accordingly, in real implementation, only local matrix-
vector products are necessary to compute the displacement
of the nodes.

5 DIRECT MANIPULATION

Manipulation of deformable objects is important for user
interactivity and animation production. Our system enables
the user to manipulate the deformable object through
applying constraints to the nodes or the interfaces.

If a node p is constrained to a specified position. The
corresponding PC equation is R,®,q = c, where R,, and
®, represent the warping matrix and three-row mode matrix
at the constrained node. c is the desired node position. R, is
a time-varying matrix, and we use the warping matrix in the
previous time step to approximate the current warping
matrix. Therefore, a linear constraint equation can be used:

®,q-R,'c=0. (18)

For subspace dynamics, the system could become over-
constrained if multiple nodes are constrained by the user
for interactive manipulation as each constrained node
consumes three DOFs from the system. Therefore, a
mechanism is needed to prevent the system from being
overconstrained while keeping the system size small. In
addition, subspace displacement may not be able to
represent all the user-specified positions of the nodes,
which could also lead to the locking problem.

To solve this issue, we design a new type of mode called
the PC mode. The desired PC mode should be 1) linearly
independent to the existing modes included at the domain
and 2) able to represent any displacements for the
constrained nodes. The latter requirement ensures that
the compensating PC modes alone are able to fulfill the
constraints so that other existing modes do not need to
sacrifice their own freedom. We denote the constrained
DOFs with set C. Any DOFs in Z, if chosen in C are removed
from Z. Imposing a unit displacement to each DOF in C
while keeping the remaining DOFs in C as well as the ones
in B fixed yields

Krr Kz Kz [®£° 0
Kz Kee Kep || IDC | = |F9, (19)
Kisr Kpe Kps 0 FLC

and PC modes "¢ can be computed through

3. Each three-row block in the global mode matrix (®) that corresponds
to a node on the FE mesh is sparse (as shown in Fig. 5). If it is an internal
node, the block has nonzeros at the columns corresponding to the domain
that owns this node. If it is a boundary node, the block has nonzeros at
the columns corresponding to its neighbor domains. In either case, the
update only needs the reduced coordinates of related domains instead of
the entire global q.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS,
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Without PC mode

~ With PC mode |

Fig. 6. Enforcing anchor nodes on the left end of the bar model using the
Lagrange multiplier method: We can clearly see the locking region
without using PC modes. Both bars are simulated with 100 modes
in total.

orC ~K 1Kz
= | 1[C | = Ic , (20)
0 0

where I7¢ is the identity matrix standing for the unit
displacement added at C. The PC modes maintain the size
of the subspace by introducing compensating modes to the
system to preclude the system’s DOFs from being “drained
out” by the user constraints. It effectively resolves the
locking problem induced by the position-constrained
nodes (Fig. 6).

Our framework also supports direct manipulation of the
interface by specifying its orientation. Such kind of
manipulation enables the user to adjust the relative
orientation among domains with deformation. Let R be
the user-specified rotation for a boundary B;, and its axis-
angle representation is (a, ). p denotes the relative position
of an interface node p with respect to the rotation pivot
(e.g., the interface centroid). The corresponding reduced
coordinate q" € R*" on the three tangential rotational
modes is gy’ = fa and the unwarped displacement is
u = ®"qy" =6[a],p, where [a], is the skew-symmetric
matrix of a. With Rodriques’s formulation, the desired
displacement (Rp —p) and the warped displacement
(f{pu) can be written as

Rp — p = ([} + sin(6)[a], — cos(0)[al’)p,  (21)
and
Ry (14l o+, 2250 2 2 -

= (&, — cos(O)[al’, - sin(0)[al’)p,
respectively. Note that [a], = —[a]’> holds for skew-
symmetric matrix [a],. Therefore, the left-hand sides of
(21) and (22) are essentially equivalent to each other such as
Rp-p=R,®"qy". (23)
This means that, for the rotation R with axis-angle
representation as (a, ), as long as qi' = fa, we can always
have the desired rotational displacement with warping.
Hence, the corresponding interface orientation constraint
simply becomes

qrot = fa.

i

(24)

All the constraints including boundary constraint (16),
position constraint (18) and interface constraint (24)
are imposed through Lagrange multiplier method. The
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Fig. 7. Comparative simulation among various simulators.

an

1000

constraint equations form a constraint matrix, which is a
constant if the constrained DOFs are not changed during
the simulation. Using Newmark integration, the reduced
Euler-Largange equations of all the domains can also be
converted to a linear system that is solved at each time step
based on the imposed constraint [42].

6 EXPERIMENT RESULTS

Accuracy analysis: We first show a comparative experiment
of simulating a bar model that is dropping under gravity
(9.8 m/s?) with one end fixed. As shown in Fig. 7a, from
right to left, the simulators used are nonlinear full space
(single domain StVK, the ground truth), nonlinear single
domain subspace integration with modal derivative [31],
deformation substructuring [2] (nonlinear multidomain
simulator), modal warping [4] (single domain, linear
simulator with deformation warping), and our framework
with and without soft boundary modes. The model is

9
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evenly divided into three domains for multidomain
simulators. All the simulators use the same material
parameters (e.g., Young’s Modulus and Poisson’s Ratio).
To ensure the accuracy of the nonlinear simulator, we did
not limit the maximum iteration number at each time step,
and the threshold is set as le ®. The mass and stiffness
damping coefficients are set as 0.5 and 0.08, respectively.
The time step interval is 0.01 sec, and the average implicit
Newmark time integration [43] is used for all simulators. The
average vertical displacements of vertices at the free end of
the model are recorded and shown in Fig. 7b. All the
subspace simulators have the same number of bases
(55 bases). The relative L, error for each simulator w.r.t.
ground truth is 7.36 percent for modal derivative, 13.21 per-
cent for modal warping, 13.04 percent for substructuring
(the displacements from duplicated boundary DOFs are
averaged), and 10.35 and 845 percent for our method
(without and with soft boundary modes). Inducing interface
flexibility to the system with soft boundary modes increases
the accuracy of the simulation.

Coupling comparison: With corotational displacement
correction, we can produce a similar deformation to other
state-of-art nonlinear methods. One advantage of our
method is that the multiplier-enforced coupling always
guarantees a seamless domain connection, while the
boundary-driven subspace avoids the locking and over-
constraint problem. Fig. 8 illustrates the coupling effect
using our algorithm and the penalty force-based method
[1]. The elbow joint of the arm is a one DOF joint and
rotating with angular velocity 0.2 rad/sec. Both quasi-static
nonlinear modes and modal derivatives are used for
nonlinear subspace bases. The cracks at the elbow vanish
when increasing the number of modes to 40. The simula-
tion time step has to be limited to small values (e.g.,
0.01 sec) because of the usage of highly stiff springs. On the
other hand, our method excels with the larger time step
(0.3 sec) and smaller size of subspace without any cracks or
stability issue.

Another comparison is with deformation substructuring
using rigid interface fitting [2] (Fig. 9). In this comparison,
the tyrannosaurus model is decomposed into 17 domains
and the rank for each domain is 30 (modal derivatives for
substructuring and rigid/soft boundary modes for our
method). We notice that near-rigid fitting used in sub-
structuring [2] could also induce cracks at the domain

A

=

e

=
A

A

Rest shape
2 domains

Fig. 8. Coupling comparison between our method and nonlinear multidomain with a penalty method [1].

Domain rank = 40

Domain rank = 25

Domainrank = 15

Nonlinear subspace coupling with penalty force

Time step: 0.01 sec

Domain rank = 26

Our method
Time step: 0.3 sec
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&
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Fig. 9. Coupling comparison between our method and deformation substructuring using rigid interface fitting [2].

interfaces as the deformation and interface region goes large
immediately after the simulation. Postsimulation proces-
sing with interface blending is able to relieve this artifact
[2]. With soft boundary modes, our method avoids this
problem and does not need any extra postsimulation
amendments. More importantly, simple blending could
still introduce artifacts of discontinuity as shown in Fig. 2
which requires more advanced geometrical blending at
postsimulation stage in each time step.

Our method is essentially using linear elasticity, and the
system matrix is constant during the simulation. The
runtime performance is faster than nonlinear simulators:
In the first comparison shown in Fig. 8, the overall frame
per second (FPS) is 172 using our method and 89 using
implicit springs [1]; in the second comparison as in Fig. 9,
our overall FPS is 34 compared to 18 using substructuring
[2]. In the implementation of [2], we perform three Newton-
Raphson iterations at each time step. If we reduce this
number to 1, the FPS for the tyrannosaurus model increases
to 28 with higher residual error.

Simulation with manipulation: Large deformations are well
handled in our framework. Fig. 11 shows a sunflower
model with 47,164 elements and 13 domains. We apply

Simulation mesh

external forces at the top of the flower. Large deformations
are generated at the stalk, and the leaves have relatively
smaller local vibrational deformations. Unlike deformation
substructuring [2], our framework does not rely on
hierarchical domain decomposition. Deformable objects
with looped domain connection can be simulated with
our method naturally. Fig. 10 shows the result of simulating
a sailboat model with seven loops and 253,998 elements. We
apply scripted forces at the masts and the body of the boat.
Inertia modes of order 2 are assigned to the canvases to
have enriched local deformation effects with the applied
wind field. Domain loop can also be handled with spring
coupling [1]. However, for looped multidomain deforma-
tion using substructuring [2], using implicit penalty force
between domains could break the sequential simulation
order of domains and bring more complexity to the system.

Supporting manipulations is straightforward with con-
straints in our framework. In Fig. 12, the fish model consists
of 111,196 elements and 10 domains. It is manipulated by
the user in real time. One constrained node is used to
control the body motion of the fish, while the orientations of
the interfaces connecting the rear fin and fish head are also

Fig. 10. Simulation of a sailboat model with 253,998 elements, 24 domains, and seven loops (highlighted with red circles) in real time (21 FPS). The
total number of modes used is 830. The domains corresponding to the masts and the body of the boat have stiffer material, while the canvases have
softer material. We applied scripted forces at the masts and the body of the boat and the wind force field at the canvases (shown as arrows in the

figure).
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manipulated. In our implementation, a damped constraint
equation [44] is used to avoid sharp impulse-like constraint
forces and increase the stability of the system.

Performance: Detailed time performances can be found in
Table 2. Our system is implemented with a Windows 7 PC
equipped with a 2.26-GHz Intel Xeon CPU (only a single
core is used for simulation) and 12-GB RAM. Because the
domains are coupled with hard constraints, we must solve
the system entirely (similar to coupling with implicit
penalty forces as in [1]) instead of sequentially solving each
domain individually [2]. However, linear elasticity with a
constant system matrix needs only to be preconditioned
once before simulation, and solving the system is not the
bottleneck of the framework. For example, in our sailboat
model, solving the prefactorized linear system takes less
than 1 ms, which is only 5 percent computation time of one
time step. The global mode matrix ® has a block-diagonal
structure, and the runtime nodal displacement updates
(e.g., using (17) to compute the nodal displacement on the
mesh) are actually “local” as it only depends on the number
of modes in the domain rather than the global subspace size.
Hence, our framework is on average d times faster than
modal warping [4], where d is the number of domains. In
terms of precomputation, our method is significantly faster
than the global subspace method, which generally requires
solving a very large eigen problem. It could take up to
several hours and consume considerable amount of mem-
ory, while local subspace bases precomputation is orders of
magnitude faster and can be finished within seconds. In the
table, we record the precomputation time for “fresh”
computation of each type of mode including calculating
the inverse the internal stiffness matrix (Kz7), which is the
most time-consuming part in the mode computation. In fact,
this only needs to be done once for each domain (if inertia
modes are used). As a result, we can prefactorize K77 before
mode computation, and the precomputation for domain
modes can be further shortened.
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Fig. 12. Interactive manipulation on the fish model.

7 CONCLUSION

We have developed a seamless coupling method for
multidomain subspace deformation in the framework of
nodewise corotational elasticity. With boundary-aware
mode construction method, the boundary coupling con-
straints can be directly imposed on the reduced coordinates,
efficiently avoiding the over-constraining problem. Our
algorithm can achieve real-time simulation performance for
large-scale meshes and can support direct manipulation of
deformable objects.

Limitation: When there are many boundary interfaces in
the domain decomposition, the number of boundary
deformation modes can be large. This leads to linear
growth in the required number of multipliers and accord-
ingly the dimension of the system matrix. It can be handled
by separating the variables in the linear constraint equa-
tions into independent and dependent variables, and
constructing the system matrix only using the independent
variables to avoid explicit use of Lagrange multipliers.
Nodewise corotational formulation produces ghost forces if
the domains are unconstrained when local displacement at
each node is warped. Fortunately, such effect is not seen in
our experiment, because constraints always exist in the
framework (e.g., interface constraints or PCs). The hard
constraints suppress such artifact, and the results are
physically plausible.

In subspace deformation techniques, the time for system
resolving is small. We found that the displacement warping
step, i.e., the estimation of rotation at each node, costs more
than 50 percent of the time in one simulation step. We plan
to reduce the time through adaptive rotation estimation. It
can be done by only estimating the rotations of sparsely

TABLE 2
Time Performance

Model statistics Domains Precomputation Runtime Performance
Model # elements | # vertices | #r | # domains | boundary | inertia | conditioning | system disp. | FPS
Sunflower 47,164 12,659 260 13 3.46 s 0.3 s 0.03 s 0.06 ms 8 ms 67
Fish 111,196 27,075 340 10 11.76 s 6.3 s 0.03 s 0.08 ms | 18 ms | 41
Tyrannosaurus 121,976 32,009 510 17 15.3 s 94 s 0.14 s 0.14ms | 25 ms | 34
Sailboat 253,998 48,998 830 24 43.5 s 6.2 s 0.17 s 0.6ms | 30 ms | 21

# r: total number of modes; boundary: precomputation time for boundary modes (rigid and soft ones); inertia: precomputation time for inertia modes;
conditioning: time for a preconditioning linear system; system: time for a solving reduced linear system at each time step; disp: time for computing

displacement from reduced coordinates; FPS: overall frame per second.
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sampled nodes and checking whether the rotations can be
directly used at the remaining nodes.

Unconstrained deformable object is only partially sup-
ported with this framework. Because of the linear elasticity
used, the underlying rigid body motions of the domains are
only the first-order approximation of the real rigid body
dynamics. Fortunately, modal warping is able to correct the
distorted rotation. Another method is following the similar
strategy as in [31], [45] to explicitly couple the rigid body
motion and the deformation of the domains.

Future work: An interesting research direction is to
investigate a way to apply the boundary-driven mode
construction method to the coupling of multidomain sub-
space deformations using a nonlinear StVK deformable
model in the spirit of modal derivative framework. It is
possible to construct a first or higher order approximation
of the change of boundary deformation modes using (1).

We also plan to investigate a parallel multidomain
subspace deformation algorithms. This calls for coupling
constraints to be handled in each domain separately.
Another interesting research direction is to apply the
multidomain subspace deformation technique to other
application areas, such as fabrication-aware design, to
provide fast simulation results when the user edits the
geometry model.
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